path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_si.docx · web viewsupporting...

29
Supporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable polymers and bio- derived ionic liquids Cher Pin Song, a Ramakrishnan Nagasundara Ramanan, a,b R. Vijayaraghavan, c Douglas R MacFarlane, c Eng-Seng Chan, a João A. P. Coutinho, d Luis Fernandez d,e and Chien-Wei Ooi *a,b a Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia. b Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia. c School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia. d CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal. e Laboratorio de Termodinamica y Fisicoquímica de Fluidos, 35071-Parque Científico-Tecnologico, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain Synthesis procedure and characterization data for [Ch][AA] 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Upload: doquynh

Post on 25-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

Supporting Information

Primary and secondary aqueous two-phase systems composed of

thermo switchable polymers and bio-derived ionic liquids

Cher Pin Song, a Ramakrishnan Nagasundara Ramanan, a,b R. Vijayaraghavan, c Douglas R

MacFarlane, c Eng-Seng Chan, a João A. P. Coutinho, d Luis Fernandez d,e and Chien-Wei

Ooi*a,b

a Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan

Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia.

b Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia,

Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia.

c School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia.

d CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro,

3810-193 Aveiro, Portugal.

e Laboratorio de Termodinamica y Fisicoquímica de Fluidos, 35071-Parque Científico-

Tecnologico, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain

Synthesis procedure and characterization data for [Ch][AA]

Four different types of cholinium aminoate ([Ch][AA]), namely cholinium lysinate ([Ch][Lys],

molecular mass = 249.4 g mol-1), cholinium β-alaninate ([Ch][β-Ala], molecular mass = 192.3

g mol-1), cholinium glycinate ([Ch][Gly], molecular mass = 178.3 g mol-1) and cholinium

serinate ([Ch][Ser], molecular mass = 208.1 g mol-1), were synthesized as per the procedure

described in the literature.1 Typically, [Ch][AA]s were made by mixing aqueous “20 wt%”

choline hydroxide ([Ch][OH]) [note: batch analysis from manufacturer (Sigma Aldrich)

specifies an actual concentration at 20.9 wt% for this batch. The actual concentration of [Ch]

[OH] was confirmed by an aqueous titration with standard 0.1 M HCl solution] with the

corresponding aqueous AA solutions at 1:1 by mole. This was followed by distilling off the

water at 343.15 K under reduced pressure. The final product was dried at 333.15 K for two

days at vacuum. The stoichiometry in the obtained product was confirmed by comparison of

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Page 2: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

the pH of a 0.1 M of final product with an aqueous titration curve of the starting materials (i.e.,

0.1 M of [Ch][OH] and 0.1 M of AA solution). Note that the “end-point” in the titration curves

of the AA solution is indistinct and is not directly useful as an indicator of an equimolar

stoichiometry. The [Ch][AA]s were characterized by Electrospray Mass Spectrometry, and

NMR (1H NMR and 13C NMR) Spectroscopy. The water content was analyzed by Karl-Fischer

titration method.

2

29

30

31

32

33

34

Page 3: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

Cholinium lysinate ([Ch][Lys])

Aqueous solution of L-lysine (5.9 g, 40.1 mmol) was slowly added to 20 wt% aqueous [Ch]

[OH] (23.3 g, 40.1 mmol) and the [Ch][Lys] was made as per the procedure given above.

Electrospray Mass Spectrometry (cone 30 V):

[Ch][Lys], m/z (relative intensity, %): ES+, 104.1 (Me3N+CH2CH2OH, 100); ES-, 145.0

(lysinate, 100)

1H NMR (300 MHz, D2O, TMS): δ = 1.26–1.41 (m, 2H, CH2), 1.43–1.54 (m, 2H, CH2), 1.55–

1.67 (m, 2H, CH2), 2.6–2.64 (t, 2H, CH2), 3.2 (s, 10H, CH3–N, CH–N), 3.48–3.51 (t, 2H, CH2),

4.01–4.06 (m, 2H, CH2)

13C NMR (75 MHz, D2O, TMS): δ = 22.4, 31.2, 40.2, 53.8, 67.3,183.4

Water content (average triplicate in wt%) = 4.8

pH of 0.1 M [Ch][Lys] = 12.1

3

(a)

