path category for free - group mmmgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf ·...

61
Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 1 / 17 Path Category for Free Open Morphisms from Coalgebras with Non-Deterministic Branching Thorsten Wißmann, J´ er´ emy Dubut, Shin-ya Katsumata, Ichiro Hasuo Friedrich-Alexander-Universit¨ at Erlangen-N¨ urnberg, Germany National Institute of Informatics, Tokyo, Japan FoSSaCS, April 08, 2019

Upload: others

Post on 19-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 1 / 17

Path Category for FreeOpen Morphisms from Coalgebraswith Non-Deterministic Branching

Thorsten Wißmann, Jeremy Dubut,Shin-ya Katsumata, Ichiro Hasuo

Friedrich-Alexander-Universitat Erlangen-Nurnberg, Germany

National Institute of Informatics, Tokyo, Japan

FoSSaCS, April 08, 2019

Page 2: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 2 / 17

Categorical Approaches to Bisimilarity

Coalgebra

Functor F

Transition type

: C→ C

Def. CoalgebraHomomorphism

· · ·

Def. Bisimulation

Span of CoalgebraHomomorphisms

Open Maps

[Joyal,Nielsen,Winskel]

(Sub)category J : P

Paths

↪→ M

Models

Def. Open Map

· · ·

Def. Bisimulation

Span ofOpen Maps

lasota02 lasota02

?

Page 3: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 2 / 17

Categorical Approaches to Bisimilarity

Coalgebra

Functor F

Transition type

: C→ C

Def. CoalgebraHomomorphism

· · ·

Def. Bisimulation

Span of CoalgebraHomomorphisms

Open Maps

[Joyal,Nielsen,Winskel]

(Sub)category J : P

Paths

↪→ M

Models

Def. Open Map

· · ·

Def. Bisimulation

Span ofOpen Maps

lasota02 lasota02

?

Page 4: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 2 / 17

Categorical Approaches to Bisimilarity

Coalgebra

Functor F

Transition type

: C→ C

Def. CoalgebraHomomorphism

· · ·

Def. Bisimulation

Span of CoalgebraHomomorphisms

Open Maps

[Joyal,Nielsen,Winskel]

(Sub)category J : P

Paths

↪→ M

Models

Def. Open Map

· · ·

Def. Bisimulation

Span ofOpen Maps

lasota02 lasota02

?

Page 5: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 2 / 17

Categorical Approaches to Bisimilarity

Coalgebra

Functor F

Transition type

: C→ C

Def. CoalgebraHomomorphism

· · ·

Def. Bisimulation

Span of CoalgebraHomomorphisms

Open Maps

[Joyal,Nielsen,Winskel]

(Sub)category J : P

Paths

↪→ M

Models

Def. Open Map

· · ·

Def. Bisimulation

Span ofOpen Maps

lasota02 lasota02

?

Page 6: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 3 / 17

Motivating Example: Category LTSA

Objects: (X , x0,∆)

states X , initial state x0 ∈ X , transitions ∆ ⊆ X × A× X .

Morphisms: Functional Simulations f : X → Y

f (x0) = y0 & xa−→ x ′ in X =⇒ f (x)

a−→ f (x ′) in Y

b

b

f−−−−→a b

ab ∈ A∗

Ja

b cc

c

c

Paths

Functor J : (A∗,≤

prefix order

)P −→ LTSAMRun of w ∈ A∗P in (X ,x0,∆)M ∈Mf : Jw → (X ,x0,∆)M in LTSAM

Page 7: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 3 / 17

Motivating Example: Category LTSA

Objects: (X , x0,∆)

states X , initial state x0 ∈ X , transitions ∆ ⊆ X × A× X .

Morphisms: Functional Simulations f : X → Y

f (x0) = y0 & xa−→ x ′ in X =⇒ f (x)

a−→ f (x ′) in Y

b

b

f−−−−→a b

ab ∈ A∗

Ja

b cc

c

c

Paths

Functor J : (A∗,≤

prefix order

)P −→ LTSAMRun of w ∈ A∗P in (X ,x0,∆)M ∈Mf : Jw → (X ,x0,∆)M in LTSAM

Page 8: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 3 / 17

Motivating Example: Category LTSA

Objects: (X , x0,∆)

states X , initial state x0 ∈ X , transitions ∆ ⊆ X × A× X .

Morphisms: Functional Simulations f : X → Y

f (x0) = y0 & xa−→ x ′ in X =⇒ f (x)

a−→ f (x ′) in Y

b

b

f−−−−→a b

ab ∈ A∗

Ja

b cc

c

c

Paths

Functor J : (A∗,≤

prefix order

)P −→ LTSAMRun of w ∈ A∗P in (X ,x0,∆)M ∈Mf : Jw → (X ,x0,∆)M in LTSAM

Page 9: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 3 / 17

Motivating Example: Category LTSA

Objects: (X , x0,∆)

states X , initial state x0 ∈ X , transitions ∆ ⊆ X × A× X .

