patterned heteroepitaxial sige thin films through uv ... · chemical reactions in the gas phase and...

23
Patterned heteroepitaxial SiGe thin films through Patterned heteroepitaxial SiGe thin films through UV Excimer Laser radiation UV Excimer Laser radiation S.Chiussi S.Chiussi , F.Gontad, J.C.Conde, E.Mart , F.Gontad, J.C.Conde, E.Mart í í n n 1 1 , , A.Benedetti A.Benedetti 2 2 , C.Serra , C.Serra 2 2 , J.Serra, P.Gonz , J.Serra, P.Gonz á á lez, B.Le lez, B.Le ó ó n n Departamento de Física Aplicada 1 Dpto. Mec Dpto. Mec á á nica, M nica, M á á quinas, Motores T quinas, Motores T é é rmicos y Fluido E.T.S.I.Industriales rmicos y Fluido E.T.S.I.Industriales 2 C.A.C.T.I. Universidade de Vigo (Spain) S.Chiussi New Materials Group Applied Physics Dept. University of Vigo [email protected] www.laser.uvigo.es

Upload: others

Post on 05-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Patterned heteroepitaxial SiGe thin films throughPatterned heteroepitaxial SiGe thin films through

UV Excimer Laser radiationUV Excimer Laser radiation

S.ChiussiS.Chiussi, F.Gontad, J.C.Conde, E.Mart, F.Gontad, J.C.Conde, E.Martíínn11,,A.BenedettiA.Benedetti22, C.Serra, C.Serra22, J.Serra, P.Gonz, J.Serra, P.Gonzáález, B.Lelez, B.Leóónn

Departamento de Física Aplicada1Dpto. MecDpto. Mecáánica, Mnica, Mááquinas, Motores Tquinas, Motores Téérmicos y Fluido E.T.S.I.Industrialesrmicos y Fluido E.T.S.I.Industriales

2C.A.C.T.I.Universidade de Vigo (Spain)

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

OutlineOutline

• Aim of this study

• Some basics (SiGe heterostructures & Laser processing)

• Obtained results:

• Laser assisted growth through LCVD

• Laser induced epitaxy though PLIE

• Conclusions

• Acknowledgements

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Aim of this study Aim of this study

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Produce ultra-thin patterned

heteroepitaxial SiGe alloys on Si wafers(Strained Ge rich layer buried under a Si rich cap layer)

ApplicationsApplicationsSacrificial layers for producing monocrystalline

• Micro-(Nano)-Electro-Mechanical-System (MEMS, NEMS)• Silicon-On-Nothing (SON) devices for IC technology

ApproachApproachUse laser assisted processes for producingheteroepitaxial alloys with tailored concentration gradients on Si(100)

Ge richs-SiGe

Si richSiGe

Si (100)wafer

Laser assisted techniquesLaser assisted techniques:

• Low thermal budget techniques that avoid heating up the complete substrate to > 500ºC

• Allow large area as well as local processing

• Reduce number of processing steps(bottom-up instead of top-down)

• Fast, relatively cheap and compatible with IC-processes

• Can be simulated (FEM) for reducing optimization costs

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Based on group IV elements (cubic cell)with slightly different lattice constants

aSi: 0.5431 nm, aGe: 0.5657 nm

Some basicsSome basics (SiGe heterostructures & Laser processing)(SiGe heterostructures & Laser processing)

Crystalline(c-Si, c-Ge, c-SiGe)

HH2

(dangling bonds + voids) (saturated dangling bonds + stabilised voids)

Hydrogenated amorphous(a-Si:H, a-Ge:H, a-SiGe:H)

(mono-, poly-, nano-)

Amorphous(a-Si, a-Ge, a-SiGe)

Different micro-structures are possible

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Composition and microstructure modifiesComposition and microstructure modifiesoptical & electrical properties, but also etching behaviouroptical & electrical properties, but also etching behaviour

E.Kasper (ed.) Silicon Germanium and SiGe:Carbon ISBN0852967837

Problems related to crystalline SiGe heterostructures

• Trying to match perfectly different lattice constants leads to tetragonal distortion

• Hydrogen can saturate dangling bonds in vacancies, defects, dislocations, and grain boundaries

To produce c-SiGe using Hydrogen containing precursors should be beneficial and avoid post annealing processes with Hydrogen

Tailoring concentration profile and thickness is essential foravoiding the formation and propagation of misfit dislocations

Defects and misfit dislocations

Tensile / compressive strain

depending on film composition

depending on film thickness

But: Hydrogen bonds might be helpful

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

c-Si

c-Si

c-Ge

c-Si

s-Ge

c-Si

Following steps :Chemical reactions in the gas phase and on the substrate surface

lead to film formation at Ts > 120 ºC

Si(100) Si(100)

a-Si:Ha-Ge:H

LCVD PLIE Si(100)

c-Sis-SiGe

Laser Induced Chemical Vapour Deposition (LCVD)Laser Induced Chemical Vapour Deposition (LCVD)(in parallel configuration)

Substrate

193 nm6.4 eV1st step :

Photolysis of GeH4 , Si2H6 in He

Some basicsSome basics (SiGe heterostructures & Laser processing)(SiGe heterostructures & Laser processing)

