passion for knowledge conference program and speaker booklet

32
PaSSiON foR KNOWLedge Celebrating 10 years of Donostia International Physics Center Donostia-San Sebastian 27 SEPT-1 OCT 2010 www. dipc10. eu Information Program Lecture abstracts Speaker biographies Cultural activities Encounters Exhibitions Contest

Upload: lauren-hammond

Post on 22-Mar-2016

221 views

Category:

Documents


2 download

DESCRIPTION

Part of the welcome package attendants received at the Passion for Knowledge conference in Donostia-San Sebastian, Spain.

TRANSCRIPT

Page 1: Passion for Knowledge conference program and speaker booklet

Passion forKnowledgeCelebrating 10 years ofDonostia International Physics Center

Donostia-San Sebastian27 SEPT-1OCT 2010

www.dipc10.eu

InformationProgram

Lecture abstracts

Speaker biographies

Cultural act iv i t ies

Encounters

Exhibi t ions

Contest

Page 2: Passion for Knowledge conference program and speaker booklet
Page 3: Passion for Knowledge conference program and speaker booklet

Donostia International Physics Center – DIPC – was founded in

the year 2000 to promote research and knowledge in the fields

of condensed matter physics and materials science. During this

10 year period, DIPC has managed to bring to the city of Donostia,

scientists from all over the world and has acted as a platform for

talented young researchers to return to the Basque Country

through the Gipuzkoa Fellows Program. It has also organized in-

ternational meetings and conferences, and played an active role

in communicating science to society. After 10 years of activity,

Passion for Knowledge brings together scientists and other

humanists from different disciplines and cultures, all of whom

are motivated by a shared passion for knowledge and discov-

ery. We shall be sharing with them this passion for knowledge

as the driving force behind cultural progress, as well as a

source for innovation and economic and social development.

DIPC intends to foster in our society, and particularly amongst

our youngest citizens, an atmosphere which will awaken their

curiosity, interest, fascination and enthusiasm for knowledge.

Because Passion for Knowledge is our celebration of a decade

of hard work, but above all has its sights set on the future.

It’s the beginning of a new decade.

Page 4: Passion for Knowledge conference program and speaker booklet
Page 5: Passion for Knowledge conference program and speaker booklet

Program . . . . . . . . . . . . . . . . .05

Speakers . . . . . . . . . . . . . . . . .10

Lectures and activities day-by-dayPlease note that all the lectures in the program are held in the Kursaal Conference

Center. See specific venues for other activities.

Lecture abstracts and speaker biographies

See the complete list of activities in San Sebastian forPassion for Knowledge by visiting:http://www.dipc10.eu/en/full-program

All the Passion for Knowledge lectures are streamedand available for viewing at: http://dipc.tv

follow us on Facebook and Twitter.

Page 6: Passion for Knowledge conference program and speaker booklet

PROGRAM

Page 7: Passion for Knowledge conference program and speaker booklet

www.dipc10.eu 05

17:30 Welcome

Pedro Miguel Echenique

President of DIPC

Isabel Celaá

Minister of the Department of Education, Universities

and Research of the Basque Government

18:00 Opening Lectures

Robert Langer2008 PRInCE OF ASTURIAS AWARD

novel biomaterials

19:00 Aaron Ciechanover2004 nOBEL PRIzE In ChEMISTRy

Drug Development in the 21st century.Are we going to cure all diseases?

Monday

27 september

Page 8: Passion for Knowledge conference program and speaker booklet

Tuesday

28 september

tHe city

tHe city

ON science Video ContestDeadline: 15 October 2010

Visit www.onzientzia.tv to enter!

06 www.dipc10.eu

kutxaEspacio encounter for studentsRoald Hoffman1981 NOBEL PRIZE IN CHEMISTRY

Frank Wilczek2004 NOBEL PRIZE IN PHYSICS

Juan Ignacio Cirac2006 PRINCE OF ASTURIAS AWARD

10:30

17:00 Juan Ignacio Cirac2006 PRInCE OF ASTURIAS AWARD

Quantum Physics: A new view of nature and much more

18:00 Jean-Marie Lehn1987 nOBEL PRIzE In ChEMISTRy

From matter to life: Chemistry? Chemistry!