Morphisms: Functional Simulations f : X → Y

f (x0) = y0 & xa−→ x ′ in X =⇒ f (x)

a−→ f (x ′) in Y

b

b

f−−−−→a b

ab ∈ A∗

Ja

b cc

c

c

Paths

Functor J : (A∗,≤

prefix order

)P −→ LTSAMRun of w ∈ A∗P in (X ,x0,∆)M ∈Mf : Jw → (X ,x0,∆)M in LTSAM

Page 10: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 3 / 17

Motivating Example: Category LTSA

Objects: (X , x0,∆)

states X , initial state x0 ∈ X , transitions ∆ ⊆ X × A× X .

Morphisms: Functional Simulations f : X → Y

f (x0) = y0 & xa−→ x ′ in X =⇒ f (x)

a−→ f (x ′) in Y

b

b

f−−−−→a b

ab ∈ A∗

Ja

b cc

c

c

Paths

Functor J : (A∗,≤

prefix order

)P −→ LTSAMRun of w ∈ A∗P in (X ,x0,∆)M ∈Mf : Jw → (X ,x0,∆)M in LTSAM

Page 11: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 3 / 17

Motivating Example: Category LTSA

Objects: (X , x0,∆)

states X , initial state x0 ∈ X , transitions ∆ ⊆ X × A× X .

Morphisms: Functional Simulations f : X → Y

f (x0) = y0 & xa−→ x ′ in X =⇒ f (x)

a−→ f (x ′) in Y

b

b

f−−−−→a b

ab ∈ A∗

Ja

b cc

c

c

Paths

Functor J : (A∗,≤

prefix order

)P −→ LTSAM

Run of w ∈ A∗P in (X ,x0,∆)M ∈Mf : Jw → (X ,x0,∆)M in LTSAM

Page 12: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 3 / 17

Motivating Example: Category LTSA

Objects: (X , x0,∆)

states X , initial state x0 ∈ X , transitions ∆ ⊆ X × A× X .

Morphisms: Functional Simulations f : X → Y

f (x0) = y0 & xa−→ x ′ in X =⇒ f (x)

a−→ f (x ′) in Y

b

b

f−−−−→a b

ab ∈ A∗

Ja

b cc

c

c

Paths

Functor J : (A∗,≤

prefix order

)P −→ LTSAMRun of w ∈ A∗P in (X ,x0,∆)M ∈Mf : Jw → (X ,x0,∆)M in LTSAM

Page 13: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 3 / 17

Motivating Example: Category LTSA

Objects: (X , x0,∆)

states X , initial state x0 ∈ X , transitions ∆ ⊆ X × A× X .

Morphisms: Functional Simulations f : X → Y

f (x0) = y0 & xa−→ x ′ in X =⇒ f (x)

a−→ f (x ′) in Y

b

b

f−−−−→a b

ab ∈ A∗

Ja

b cc

c

c

Paths

Functor J : (A∗,≤

prefix order

)P −→ LTSAMRun of w ∈ A∗P in (X ,x0,∆)M ∈Mf : Jw → (X ,x0,∆)M in LTSAM

Page 14: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 4 / 17

Open Maps

Jw X

Jv Y

f

Jφ h

g

∃d

ab cc

c

ca b

f

ab

c

c

hreflects

transitionsif X reachable

a b c

J(ab ≤ abc)

g

Definition: h open. . .

. . ., if for every such square, there exists some dialgonal lifting d .

joyal96 ’joyal96

Page 15: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 4 / 17

Open Maps

Jw X

Jv Y

f

Jφ h

g

∃d

ab cc

c

ca b

f

ab

c

c

hreflects

transitionsif X reachable

a b c

J(ab ≤ abc)

g

Definition: h open. . .

. . ., if for every such square, there exists some dialgonal lifting d .

joyal96 ’joyal96

Page 16: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 4 / 17

Open Maps

Jw X

Jv Y

f

Jφ h

g

∃d

ab cc

c

ca b

f

ab

c

c

hreflects

transitionsif X reachable

a b c

J(ab ≤ abc)

g

Definition: h open. . .

. . ., if for every such square, there exists some dialgonal lifting d .

joyal96 ’joyal96

Page 17: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 4 / 17

Open Maps

Jw X

Jv Y

f

Jφ h

g

∃d

ab cc

c

ca b

f

ab

c

c

hreflects

transitionsif X reachable

a b c

J(ab ≤ abc)

g

Definition: h open. . .

. . ., if for every such square, there exists some dialgonal lifting d .

joyal96 ’joyal96

Page 18: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 4 / 17

Open Maps

Jw X

Jv Y

f

Jφ h

g

∃d

ab cc

c

ca b

f

ab

c

c

hreflects

transitionsif X reachable

a b c

J(ab ≤ abc)

g

Definition: h open. . .