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Pulsed Laser Induced Epitaxy (PLIE)Pulsed Laser Induced Epitaxy (PLIE)(in perpendicular configuration)

1. Absorption (few nm in depth and in a well defined area)

2. Fast local heating of a shallow near surface region (within few ns)

1.- Melting of the coating and the Si wafer surface

2.- Mixing of the elements in the molten pool (tailoring of the [Ge] gradient)

3.- Crystallisation using the substrate as seed (heteroepitaxial growth)

Si(100)

c-Sis-SiGe

PLIE

193 nm25 ns

Si(100)

a-Si:Ha-Ge:H

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Obtained results: Obtained results: Laser assisted growth through LCVDa-Si:H(6nm)/a-Ge:H(3nm) bi-layers

with uniform film thickness on Si(100) wafers

Patterned a-Si:H(40nm)/a-Ge:H(20nm) bi-layers (3 µm x 5 µm) using a shadow mask

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Obtained results:Obtained results: Laser assisted growth through PLIE

Formation of an heteroepitaxial alloy (with a buried Ge rich layer in the inner part of a PLIE spot)

XPSXPSGe3dGe3d

S.Chiussi et al. Applied Surface Science 254 (2008) 6030–6033

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Inte

nsity

Time Penetra

tion Depth

1. Calculate the decay of Laser intensity when penetrating into the material:

)()],,(1[ yExpnRII(r,t) oo αθκ −−=

oT),r(T =0 I(r,t)zTk

sy

=∂∂

=0)(

-

2. Consider:- initial surface Temperature of 25ºC- heat is produced by the laser beam

Numerical simulation of the Heat Conduction through Finite Element Method (FEM )

3. Apply the Heat Conduction Differential Equationto each consecutive cell of a grid simulating the structure

T < TMP T > TMP

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Whole bilayer melting achieved with 110 mJ/cm2

Substrate melting requires energy density above 350 mJ/cm2

a‐Si:H

a‐Ge:H

c‐Si

MBE Si over-layer growth and etching of mesa structures withseveral lithography steps

Epitaxial Si  grown trough MBE

SiGe Sacrificial layergrown through LCVD and PLIE

Si (100) SubstrateWet Etching

RIE*

RIE* : Reactive Ion Etching

Compatibility with conventional IC’s fabrication technology

MESA STRUCTURE

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Highly selective etching at RT(indicating strong gradient and excellent epitaxy)

30 nm

1550 nm

Borders of the spots are less well defined BUTBUT

Whereas patterns apparently maintain their structureafter PLIE treatment with 10 pulses of 240 mJ/cm2

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

PLIE240 mJ/cm2

Enhancement of the microstructure aspect ratio

BEFOREPLIE

AFTERPLIE

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

“Surprising” changesin composition

Features are now NOTperfectly uniform

[0 %] [100 %]

10 µm

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

a-Ge:H melts earlier (965K) thana-Si:H (1410K) and solidifies later

Liquid Ge moves (segregates) during several tenth of ns, until solidification

Si(100)

c-Sis-SiGe

Si(100)

a-Si:Hl-Ge

Si(100)

Si(100)

a-Si:Ha-Ge:H

Model has been confirmed by simulation (FEM),that include thermal stress calculations

Centre and edge have different melting thresholds producing thermal stress gradients, thus modification of Ge segregation

Changes in etching behaviour of the pattern !!!Changes in etching behaviour of the pattern !!!

l-Ge

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Melting threshold higher Melting threshold higher on the lateral edgeon the lateral edge

Complex thermal Complex thermal gradientsgradients

Thermal stressThermal stress

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

aSi

aGe

cSi

T (K)301.7  1418 ‐120 

aGe

cSi

aSi

165 S1 (MPa)

Temperatureprofile

Stressprofile

Concentrationprofile

[0] [100]Mass fraction (%)

J.C.Conde et al. Thin Solid Films 518 (2010) 2431–2436

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

LCVD on Si(100) wafers :LCVD on Si(100) wafers :Uniform a-Si:H/a-Ge:H bi-layers can be produced,

both locally and in large areas

PLIE of LCVD grown biPLIE of LCVD grown bi--layers :layers :Heteroepitaxial structures with• s-Ge rich alloy buried under a Si rich layer• Lateral Ge gradients when patterns are treated• Numerical simulation of the PLIE process can predict

Ge gradients both, vertical and lateral

ConclusionsConclusions

Samples have been successfully used assacrificial layers in an IC process

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]

Financial support:

Xunta de Galicia( CESOLAS, 07REM007V11PR )

Ministerio de Educación y Ciencia( VIRTUSLASER, MAT2008-02350,SIMBIO, EUI-2008-00177 )

Special thanks toJ.Brugger, L.Doeswijk and M. van den Boogaart, EPFL Lausanne

( Nanostencils )

L.Fornarini, ENEA Frascati( Modelling )

T.Sulima and I.Eisele, UniBW München( IC processes )

AcknowledgementsAcknowledgements

S.ChiussiNew Materials Group

Applied Physics Dept.University of Vigo

[email protected]