19:00 Richard Ernst1991 nOBEL PRIzE In ChEMISTRy

Passion and responsibility. Education, magnetic resonance, and Central Asian painting art

20:00 Sylvia Earle2009 TED PRIzE

The urgency of exploring the deep frontier

Page 9: Passion for Knowledge conference program and speaker booklet

www.dipc10.eu

29 september

Wednesday

www.dipc10.eu 07

tHe city

kutxaEspacio encounter for teachersDudley Herschbach1986 NOBEL PRIZE IN CHEMISTRY

Heinrich Rohrer1986 NOBEL PRIZE IN PHYSICS

Claude Cohen-Tannoudji1997 NOBEL PRIZE IN PHYSICS

10:30

17:00 Dudley Herschbach1986 nOBEL PRIzE In ChEMISTRy

Taming wild molecules

18:00 Theodor Hänsch2005 nOBEL PRIzE In PhySICS

A passion for precision

19:00 Frank Wilczek2004 nOBEL PRIzE In PhySICS

Anticipating a new Golden Age

20:00 Bernardo Atxaga2008 PREMIO LETTERARIO InTERnAzIOnALE MOnDELLO

Poem for my friend Lazkano

Page 10: Passion for Knowledge conference program and speaker booklet

Thursday

30 september

tHe city

20 sept – 10 oct

PASSION FOR artFotcienciaAquarium Donostia–San Sebastián

08 www.dipc10.eu

tHe city

Aquarium encounter for studentsSylvia Earle2009 TED PRIZE

Ada Yonath2009 NOBEL PRIZE IN CHEMISTRY

10:30

17:00 Roald Hoffmann1981 nOBEL PRIzE In ChEMISTRy

Chemistry’s essential tensions: Three views

18:00 Claude Cohen-Tannoudji1997 nOBEL PRIzE In PhySICS

Using light for manipulating atoms

19:00 Luis De Pablo2003 PRIx MUSICAL InTERnATIOnAL ARThUR hOnEGGER

Passion for music: another kind of “knowledge”

Page 11: Passion for Knowledge conference program and speaker booklet

PASSION FOR artNanoArt21La Bretxa Shopping CenterDonostia–San Sebastián

17:00 Sir John PendryFELLOW OF ThE ROyAL SOCIETy

Invisible cloaks and a perfect lens

18:00 Ada Yonath2009 nOBEL PRIzE In ChEMISTRy

Everests, polar bears, unpaved roads, antibiotics and the evolving ribosome

19:00 Heinrich Rohrer1986 nOBEL PRIzE In PhySICS

Science, fascination, passion

20:00 Concluding Remarks

Friday

1 october

tHe city

20 sept – 10 oct

www.dipc10.eu

www.dipc10.eu 09

Page 12: Passion for Knowledge conference program and speaker booklet

SPEAKERS

Page 13: Passion for Knowledge conference program and speaker booklet

Bernando Atxaga . . . . . . . . . . . . . . . . . . . . . .12

Aaron Ciechanover . . . . . . . . . . . . . . . . . . . . .13

Juan Ignacio Cirac . . . . . . . . . . . . . . . . . . . . .14

Claude Cohen-Tannoudji . . . . . . . . . . . . . . .15

Luis De Pablo . . . . . . . . . . . . . . . . . . . . . . . . .16

Sylvia Earle . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Richard Ernst . . . . . . . . . . . . . . . . . . . . . . . . . .18