. . ., if for every such square, there exists some dialgonal lifting d .

joyal96 ’joyal96

Page 19: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 5 / 17

Pointed Coalgebras & Lax homomorphisms

⇐⇒LTSA LCoalg(1I ,P(A× (−))T · F ) e.g.TX = PXFX = A× X

⇐⇒X , x0 ∈ X ,∆ ⊆ X×A×X

1I -pointed PT (A×F (−))-coalgebra

1Ix0−→ X

ξ−→ PT(A×F X )

⇐⇒

(X , x0,∆)

(Y , y0,∆′)

h

Lax Coalgebra Homomorphism

Point-wise order ⊆ on SetC (X ,PTZ )

1I X PT(A×F X )

Y PT(A×F Y )

x0

y0

ξ

h

PT(A×F h)

ζ

⇐⇒X reachable

h : X → Yis open

h (proper) coalgebra homomorphismζ · h = PT(A×F h) · ξ

Page 20: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 5 / 17

Pointed Coalgebras & Lax homomorphisms

⇐⇒LTSA LCoalg(1I ,P(A× (−))T · F ) e.g.TX = PXFX = A× X

⇐⇒X , x0 ∈ X ,∆ ⊆ X×A×X

1I -pointed PT (A×F (−))-coalgebra

1Ix0−→ X

ξ−→ PT(A×F X )

⇐⇒

(X , x0,∆)

(Y , y0,∆′)

h

Lax Coalgebra Homomorphism

Point-wise order ⊆ on SetC (X ,PTZ )

1I X PT(A×F X )

Y PT(A×F Y )

x0

y0

ξ

h

PT(A×F h)

ζ

⇐⇒X reachable

h : X → Yis open

h (proper) coalgebra homomorphismζ · h = PT(A×F h) · ξ

Page 21: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 5 / 17

Pointed Coalgebras & Lax homomorphisms

⇐⇒LTSA LCoalg(1I ,P(A× (−))T · F ) e.g.TX = PXFX = A× X

⇐⇒X , x0 ∈ X ,∆ ⊆ X×A×X

1I -pointed PT (A×F (−))-coalgebra

1Ix0−→ X

ξ−→ PT(A×F X )

⇐⇒

(X , x0,∆)

(Y , y0,∆′)

h

Lax Coalgebra Homomorphism

Point-wise order ⊆ on SetC (X ,PTZ )

1I X PT(A×F X )

Y PT(A×F Y )

x0

y0

ξ

h

PT(A×F h)

ζ

⇐⇒X reachable

h : X → Yis open

h (proper) coalgebra homomorphismζ · h = PT(A×F h) · ξ

Page 22: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 5 / 17

Pointed Coalgebras & Lax homomorphisms

⇐⇒LTSA LCoalg(1I ,P(A× (−))T · F ) e.g.TX = PXFX = A× X

⇐⇒X , x0 ∈ X ,∆ ⊆ X×A×X

1I -pointed PT (A×F (−))-coalgebra

1Ix0−→ X

ξ−→ PT(A×F X )

⇐⇒

(X , x0,∆)

(Y , y0,∆′)

h

Lax Coalgebra Homomorphism

Point-wise order ⊆ on SetC (X ,PTZ )

1I X PT(A×F X )

Y PT(A×F Y )

x0

y0

ξ

h

PT(A×F h)

ζ

⇐⇒X reachable

h : X → Yis open

h (proper) coalgebra homomorphismζ · h = PT(A×F h) · ξ

Page 23: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 6 / 17

Main Result

Theorem

Given:

Functors T

Branching

,F

Input

: C→ C with order ⊆ on C(X ,TY )

F admits precise factorizations w.r.t. S ⊆ |C| ?

X

Idη−→ T

⊥←− 1 plus axioms (T powerset-like) ?

X

Then there is a path category

J :

Path(I ,F + 1)?

X→ LCoalg(I ,TF )

and for every h : X → Y in LCoalg(I ,TF ):

h open & X reachable?

X

=⇒ h coalgebra homomorphism

h coalgebra homomorphism =⇒ h open

Canonical Trace Semantics: LCoalg(I ,TF )→⊔

n≥0 C(I ,F n1)

trace(X ) = {[w ] | Jw → X } preserved bycoalgebra hom.

Page 24: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 7 / 17

Definition: F -precise morphism

f : X → FY is F -precise if

X FW

FY FZ

g

f Fw

Fz

∃d=⇒

X FW

FY

g

fFd

&

C

Y D

w

z

d

Intuition in Sets

f : X → FYis F -precise

⇐⇒every y ∈ Y is

mentioned precisely oncein the definition of f

Page 25: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 7 / 17

Definition: F -precise morphism

f : X → FY is F -precise if

X FW

FY FZ

g

f Fw

Fz

∃d=⇒

X FW

FY

g

fFd

&

C

Y D

w

z

d

Intuition in Sets

f : X → FYis F -precise

⇐⇒every y ∈ Y is

mentioned precisely oncein the definition of f

Page 26: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 8 / 17

precise = every y ∈ Y is mentioned precisely once

Example: FY = Y × Y + {⊥} and f : X → FY

x1

x2

x3

x4

X

y1

y2

y3

y4

Y

x1

x2

x3

x4

X

y ′1

y ′2

y ′3

y ′4

Y ′

y1

y2

y3

y4

Y

f (x1) = ⊥

f (x2) = (y1, y2)

f (x3) = (y2, y2)

f (x4) = ⊥

f : X Y×Y + {⊥} f ′ : X Y ′×Y ′ + {⊥}

q

Def.: F : C→ C admits precise factorizations w.r.t. S ⊆ |C|

∀f , X ∈ S,∃Y ′ ∈ S, f ′ precise:

X FY ′

FY∀f

∃f ′

Fq

Page 27: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 8 / 17

precise = every y ∈ Y is mentioned precisely once

Example: FY = Y × Y + {⊥} and f : X → FY

x1

x2

x3

x4

X

y1

y2

y3

y4

Y

x1

x2

x3

x4

X

y ′1

y ′2

y ′3

y ′4

Y ′

y1

y2

y3

y4

Y

f (x1) = ⊥

f (x2) = (y1, y2)

f (x3) = (y2, y2)

f (x4) = ⊥

f : X Y×Y + {⊥} f ′ : X Y ′×Y ′ + {⊥}

q

Def.: F : C→ C admits precise factorizations w.r.t. S ⊆ |C|

∀f , X ∈ S,∃Y ′ ∈ S, f ′ precise:

X FY ′

FY∀f

∃f ′

Fq

Page 28: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 8 / 17

precise = every y ∈ Y is mentioned precisely once

Example: FY = Y × Y + {⊥} and f : X → FY

x1

x2

x3

x4

X

y1

y2

y3

y4

Y

x1

x2

x3

x4

X

y ′1

y ′2

y ′3

y ′4

Y ′

y1

y2

y3

y4

Y

f (x1) = ⊥

f (x2) = (y1, y2)

f (x3) = (y2, y2)

f (x4) = ⊥

f : X Y×Y + {⊥} f ′ : X Y ′×Y ′ + {⊥}

q

Def.: F : C→ C admits precise factorizations w.r.t. S ⊆ |C|

∀f , X ∈ S,∃Y ′ ∈ S, f ′ precise:

X FY ′

FY∀f

∃f ′

Fq

Page 29: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 8 / 17

precise = every y ∈ Y is mentioned precisely once

Example: FY = Y × Y + {⊥} and f : X → FY

x1

x2

x3

x4

X

y1

y2

y3

y4

Y

x1

x2

x3

x4

X

y ′1

y ′2

y ′3

y ′4

Y ′

y1

y2

y3

y4

Y

f (x1) = ⊥

f (x2) = (y1, y2)

f (x3) = (y2, y2)

f (x4) = ⊥

f : X Y×Y + {⊥} f ′ : X Y ′×Y ′ + {⊥}

q

Def.: F : C→ C admits precise factorizations w.r.t. S ⊆ |C|

∀f , X ∈ S,∃Y ′ ∈ S, f ′ precise:

X FY ′

FY∀f

∃f ′

Fq

Page 30: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 8 / 17

precise = every y ∈ Y is mentioned precisely once

Example: FY = Y × Y + {⊥} and f : X → FY

x1

x2

x3

x4

X

y1

y2

y3

y4

Y

x1

x2

x3

x4

X

y ′1

y ′2

y ′3

y ′4

Y ′

y1

y2

y3

y4

Y

f (x1) = ⊥

f (x2) = (y1, y2)

f (x3) = (y2, y2)

f (x4) = ⊥

f : X Y×Y + {⊥} f ′ : X Y ′×Y ′ + {⊥}

q

Def.: F : C→ C admits precise factorizations w.r.t. S ⊆ |C|

∀f , X ∈ S,∃Y ′ ∈ S, f ′ precise:

X FY ′

FY∀f

∃f ′

Fq

Page 31: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 9 / 17

Proposition

The following functors admit precise factorizations w.r.t. S:

1 Constant functors if 0 ∈ S

2 Products of such functors if S closed under products

3 Coproducts of such functors if C extensive and S closed undercoproducts

4 Right adjoints R ⇐⇒ the left adjoint L preserves S-objects

Examples

1 Polynomial functors

2 Analytic functors, e.g. the bag functor (finite multisets)

3 The binding functor [A] on Nominal Sets (A#(−) a [A])

Non-Example

Powerset P because f (x) = {y} = {y , y}

Page 32: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 9 / 17

Proposition

The following functors admit precise factorizations w.r.t. S:

1 Constant functors if 0 ∈ S

2 Products of such functors if S closed under products

3 Coproducts of such functors if C extensive and S closed undercoproducts

4 Right adjoints R ⇐⇒ the left adjoint L preserves S-objects

Examples

1 Polynomial functors

2 Analytic functors, e.g. the bag functor (finite multisets)

3 The binding functor [A] on Nominal Sets (A#(−) a [A])

Non-Example

Powerset P because f (x) = {y} = {y , y}

Page 33: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 9 / 17

Proposition

The following functors admit precise factorizations w.r.t. S:

1 Constant functors if 0 ∈ S

2 Products of such functors if S closed under products

3 Coproducts of such functors if C extensive and S closed undercoproducts

4 Right adjoints R ⇐⇒ the left adjoint L preserves S-objects

Examples

1 Polynomial functors

2 Analytic functors, e.g. the bag functor (finite multisets)

3 The binding functor [A] on Nominal Sets (A#(−) a [A])

Non-Example

Powerset P because f (x) = {y} = {y , y}

Page 34: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 10 / 17

Main Result

Theorem

Given:

Functors T

Branching

,F

Input

: C→ C with order ⊆ on C(X ,TY )

F admits precise factorizations w.r.t. S ⊆ |C| ?