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Page 4: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0 5 10 15 20 2510

11

12

13

14

Volume of 0.1 M L-lysine used (ml)

pH

Fig. S1 (a) 1H NMR spectra for [Ch][Lys] in D2O; (b) 13C NMR spectra for [Ch][Lys] in D2O;

(c) titration curve for titration of 10 mL of 0.1 M [Ch][OH] with 0.1 M L-lysine in water. The

pH of 0.1 M [Ch][Lys] = 12.1

4

(b)

(c)

49

50

51

52

53

54

55

Page 5: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

Cholinium serinate ([Ch][Ser])

Aqueous solution of L-serine (5.0 g, 48 mmol) was slowly added to 20 wt% aqueous [Ch][OH]

(27.8 g, 48 mmol) and the [Ch][Ser] was made as per the procedure given above.

Electrospray Mass Spectrometry (cone 30 V):

[Ch] [Ser], m/z (relative intensity, %): ES+, 104.1 (Me3N+CH2CH2OH, 100); ES-, 104.0

(serinate, 100)

1H NMR (300 MHz, D2O, TMS): δ = 3.18 (s, 9H, CH3–N), 3.36–3.38 (t, 1H, CH–N), 3.48–

3.51 (t, 2H, CH2), 4.01–4.07 (m, 2H, CH2), 3.6–3.78 (m, 2H, CH2)

13C NMR (75 MHz, D2O, TMS): δ = 53.7, 55.5, 57.3, 64.2, 179.5

Water content (average triplicate in wt%) = 2.8

pH of 0.1 M [Ch][Ser] = 10.5

5

(a)

56

57

58

59

60

61

62

63

64

65

66

67

68

Page 6: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0 5 10 15 20 259

10

11

12

13

14

Volume of 0.1 M L-serine used (ml)

pH

Fig. S2 (a) 1H NMR spectra for [Ch][Ser] in D2O; (b) 13C NMR spectra for [Ch][Ser] in D2O;

(c) titration curve for titration of 10 mL of 0.1 M [Ch][OH] with 0.1 M L-serine in water. The

pH of 0.1 M [Ch][Ser] = 10.5

6

(b)

(c)

69

70

71

72

73

74

Page 7: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

Cholinium glycinate ([Ch][Gly])

Aqueous solution of glycine (4.2 g, 56.1 mmol) was slowly added to 20 wt% aqueous [Ch]

[OH] (32.5 g, 56.1 mmol) and the [Ch][Gly] was made as per the procedure given above.

Electrospray Mass Spectrometry (cone 30 V):

[Ch] [Gly], m/z (relative intensity, %): ES+, 103.6 (Me3N+CH2CH2OH, 100); ES-, 74.2

(glycinate, 100)

1H NMR (300 MHz, D2O, TMS): δ = 3.18 (s, 9H, CH3–N), 3.21 (s, 2H, CH2–N), 3.48–3.52 (m,

2H, CH2), 4.01–4.06 (m, 2H, CH2)

13C NMR (75 MHz, D2O, TMS): δ = 44.1, 53.8, 65.2, 179.7

Water content (average triplicate in wt%) = 5.1

pH of 0.1 M [Ch][Gly] = 11.2

7

(a)

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Page 8: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0 5 10 15 20 2510

11

12

13

14

Volume of 0.1 M glycine used (ml)

pH

Fig. S3 (a) 1H NMR spectra for [Ch][Gly] in D2O; (b) 13C NMR spectra for [Ch][Gly] in D2O;

(c) titration curve for titration of 10 mL of 0.1 M [Ch][OH] with 0.1 M glycine in water. The

pH of 0.1 M [Ch][Gly] = 11.2

8

(c)

(b)

89

90

91

92

93

94

95

Page 9: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

Cholinium β-alaninate ([Ch][β-Ala])

Aqueous solution of β-alanine (4.6 g, 52 mmol) was slowly added to 20 wt% aqueous [Ch]

[OH] (30.2 g, 52 mmol) and the [Ch] [β-Ala] was made as per the procedure given above.