Theodor hänsch . . . . . . . . . . . . . . . . . . . . . . .19

Dudley herschbach . . . . . . . . . . . . . . . . . . . .20

Roald hoffmann . . . . . . . . . . . . . . . . . . . . . . .21

Robert Langer . . . . . . . . . . . . . . . . . . . . . . . . .22

Jean-Marie Lehn . . . . . . . . . . . . . . . . . . . . . . .23

Sir John Pendry . . . . . . . . . . . . . . . . . . . . . . . 24

heinrich Rohrer . . . . . . . . . . . . . . . . . . . . . . . 25

Frank Wilczek . . . . . . . . . . . . . . . . . . . . . . . . . 26

Ada yonath . . . . . . . . . . . . . . . . . . . . . . . . . . .27

www.dipc10.eu 11

Page 14: Passion for Knowledge conference program and speaker booklet

I The flight lasted eight hours, and it took a further two hours to get out of the airport andfind the car that had come to fetch us. Our daughters were exhausted, and the youngest,who was then only three, immediately fell asleep. not so our eldest, who was five at the time.‘I’m thinking,’ she said after a while, when we asked why she couldn’t sleep. She added thatsomething odd had happened. ‘I didn’t see the people,’ she said. ‘All that time travellingthrough the sky and I didn’t see them. ’ We asked her which people she was referring to: ‘Thepeople who are dead,’ she answered.

II We were driving across the Arizona desert. Fancifully shaped rocks rose out of the earthlike small islands in a reddish sea. There wasn’t a cloud in the sky.

We told the girls to look out of the car window and contemplate that landscape so differentfrom our own and from that of any other country in Europe. They did as asked, but, beingchildren, only long enough to appear to be obeying before getting back to their own affairs,which are rarely contemplative. We tried again and spoke of the members of our family whohad never made a journey like that. ‘They would be amazed to see this desert. Look how bigit is. It goes on and on.’

‘I really really wish Ignacio was here,’ our youngest daughter said suddenly; she was eight bythen. She was referring to a friend of whom she was very fond and who had died shortly be-fore we set off for America.

We all hastened to agree, especially her older sister, who was now ten. Aware of her respon-sibilities, she said: ‘Ignacio went to heaven, so he won’t feel any need to see the desert.’I supported this point of view. I spoke of Ignacio’s long life and the good times we had en-joyed together. I resorted to the same metaphor: ‘Don’t you worry. Ignacio will be very happyin heaven.’

‘I’m not so sure,’ she said. ‘It can’t be very nice being so high up.’

Bernardo Atxaga2008 PREMIO LETTERARIO InTERnAzIOnALE MOnDELLO

Euskaltzaindia (Royal Academy of the Basque Language)Donostia-San Sebastian, Spain

Bernando atxaga graduated in economics from the university of the Basque country. Mr. atxaga is

internationally acclaimed as one of the major writers in euskara, the Basque language. He is the most

widely translated Basque writer and has been awarded the most number of prizes. among his many

awards include: the euskadi Prize (1989, 1997, 1999), the spanish fiction award (1989), Paris Milepages

(1991), the atlantic Pyrenees three crowns award (1995), the eusko ikaskuntza Prize (2002), the cesare

Pavese award for Poetry (2003), the Mondello Prize for international literature (2008) and the grinzane

cavour Prize (2008) and the spanish critics’ Prize (1978, 1985, 1988, 1993, 2003). He regularly lectures

at universities around the world and appears as an essential author on lists of 21st century writers such

as the observer’s “21 top writers” list of 1999.