X

Idη−→ T

⊥←− 1 plus axioms (T powerset-like) ?

X

Then there is a path category

J :

Path(I ,F + 1)?

X→ LCoalg(I ,TF )

and for every h : X → Y in LCoalg(I ,TF ):

h open & X reachable?

X

=⇒ h coalgebra homomorphism

h coalgebra homomorphism =⇒ h open

Canonical Trace Semantics: LCoalg(I ,TF )→⊔

n≥0 C(I ,F n1)

trace(X ) = {[w ] | Jw → X } preserved bycoalgebra hom.

Page 35: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 10 / 17

Main Result

Theorem

Given:

Functors T

Branching

,F

Input

: C→ C with order ⊆ on C(X ,TY )

F admits precise factorizations w.r.t. S ⊆ |C| ?X

Idη−→ T

⊥←− 1 plus axioms (T powerset-like) ?

X

Then there is a path category

J :

Path(I ,F + 1)?

X→ LCoalg(I ,TF )

and for every h : X → Y in LCoalg(I ,TF ):

h open & X reachable?

X

=⇒ h coalgebra homomorphism

h coalgebra homomorphism =⇒ h open

Canonical Trace Semantics: LCoalg(I ,TF )→⊔

n≥0 C(I ,F n1)

trace(X ) = {[w ] | Jw → X } preserved bycoalgebra hom.

Page 36: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 11 / 17

Definition

: Category Path(I ,F )

Path P of length n

m ≥ n

I P0 FP1 P1 FP2 · · · FPn+1

I Q0 FQ1 Q1 FQ2 · · · FQn+1 · · · FQm+1

p0

F-precise map

p1

F-precise map

=

=

φ0 ∼= Fφ0 φ1 ∼= Fφ1 ··· Fφn+1 ∼=prefix order

q0 q1

Example

P0

P1

P2 P3

P4

a

a

⊥ ⊥

p0

p1p2 p3

FX = {⊥}+ {a} × X + X 2

Relation to final chain of F

Full functor Path(I ,F )� (⊔

n≥0 C(I ,F n1),≤

Truncation order

)

Page 37: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 11 / 17

Definition

: Category Path(I ,F )

Path P of length n

m ≥ n

I P0 FP1 P1 FP2 · · · FPn+1

I Q0 FQ1 Q1 FQ2 · · · FQn+1 · · · FQm+1

p0

F-precise map

p1

F-precise map

=

=

φ0 ∼= Fφ0 φ1 ∼= Fφ1 ··· Fφn+1 ∼=prefix order

q0 q1

Example

P0

P1

P2 P3

P4

a

a

⊥ ⊥

p0

p1p2 p3

FX = {⊥}+ {a} × X + X 2

Relation to final chain of F

Full functor Path(I ,F )� (⊔

n≥0 C(I ,F n1),≤

Truncation order

)

Page 38: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 11 / 17

Definition: Category Path(I ,F )Path P of length n

m ≥ n

I P0 FP1 P1 FP2 · · · FPn+1

I Q0 FQ1 Q1 FQ2 · · · FQn+1 · · · FQm+1

p0

F-precise map

p1

F-precise map

=

=

φ0 ∼= Fφ0 φ1 ∼= Fφ1 ··· Fφn+1 ∼=prefix order

q0 q1

Example

P0

P1

P2 P3

P4

a

a

⊥ ⊥

p0

p1p2 p3

FX = {⊥}+ {a} × X + X 2

Relation to final chain of F

Full functor Path(I ,F )� (⊔

n≥0 C(I ,F n1),≤

Truncation order

)

Page 39: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 11 / 17

Definition: Category Path(I ,F )Path P of length n

m ≥ n

I P0 FP1 P1 FP2 · · · FPn+1

I Q0 FQ1 Q1 FQ2 · · · FQn+1 · · · FQm+1

p0

F-precise map

p1

F-precise map

=

=

φ0 ∼= Fφ0 φ1 ∼= Fφ1 ··· Fφn+1 ∼=prefix order

q0 q1

Example

P0

P1

P2 P3

P4

a

a

⊥ ⊥

p0

p1p2 p3

FX = {⊥}+ {a} × X + X 2

Relation to final chain of F

Full functor Path(I ,F )� (⊔

n≥0 C(I ,F n1),≤

Truncation order

)

Page 40: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 12 / 17

Main Result

Theorem

Given:

Functors T

Branching

,F

Input

: C→ C with order ⊆ on C(X ,TY )

F admits precise factorizations w.r.t. S ⊆ |C| ?X

Idη−→ T

⊥←− 1 plus axioms (T powerset-like) ?

X

Then there is a path category

J :

Path(I ,F + 1)?