Electrospray Mass Spectrometry (cone 30 V):

[Ch] [β-Ala], m/z (relative intensity, %): ES+, 104.1 (Me3N+CH2CH2OH, 100); ES-, 87.9 (β-

alaninate, 100)

1H NMR (300 MHz, D2O, TMS): δ = 2.2–2.3 (m, 2H, CH2), 2.7–2.8 (m, 2H, CH2), 3.18 (s, 9H,

CH3–N), 3.48–3.51 (m, 2H, CH2), 4.0–4.05 (m, 2H, CH2)

13C NMR (75 MHz, D2O, TMS): δ = 39.7, 53.8, 55.4, 65.2, 180.7

Water content (average triplicate in wt%) = 4.6

pH of 0.1 M [Ch][β-Ala] = 11.8

9

(a)

96

97

98

99

100

101

102

103

104

105

106

107

108

Page 10: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

Fig. S4 (a) 1H NMR spectra for [Ch][β-Ala] in D2O; (b) 13C NMR spectra for [Ch][β-Ala] in

D2O; (c) titration curve for titration of 10 mL of 0.1 M [Ch][OH] with 0.1 M β-alaninate in

water. The pH of 0.1 M [Ch][β-Ala] = 11.8

10

0 5 10 15 20 2510

11

12

13

14

Volume of 0.1 M β-alaninate used (ml)

pH(b)

(c)

109

110

111

112

113

114

115

Page 11: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

200 250 300 350 4000.0

0.5

1.0

1.5

2.0

2.5

3.0

Wavelength (nm)

Abso

rban

ce (A

bs)

Fig. S5 Wavelength scanning for PPG 400 and [Ch][AA]. 50 wt% PPG 400;

20 wt% [Ch][Lys]; 20 wt% [Ch][Ser]; 20 wt% [Ch][Gly]; 20 wt%

[Ch][β-Ala]

11

277 nm

116

117

118

119

120

Page 12: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0 5 10 15 20 250.0

0.5

1.0

1.5

2.0

f(x) = 0.0910709021839216 xR² = 0.999380305002494

Concentration of [Ch][Lys] (wt%)

Absor

bance

(Abs

)

0 5 10 15 20 250.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x) = 0.13335360917451 xR² = 0.997592776624803

Concentration of [Ch][Ser] (wt%)

Absor

bance

(Abs)

0 5 10 15 20 250.0

0.5

1.0

1.5

2.0

2.5

f(x) = 0.115777698690196 xR² = 0.998339163048423

Concentration of [Ch][Gly] (wt%)

Absor

bance

(Abs

)

0 5 10 15 20 250.0

0.5

1.0

1.5

2.0

2.5

f(x) = 0.121052369541176 xR² = 0.996528668090932

Concentration of [Ch][β-Ala] (wt%)

Absor

bance

(Abs)

Fig. S6 Standard curves of [Ch][AA] solutions. The absorbance was measured at 277 nm

12

121

122

123

Page 13: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0 5 10 15 20 25 30 35 400

10

20

30

40

50

60

70

80

90

100

100 w2

100 w1

0 5 10 15 20 250

10

20

30

40

50

60

70

100 w2

100 w1

0 5 10 15 20 25 30 350

10

20

30

40

50

60

70

80

90

100

100 w2

100 w1

Fig. S7 Plait points for PPG 400 (1) + [Ch][Lys] (2) + water (3) systems. experimental

binodal data; ̶ ̶ ̶ ̶ ̶ ̶ calculated binodal data from Eq. (6); experimental tie-line data;

auxiliary point; plait point; total composition (a) 288.15 K; (b) 298.15 K; (c) 308.15 K

13

(c)

(a) (b)

124

125

126

127

128

129

Page 14: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0 5 10 15 20 25 30 35 400

10

20

30

40

50

60

70

80

90

100

100 w2

100 w1

0 5 10 15 20 25 300

10

20

30

40

50

60

70

100 w2

100 w1

0 5 10 15 20 250

10

20

30

40

50

60

70

80

90

100 w2

100 w1

Fig. S8 Plait points for PPG 400 (1) + [Ch][Ser] (2) + water (3) systems. experimental

binodal data; ̶ ̶ ̶ ̶ ̶ ̶ calculated binodal data from Eq. (6); experimental tie-line data;

auxiliary point; plait point; total composition (a) 288.15 K; (b) 298.15 K; (c) 308.15 K