Wednesday 20:00

BIO

Poem for my friend Lazkano

12 www.dipc10.eu

Page 15: Passion for Knowledge conference program and speaker booklet

Many important drugs such as penicillin, aspirin, or digitalis, were discovered by serendipity — someby curious researchers who noted an accidental phenomenon, some by isolation of active ingre-dients form plants known for centuries to have a specific therapeutic effect. Other major drugslike statins were discovered using more advanced technologies, such as targeted screening, yet,the discoverers were looking for a different effect. In all these cases, the mechanisms of actionwere largely unknown at the time of their discovery, and were discovered only later. With the realization that not all patients with diseases that physically and histopathologically appear to bethe same —different malignancies for example— respond similarly to treatment, and their clinicalbehavior is different, we have begun to understand that their molecular basis is distinct. Accordingly,we are exiting the era where our approach to treatment is “one size fits all”, and enter a new oneof “personalized medicine” where we shall tailor the treatment according to the patient’s molecu-lar/mutational profile. here, unlike the previous era, the understanding of the mechanism will drivethe development of the new drugs. This era will be characterized the development of technologieswhere sequencing and processing of individual genomes will be cheap (US$ <1,000) and fast (afew min), by identification and characterization of new disease-specific molecular markers anddrug targets, and by design of novel, mechanism-based, drugs to modulate the activities of thesetargets. It will require a change in our approach to scientific research and development and to edu-cation, where interdisciplinarity will domineer and replace in many ways the traditional, discipline-oriented approach.

Aaron Ciechanover2004 nOBEL PRIzE In ChEMISTRy

Technion (Israel Institute of Technology), haifa, Israel

aaron ciechanover was born in Haifa (israel). He received his Msc (1971) and Md (1975) from the Hebrewuniversity in Jerusalem, and his dsc (1982) from technion of which he is a distinguished researchProfessor. there, as a graduate student with Prof. avram Hershko and in collaboration with Prof. irwina. rose from the fox chase cancer center in Philadelphia, Pennsylvania (usa), they discovered thatcovalent attachment of ubiquitin to a target protein signals it for degradation. they deciphered themechanism of conjugation, described the general proteolytic functions of the system, and proposed amodel according to which this modification serves as a recognition signal for a specific downstreamprotease. as a post doctoral fellow with Prof. Harvey lodish at the Massachusetts institute of technol-ogy (Mit) in cambridge, Massachusetts, Prof. ciechanover continued his studies on the ubiquitin sys-tem. through further research it became clear that ubiquitin-mediated proteolysis plays major roles innumerous cellular processes, and aberrations in the system underlie the pathogenetic mechanisms ofmany diseases, among them certain malignancies and neurodegenerative disorders. consequently,the system has become an important platform for drug development. among the numerous prizesProf. ciechanover has received are: the 2000 albert lasker award, the 2003 israel Prize, and the 2004nobel Prize in chemistry which was shared with Prof. Hershko and Prof. rose. ciechanover is memberof the israeli national academy of sciences and Humanities, the Pontifical academy of sciences of theVatican, the american academy of arts and sciences, the national academy of sciences (usa), andthe institute of Medicine of the national academy of sciences.

BIO

Drug Development in the 21st century. Are we going to cure all diseases?

Monday 19:00

www.dipc10.eu 13

Page 16: Passion for Knowledge conference program and speaker booklet

Quantum Mechanics is a theory for the microscopic world which was developed during the last

century. Most aspects of such theory are exploited in most of the electronical devices we use in

our everyday life: computers, television sets, lasers, etc operate thanks to the laws of Quantum

Mechanics. however, there exist other aspects of that theory, more misterious and even exotic,

that could give rise to completely new applications in the fields of communication and computa-

tion. Those are related to the existence of superposition states; that is, situations where an object

seem to be in two places at the same time, or to have two opposite physical properties. Phenom-

ena related to superposition states have been recently tested giving rise to a series of results which

defy our basic understanding. In this talk I will explain what we know about those phenomena,

some of their philosophical implications, and the consequences they may have in the future of

computation and communication.