X→ LCoalg(I ,TF )

and for every h : X → Y in LCoalg(I ,TF ):

h open & X reachable?

X

=⇒ h coalgebra homomorphism

h coalgebra homomorphism =⇒ h open

Canonical Trace Semantics: LCoalg(I ,TF )→⊔

n≥0 C(I ,F n1)

trace(X ) = {[w ] | Jw → X } preserved bycoalgebra hom.

Page 41: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 12 / 17

Main Result

Theorem

Given:

Functors T

Branching

,F

Input

: C→ C with order ⊆ on C(X ,TY )

F admits precise factorizations w.r.t. S ⊆ |C| ?X

Idη−→ T

⊥←− 1 plus axioms (T powerset-like) ?

X

Then there is a path category

J :

Path(I ,F + 1)?X

→ LCoalg(I ,TF )

and for every h : X → Y in LCoalg(I ,TF ):

h open & X reachable?

X

=⇒ h coalgebra homomorphism

h coalgebra homomorphism =⇒ h open

Canonical Trace Semantics: LCoalg(I ,TF )→⊔

n≥0 C(I ,F n1)

trace(X ) = {[w ] | Jw → X } preserved bycoalgebra hom.

Page 42: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 13 / 17

Pointings: Idη

singletons

−−−→ T⊥

bottom

←−−−− 1 plus Axioms (powerset-like)

Open map situation J : Path(I ,F + 1)→ LCoalg(I ,TF )

P0p0−→ FP1 + 1 P1

p1−→ FP2 + 1

P0 + P1 + P2 −→ F (P1 + P2) + 1[η,⊥]−−−→TF (P0 + P1 + P2)

J

Page 43: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 14 / 17

Main Result

Theorem

Given:

Functors T

Branching

,F

Input

: C→ C with order ⊆ on C(X ,TY )

F admits precise factorizations w.r.t. S ⊆ |C| ?X

Idη−→ T

⊥←− 1 plus axioms (T powerset-like) ?

X

Then there is a path category

J :

Path(I ,F + 1)?X

→ LCoalg(I ,TF )

and for every h : X → Y in LCoalg(I ,TF ):

h open & X reachable?

X

=⇒ h coalgebra homomorphism

h coalgebra homomorphism =⇒ h open

Canonical Trace Semantics: LCoalg(I ,TF )→⊔

n≥0 C(I ,F n1)

trace(X ) = {[w ] | Jw → X } preserved bycoalgebra hom.

Page 44: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 14 / 17

Main Result

Theorem

Given:

Functors T

Branching

,F

Input

: C→ C with order ⊆ on C(X ,TY )

F admits precise factorizations w.r.t. S ⊆ |C| ?X

Idη−→ T

⊥←− 1 plus axioms (T powerset-like) ?X

Then there is a path category J : Path(I ,F + 1)?X→ LCoalg(I ,TF )

and for every h : X → Y in LCoalg(I ,TF ):

h open & X reachable?

X

=⇒ h coalgebra homomorphism

h coalgebra homomorphism =⇒ h open

Canonical Trace Semantics: LCoalg(I ,TF )→⊔

n≥0 C(I ,F n1)

trace(X ) = {[w ] | Jw → X } preserved bycoalgebra hom.

Page 45: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 15 / 17

Reachability

J : Path(I ,F + 1) −→ LCoalg(I ,TF )

Definition: (X , x0, ξ) ∈ LCoalg(I ,TF ) is reachable

..., if the runs f : JP → (X , x0, ξ) are jointly surjective.

Theorem

(X , x0, ξ) is reachable iff it has no proper

Coalgebraic definitionof reachability

subcoalgebra.

Page 46: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 16 / 17

Main Result

Theorem

Given:

Functors T

Branching

,F

Input

: C→ C with order ⊆ on C(X ,TY )

F admits precise factorizations w.r.t. S ⊆ |C| ?X

Idη−→ T

⊥←− 1 plus axioms (T powerset-like) ?X

Then there is a path category J : Path(I ,F + 1)?X→ LCoalg(I ,TF )

and for every h : X → Y in LCoalg(I ,TF ):

h open & X reachable?

X

=⇒ h coalgebra homomorphism

h coalgebra homomorphism =⇒ h open

Canonical Trace Semantics: LCoalg(I ,TF )→⊔

n≥0 C(I ,F n1)

trace(X ) = {[w ] | Jw → X } preserved bycoalgebra hom.

Page 47: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 16 / 17

Main Result

Theorem

Given:

Functors T

Branching

,F

Input

: C→ C with order ⊆ on C(X ,TY )

F admits precise factorizations w.r.t. S ⊆ |C| ?X

Idη−→ T

⊥←− 1 plus axioms (T powerset-like) ?X

Then there is a path category J : Path(I ,F + 1)?X→ LCoalg(I ,TF )

and for every h : X → Y in LCoalg(I ,TF ):

h open & X reachable?X

=⇒ h coalgebra homomorphism

h coalgebra homomorphism =⇒ h open

Canonical Trace Semantics: LCoalg(I ,TF )→⊔

n≥0 C(I ,F n1)

trace(X ) = {[w ] | Jw → X } preserved bycoalgebra hom.