14

(c)

(a) (b)

130

131

132

133

134

135

Page 15: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0 5 10 15 20 25 30 35 400

10

20

30

40

50

60

70

80

90

100

100 w2

100 w1

0 5 10 15 20 25 300

10

20

30

40

50

60

70

100 w2

100 w1

0 5 10 15 20 250

10

20

30

40

50

60

70

80

90

100

100 w2

100 w1

Fig. S9 Plait points for PPG 400 (1) + [Ch][Gly] (2) + water (3) systems. experimental

binodal data; ̶ ̶ ̶ ̶ ̶ ̶ calculated binodal data from Eq. (6); experimental tie-line data;

auxiliary point; plait point; total composition (a) 288.15 K; (b) 298.15 K; (c) 308.15 K

15

(c)

(a) (b)

136

137

138

139

140

Page 16: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0 5 10 15 20 25 30 35 40 45 500

10

20

30

40

50

60

70

80

90

100 w2

100 w1

0 5 10 15 20 25 300

10

20

30

40

50

60

70

100 w2

100 w1

0 5 10 15 20 25 30 350

10

20

30

40

50

60

70

80

100 w2

100 w1

Fig. S10 Plait points for PPG 400 (1) + [Ch][β-Ala] (2) + water (3) systems. experimental

binodal data; ̶ ̶ ̶ ̶ ̶ ̶ calculated binodal data from Eq. (6); experimental tie-line data;

auxiliary point; plait point; total composition (a) 288.15 K; (b) 298.15 K; (c) 308.15 K

16

(c)

(a) (b)

141

142

143

144

145

146

Page 17: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20

1

2

3

4

5(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.00

1

2

3

4

5(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50

1

2

3

4

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50

1

2

3

4

5

(d)

Fig. S11 Setschenow-type plots for tie-line data of PPG 400 (1) + [Ch][AA] (2) + water (3)

systems at different temperatures. (a) [Ch][Lys]; (b) [Ch][Ser]; (c) [Ch][Gly]; (d) [Ch][β-Ala];

288.15 K; 298.15 K; 308.15 K

17

ln (m¿¿1t ¿¿m1b¿)¿¿¿

(m¿¿2b−m2t )¿/mol kg-1

ln (m¿¿1t ¿¿m1b¿)¿¿¿

ln (m¿¿1t ¿¿m1b¿)¿¿¿ln (m¿¿1t ¿¿m1

b¿)¿¿¿

(m¿¿2b−m2t )¿/mol kg-1

(m¿¿2b−m2t )¿/mol kg-1

(m¿¿2b−m2t )¿/mol kg-1

147

148

149

150

151

152

153

154

155

Page 18: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

100

100 w2

100 w1

(a)

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

100

100 w2

100 w1

(b)

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

100 w2

100 w1

(c)

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

100 w2

100 w1

(d)

Fig. S12 Tie-line data of PPG 400 (1) + [Ch][AA] (2) + water (3) systems at 288.15 K (black),

298.15 K (red) and 308.15 K (blue). (a) [Ch][Lys]; (b) [Ch][Ser]; (c) [Ch][Gly]; (d) [Ch][β-

Ala]; and ── represent the experimental tie-line data; and ----- represent the calculated

tie-line data using Setschenow-type equation

18

156

157

158

159

160

161

162

Page 19: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

100

100 w2

100 w1

0 5 10 15 20 25 30 35 40 450

10

20

30

40

50

60

70

80

90

100

100 w2

100 w1

0 5 10 15 20 25 30 35 40 450

10

20

30

40

50

60

70

80

90

100 w2

100 w1

0 5 10 15 20 25 30 35 40 45 500

10

20

30

40

50

60

70

80

100 w2

100 w1

Fig. S13 Tie-line data of PPG 400 (1) + [Ch][AA] (2) + water (3) systems at 288.15 K (black),