Juan Ignacio Cirac2006 PRInCE OF ASTURIAS AWARD

Max Planck Institute of Quantum OpticsGarching, Germany

Juan ignacio cirac was born in Manresa (spain). in 1988, he graduated in theoretical Physics from the

complutense university of Madrid, and subsequently received his Phd in 1991. Prof. cirac is a member

of the Max Planck society since 2001, when he was appointed director of the Max Planck institute of

Quantum optics in garching (germany). as an expert in quantum computation and its application in

the field of information, the focus of his research work is the quantum theory of information. His the-

ories propose that quantum computers will bring a new revolution to the field of information, as it will

lead to more efficient communication and far greater security in both data processing and bank trans-

fers. He is a corresponding member of both the spanish and the austrian academies of sciences, as

well as the american Physical society. Prof. cirac has won many awards including the felix Kuschenitz

Prize at the austrian academy of sciences (2001), the Quantum electronics from the european science

foundation (2005), the Prince of asturias Prize for scientific and technical research (2006), the fron-

tiers of Knowledge and culture award for basic science given by the BBVa foundation (2008) and,

most recently, the 2010 Benjamin franklin Medal in Physics.

BIO

Quantum Physics: A new view of Nature andmuch more

Tuesday 17:00

14 www.dipc10.eu

Page 17: Passion for Knowledge conference program and speaker booklet

www.dipc10.eu 15

Understanding the nature of light and its interactions with matter has always been a challenge for

Physics. new concepts have emerged from these investigations, such as the wave particle duality.

new mechanisms for the generation of light have been discovered, leading to the realization of

new light sources, called "lasers", with remarkable properties. It has been also realized that light is

not only a source of information on atoms but also a tool for manipulating atoms, for controlling

their polarization, their position and their velocity, This has opened the way to a wealth of applica-

tions like optical pumping, magnetic resonance imaging, ultra-precise atomic clocks, atomic inter-

ferometers, Bose Einstein condensates. This lecture will describe in a simple way how these

developments having occurred during the last few decades. It will be also shown how advances

of fundamental research can open the way to new unexpected applications which transform our

daily life.

Claude Cohen-Tannoudji1997 nOBEL PRIzE In PhySICS

Collège de France and École normale supérieureParis, France

claude cohen-tannoudji is a french physicist born in constantine (algeria). in 1962, he completed his

Phd in 1962 at the École normale supérieure (ens) in Paris. in 1960, he joined the centre national de

la recherche scientifique (cnrs), a connection he maintained until 1964 when he was appointed Pro-

fessor at the university of Paris. in 1973, he was elected Professor of atomic and molecular physics at

the collège de france in Paris, a position he held for many years. Prof. cohen-tannoudji’s teaching ex-

perience led him to publish several textbooks, which are appreciated by undergraduate and graduate

physics students. He pioneered the research into the various mechanisms that can be used to slow

down, cool and trap atoms with a laser beam. cohen-tannoudji and his team, were among the first to

cool atoms to very low temperatures, lower than one millionth of a degree above absolute zero. the

techniques designed by cohen-tannoudji and other scientists have resulted in various specific appli-

cations, such as more accurate atomic clocks and more precise atomic interferometers and gyrometers

to measure the force of gravity and a rotation speed. these techniques have also been essential for

producing new states of matter like Bose-einstein condensates. Prof. cohen-tannoudji has received

many distinctions, among them the 1997 nobel Prize in Physics shared with steven Phillips and steven

chu for the development of methods to cool and trap atoms with laser light.

BIO

Using light for manipulating atoms

Thursday 18:00Wednesday 10:30encounter

Page 18: Passion for Knowledge conference program and speaker booklet

We should not overlook the fact that the first statement is taken from the modern scientific world,

where the word “knowledge” has a clear, precise meaning: research in order to understand part of

reality, through proven theories which, in certain cases, can actually help us to use that reality. In

the music world, this “knowledge” only exists in the field of performing, and as basic training during

the learning period: you cannot be a musician if you cannot read and write music, and neither is

it a good idea to compose music without knowledge, mastery of past techniques, for example.

Apart from this kind of knowledge, which is more concerned with craftsmanship, the word has no

meaning when we refer to “creation” (also quite a “dubious” word in its own right) or enjoyment.