Page 48: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 17 / 17

InstancesTreeAutomata

NominalAutomata

Lasota’s constructionfor P ↪→M [Lasota ’02]

C Set

Nominal Sets Set|P|

S ⊆ |C| all

strong ones all

I 1

A#k I0 = 1, IP = ∅

T P, Pf

Pufs, Pf P (per component)

F (X )analytic functors:polynomials Σ,finite multisets

1 + [A]X + A×X(RNNA)[Schroder, Milius

Kozen, W, ’17]

(⊔Q∈P

P(P,Q)× XQ

)P∈P

C(I ,F n1) Trees, height n

bar-strings|support| ≤ k

0→ P1 · · ·→ Pn in P

trace Tree language

bar language

︸ ︷︷ ︸Composition has run X

What aboutweightedsystems?

Axioms on Trestrict to P..

...still subsumesall open map

situations

Need:generalizationof open maps

Page 49: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 17 / 17

InstancesTreeAutomata

NominalAutomata

Lasota’s constructionfor P ↪→M [Lasota ’02]

C Set Nominal Sets

Set|P|

S ⊆ |C| all strong ones

all

I 1 A#k

I0 = 1, IP = ∅

T P, Pf Pufs, Pf

P (per component)

F (X )analytic functors:polynomials Σ,finite multisets

1 + [A]X + A×X(RNNA)[Schroder, Milius

Kozen, W, ’17]

(⊔Q∈P

P(P,Q)× XQ

)P∈P

C(I ,F n1) Trees, height nbar-strings|support| ≤ k

0→ P1 · · ·→ Pn in P

trace Tree language bar language

︸ ︷︷ ︸Composition has run X

What aboutweightedsystems?

Axioms on Trestrict to P..

...still subsumesall open map

situations

Need:generalizationof open maps

Page 50: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 17 / 17

InstancesTreeAutomata

NominalAutomata

Lasota’s constructionfor P ↪→M [Lasota ’02]

C Set Nominal Sets Set|P|

S ⊆ |C| all strong ones all

I 1 A#k I0 = 1, IP = ∅

T P, Pf Pufs, Pf P (per component)

F (X )analytic functors:polynomials Σ,finite multisets

1 + [A]X + A×X(RNNA)[Schroder, Milius

Kozen, W, ’17]

(⊔Q∈P

P(P,Q)× XQ

)P∈P

C(I ,F n1) Trees, height nbar-strings|support| ≤ k

0→ P1 · · ·→ Pn in P

trace Tree language bar language

︸ ︷︷ ︸Composition has run

X

What aboutweightedsystems?

Axioms on Trestrict to P..

...still subsumesall open map

situations

Need:generalizationof open maps

Page 51: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 17 / 17

InstancesTreeAutomata

NominalAutomata

Lasota’s constructionfor P ↪→M [Lasota ’02]

C Set Nominal Sets Set|P|

S ⊆ |C| all strong ones all

I 1 A#k I0 = 1, IP = ∅

T P, Pf Pufs, Pf P (per component)

F (X )analytic functors:polynomials Σ,finite multisets

1 + [A]X + A×X(RNNA)[Schroder, Milius

Kozen, W, ’17]

(⊔Q∈P

P(P,Q)× XQ

)P∈P

C(I ,F n1) Trees, height nbar-strings|support| ≤ k

0→ P1 · · ·→ Pn in P

trace Tree language bar language

︸ ︷︷ ︸Composition has run X

What aboutweightedsystems?

Axioms on Trestrict to P..

...still subsumesall open map

situations

Need:generalizationof open maps

Page 52: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 17 / 17

InstancesTreeAutomata

NominalAutomata

Lasota’s constructionfor P ↪→M [Lasota ’02]

C Set Nominal Sets Set|P|

S ⊆ |C| all strong ones all

I 1 A#k I0 = 1, IP = ∅

T P, Pf Pufs, Pf P (per component)

F (X )analytic functors:polynomials Σ,finite multisets

1 + [A]X + A×X(RNNA)[Schroder, Milius

Kozen, W, ’17]

(⊔Q∈P

P(P,Q)× XQ

)P∈P

C(I ,F n1) Trees, height nbar-strings|support| ≤ k

0→ P1 · · ·→ Pn in P

trace Tree language bar language

︸ ︷︷ ︸Composition has run X

What aboutweightedsystems?

Axioms on Trestrict to P..

...still subsumesall open map

situations

Need:generalizationof open maps

Page 53: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 17 / 17

InstancesTreeAutomata

NominalAutomata

Lasota’s constructionfor P ↪→M [Lasota ’02]

C Set Nominal Sets Set|P|

S ⊆ |C| all strong ones all

I 1 A#k I0 = 1, IP = ∅

T P, Pf Pufs, Pf P (per component)

F (X )analytic functors:polynomials Σ,finite multisets

1 + [A]X + A×X(RNNA)[Schroder, Milius

Kozen, W, ’17]

(⊔Q∈P

P(P,Q)× XQ

)P∈P

C(I ,F n1) Trees, height nbar-strings|support| ≤ k

0→ P1 · · ·→ Pn in P

trace Tree language bar language

︸ ︷︷ ︸Composition has run X

What aboutweightedsystems?