298.15 K (red) and 308.15 K (blue). (a) [Ch][Lys]; (b) [Ch][Ser]; (c) [Ch][Gly]; (d) [Ch][β-

Ala]; and ── represent the experimental tie-line data; and ----- represent the calculated

tie-line data using e-NRTL model

19

(b)

(c)

(a)

(d)

163

164

165

166

167

168

169

Page 20: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

Table S1 Absorbance values (Abs) for the mixture of PPG 400 and [Ch][AA] at 277 nm

Concentration of [Ch][AA] (wt%)

Concentration of PPG 400 (wt%) sda

0 8 10 15[Ch][Lys]

10 0.97 0.95 0.96 0.95 0.00615 1.42 1.42 1.40 n.d.b 0.01220 1.80 1.77 n.d.b n.d.b 0.021

[Ch][Ser]10 1.45 1.45 1.45 1.44 0.00515 2.06 2.05 2.06 n.d.b 0.00620 2.50 2.50 n.d.b n.d.b 0.000

[Ch][Gly]10 1.18 1.18 1.19 1.17 0.00815 1.82 1.82 1.83 n.d.b 0.00620 2.25 2.23 n.d.b n.d.b 0.014

[Ch][β-Ala]10 1.33 1.32 1.31 1.33 0.01015 1.93 1.91 1.92 n.d.b 0.01020 2.28 2.26 n.d.b n.d.b 0.014

a sd =¿¿, where |¿| represents the absorbance value, z is the concentration of PPG 400 [where z = (8, 10 and 15) wt%] and n is the number of absorbance values measured

b n.d. represents data not determined. The total composition of these systems was above the critical concentrations for the formation of two-phase solution.

20

170

171172

173174

175

176

Page 21: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

Table S2 Experimental binodal data for PPG 400 (1) + [Ch][AA] (2) + water (3) systems at T = (288.15a, 298.15a,b and 308.15a) K and pressure p = 101.32 kPa

T = 288.15 K T = 298.15 Kb T = 308.15 K100 w1 100 w2 100 w1 100 w2 100 w1 100 w2

PPG 400 + [Ch][Lys] + water17.3 19.2 10.3 17.2 11.5 19.219.4 17.5 13.0 13.6 14.2 14.921.8 15.8 15.5 11.8 15.8 12.024.6 13.2 18.8 10.0 18.3 9.7829.4 11.8 20.4 9.32 19.8 9.0333.6 10.6 23.6 8.26 23.4 8.2041.8 7.43 24.7 7.68 24.7 7.6745.1 6.31 28.1 6.74 28.8 6.9047.0 5.98 29.4 6.42 30.4 6.6453.7 4.48 34.0 5.66 33.3 5.5554.8 4.22 35.2 5.42 34.6 5.3256.4 4.03 36.4 5.19 35.5 5.0858.4 3.89 39.3 4.71 37.7 4.5360.8 3.58 45.1 3.72 41.5 3.4262.0 3.44 49.7 2.76 47.0 2.61

PPG 400 + [Ch][Ser] + water15.4 17.1 10.6 17.7 10.6 17.717.2 15.5 13.3 13.9 12.8 13.519.5 14.2 15.9 12.1 14.9 11.322.8 12.3 19.1 10.2 17.0 9.0527.8 11.0 20.6 9.43 18.3 8.3531.4 9.87 23.7 8.31 20.8 7.2942.5 7.55 25.2 7.83 22.2 6.8946.3 6.48 28.2 6.76 25.3 6.0648.5 6.18 29.5 6.44 27.1 5.9058.8 4.90 34.2 5.69 31.7 5.2860.7 4.67 35.3 5.42 33.6 5.1763.4 4.52 36.3 5.18 35.0 5.0166.4 4.43 38.9 4.66 39.4 4.7371.4 4.20 46.1 3.79 47.9 3.9574.9 4.16 53.7 2.99 60.9 3.58