Axioms on Trestrict to P..

...still subsumesall open map

situations

Need:generalizationof open maps

Page 54: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 17 / 17

InstancesTreeAutomata

NominalAutomata

Lasota’s constructionfor P ↪→M [Lasota ’02]

C Set Nominal Sets Set|P|

S ⊆ |C| all strong ones all

I 1 A#k I0 = 1, IP = ∅

T P, Pf Pufs, Pf P (per component)

F (X )analytic functors:polynomials Σ,finite multisets

1 + [A]X + A×X(RNNA)[Schroder, Milius

Kozen, W, ’17]

(⊔Q∈P

P(P,Q)× XQ

)P∈P

C(I ,F n1) Trees, height nbar-strings|support| ≤ k

0→ P1 · · ·→ Pn in P

trace Tree language bar language

︸ ︷︷ ︸Composition has run X

What aboutweightedsystems?

Axioms on Trestrict to P..

...still subsumesall open map

situations

Need:generalizationof open maps

Page 55: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann | 17 / 17

InstancesTreeAutomata

NominalAutomata

Lasota’s constructionfor P ↪→M [Lasota ’02]

C Set Nominal Sets Set|P|

S ⊆ |C| all strong ones all

I 1 A#k I0 = 1, IP = ∅

T P, Pf Pufs, Pf P (per component)

F (X )analytic functors:polynomials Σ,finite multisets

1 + [A]X + A×X(RNNA)[Schroder, Milius

Kozen, W, ’17]

(⊔Q∈P

P(P,Q)× XQ

)P∈P

C(I ,F n1) Trees, height nbar-strings|support| ≤ k

0→ P1 · · ·→ Pn in P

trace Tree language bar language

︸ ︷︷ ︸Composition has run X

What aboutweightedsystems?

Axioms on Trestrict to P..

...still subsumesall open map

situations

Need:generalizationof open maps

Page 56: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann |∞ / 17

Page 57: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann |∞ / 17

FX = {a} × X + X × X , I = {•}, pk : Pk → FPk+1 + {⊥}

Non-Example

P0

P1 P2 P3 P4

a

a ⊥

aa

p0p1 p2 p3

Page 58: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann |∞ / 17

Tree automata in Sets

I = 1, T is P or Pf , F is analytic.

FX =∐

σ/n∈Σ

X n/Gσ

Path(I ,F )

Path of length n = ‘partial’ F -tree of height n.

TF -coalgebra homomorphisms

... are open morphisms and thus preserve & reflect tree languages.

Page 59: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann |∞ / 17

RNNA skmw17 ’skmw17

TF -coalgebra for T = Pufs FX = 1 + A× X + [A]XI := A#n, fixed n ∈ N S = Strong nominal sets

F -precise maps

... don’t loose support

... don’t loose order in the support

if f : A#n → FY is F -precise, then Y = A#m withn ≤ m ≤ n + 1.

Path(I ,F )

Finite sequence of F + 1-precise maps⇒ essentially bar strings

Page 60: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann |∞ / 17

Lasota’s construction for arbitrary J : P ↪→M lasota02’lasota02

Let J0P = 0M and the pointinga I = χ0P elsewhere.

F : Set|P| → Set|P| F : (XP)P∈P 7→

∏Q∈PP(XQ)P(P,Q)

P∈P

Functor Beh: M→ LCoalg(I ,F),M 7→ (M(P,M))P∈P . . .

aNo pointing in [lasota02]

F = T · FT (XP)P∈P = (PXP)P∈P F (XP)P∈P =

( ∐Q∈P

P(P,Q)× XQ

)P∈P

Path-category Path(I ,F )

f : χP → FY F -precise iff Y = χQ for some Q ∈ P⇒ objects in Path(I ,F ) are: 0P

m1−−→ P1m2−−→ P2 · · ·

mn−−→ Pn

Page 61: Path Category for Free - Group MMMgroup-mmm.org/~dubut/presentations/thorstenfossacs19.pdf · MotivationOpen MapsCoalgebrasMain TheoremInstances j Thorsten Wiˇmann j 1 / 17 Path

Motivation Open Maps Coalgebras Main Theorem Instances | Thorsten Wißmann |∞ / 17

All the axioms

F F + 1 admits precise factorizations, w.r.t. S and I ∈ S

T If (ei : Xi → Y )i∈I jointly epic, then f · ei v g · ei for all i ∈ I ⇒ f v g .

[η,⊥] : Id +1→ T , with ⊥Y ·!X v f for all f : X → TY

For every f : X → TY , X ∈ S,

f =⊔{[η,⊥]Y · f ′ v f | f ′ : X → Y + 1}

∀A ∈ SA TX

Y + 1 TY

x

y v Th

[η,⊥]Y

∃x ′=⇒

AX + 1

TX

Y + 1 TY

x

x ′

y

v

[η,⊥]Xh+1

Th

[η,⊥]Y