PPG 400 + [Ch][Gly] + water15.8 17.6 10.0 16.7 7.86 13.117.5 15.8 11.8 12.4 9.90 10.420.2 14.7 13.9 10.6 11.9 9.0323.6 12.7 17.6 9.40 14.7 7.8227.0 10.8 19.3 8.82 16.3 7.4730.5 9.58 22.8 7.97 19.6 6.8638.7 6.88 24.2 7.51 20.9 6.5142.0 5.87 26.9 6.46 23.8 5.7044.5 5.66 28.3 6.18 25.6 5.4857.4 4.78 32.5 5.41 29.5 4.9258.9 4.53 33.8 5.21 30.6 4.7060.3 4.31 35.0 5.00 31.6 4.5263.2 4.22 37.1 4.45 33.9 4.0765.6 3.86 42.5 3.50 40.1 3.30

21

177178

Page 22: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

67.7 3.76 50.1 2.78 45.7 2.51

PPG 400 + [Ch][β-Ala] + water17.2 19.2 9.13 16.7 10.3 17.219.4 17.5 12.3 12.9 13.1 13.821.7 15.8 15.4 11.7 14.9 11.325.4 13.7 18.7 9.98 17.5 9.3529.1 11.7 20.7 9.44 18.5 8.4732.3 10.2 23.6 8.26 20.9 7.3240.9 7.27 24.6 7.65 22.6 7.0445.1 6.31 28.0 6.71 25.4 6.0947.0 5.98 29.0 6.33 26.9 5.8652.8 4.40 33.3 5.55 30.5 5.0854.3 4.18 35.1 5.40 31.6 4.8655.9 3.99 36.0 5.14 33.1 4.7258.3 3.89 38.9 4.67 35.3 4.2361.5 3.62 39.2 4.61 41.5 3.4263.0 3.50 49.9 2.77 46.4 2.73

a Standard uncertainty of temperature, u(T) = 1 K. Expanded uncertainty: for PPG 400 + [Ch][Lys] + water system, Uc are Uc(PPG 400) = Uc([Ch][Lys]) = 0.0018 (95% level of confidence); for PPG 400 + [Ch][Ser] + water system, Uc(PPG 400) = Uc([Ch][Ser]) = 0.0027 (95% level of confidence); for PPG 400 + [Ch][Gly] + water system, Uc(PPG 400) = Uc([Ch][Gly]) = 0.0022 (95% level of confidence); for PPG 400 + [Ch][β-Ala] + water system, Uc(PPG 400) = Uc([Ch][β-Ala]) = 0.0033 (95% level of confidence)

b Data taken from literature1

22

179180181182183184185

Page 23: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

Table S3 Values of parameters of Eq. (3) for PPG 400 + [Ch][AA] + water systems at T = (288.15, 298.15 and 308.15) K

T (K) f g R2 sd a

PPG 400 + [Ch][Lys] + water288.15 65.61 0.607 0.982 0.785298.15 -2.905 2.612 0.971 0.825308.15 35.90 1.497 0.968 1.075

PPG 400 + [Ch][Ser] + water288.15 65.27 0.600 0.993 0.306298.15 -6.330 2.218 0.981 0.498308.15 41.40 1.563 0.966 1.344

PPG 400 + [Ch][Gly] + water288.15 51.52 0.960 0.991 0.374298.15 -16.88 2.602 0.973 1.109308.15 34.69 1.975 0.971 1.230

PPG 400 + [Ch][β-Ala] + water288.15 40.25 0.796 0.989 0.489298.15 -29.95 3.354 0.978 0.875308.15 29.06 1.078 0.962 1.234

a sd =¿¿, where w1 represents the concentration of PPG 400 (wt%) and n is the number of tie-line data

23

186187

188

189

Page 24: path.web.ua.ptpath.web.ua.pt/publications/j.jct.2017.07.028_SI.docx · Web viewSupporting Information Primary and secondary aqueous two-phase systems composed of thermo switchable

Reference

(1) Song, C. P.; Ramanan, R. N.; Vijayaraghavan, R.; MacFarlane, D. R.; Chan, E.-S., Ooi, C.-

W. Green, aqueous two-phase systems based on cholinium aminoate ionic liquids with

tunable hydrophobicity and charge density. ACS Sus. Chem. Eng., 2015, 3, 3291-3298.

24

190

191

192

193

194