Does that mean music is of no use for achieving “knowledge”? Or could it be that the word “knowl-

edge” transcends the field of science, and that human beings are not using their full ability to reason

or their sensitivity in science, and that there are infinite ways of attaining “knowledge”? Could it

perhaps be necessary (or beneficial, at least) for us to dare to explore — albeit reticently — the

meaning of some of our words? I’m not a Wittgensteinian (I don’t make the grade), even though

I’m quite annoyed by Stephen hawking’s comments on one of the philosopher’s statements, “The

sole remaining task for philosophy is the analysis of language,” to which hawking retorts: “What a

comedown from the great tradition of philosophy from Aristotle to Kant!”. Although it is also true

that a few paragraphs further on he almost seems to aspire to “know the mind of God”. That’s not

bad, is it? In spite of all this and from my humble, although constant — 60 years — stance as a

composer, I would like to “stick my oar in” on this issue, perilous as it may be and unfathomable

perhaps, but fascinating all the same.

Luis De Pablo2003 PRIx MUSICAL InTERnATIOnAL ARThUR hOnEGGER

Jakiunde (Basque Academy of Science, Arts and humanities)

luis de Pablo was born in Bilbao (spain). entirely self-taught, he began studying music at the age of

seven and composing at the age of twelve. He attended composition classes with Max deutsch in Paris

and courses in darmstadt (germany) from 1956 onwards. in 1964 he founded spain’s first laboratory

of electronic Music and in 1965 he created the alea Private centre, where modern chamber music

and music of non-european cultures were performed for eight years. de Pablo has composed over

150 works in all genres, including orchestral, chamber music, soloist, concert performances, vocal, elec-

tronic and five operas, all of which have been performed many times by renowned musicians. de Pablo

received an Honorary doctorate from complutense university of Madrid (1996) and numerous merits

including the Honegger Prize (2003), the Prince Pierre foundation of Monaco’s Prize of Musical com-

position (2004), the guerrero foundation Prize for Music (2006) and most recently the tomás luis de

Victoria award (2009).

BIO

Passion for music:another kind of “knowledge”

Thursday 19:00

16 www.dipc10.eu

Page 19: Passion for Knowledge conference program and speaker booklet

More has been learned about the nature of the ocean in the past century than during all preceding

human history, but at the same time, more has been lost owing to the growing impact that people

are having on the sea through what is being put into it, and what is being taken out. Less than 5%

of the ocean floor has been explored or mapped with the degree of accuracy known for Mars,

but enough is known to realize that in the past fifty years, nearly half of the coral reefs have been

lost or have seriously declined, 90% of many commercially-fished species are gone and more than

400 dead zones have appeared in coastal zones globally. Rapid global warming, sea level rise,

ocean acidification and other troubling trends require urgent attention. This presentation will con-

sider new technologies and a new era of ocean exploration vital to understand these phenomena,

as well as the changes in ocean chemistry, biodiversity and the composition and structure of

marine ecosystems, with special reference to the present and future consequences to humankin.

Sylvia Earle2009 TED PRIzE

national Geographic Society, USA

sylvia earle was born in gibbytown, new Jersey (usa). she earned her Bsc degree from st. Petersburg

college and florida state university. she holds a Msc and Phd from duke university and 19 honorary

doctorates. Prof. earle is an oceanographer, explorer, author, and lecturer, explorer in residence of the

national geographic society (ngs), leader of the ngs sustainable seas expeditions, council chair for

the Harte research institute, founder of the deep search foundation, and formerly the chief scientist

of national oceanic and atmospheric administration (noaa). founder of three companies, she serves

on various corporate and non-profit boards. Her research concerns marine ecosystems with special

reference to exploration and the development and use of new technologies for access and effective

operations in the deep sea and other remote environments. named as time Magazine’s first Hero for

the Planet and a living legend by the library of congress, she has more than 100 national and inter-

national awards. Honors include the netherlands order of the golden ark, inclusion in the national

women’s Hall of fame and the american academy of achievement, and medals from the explorers

club, the Philadelphia academy of sciences, the lindbergh foundation, the national wildlife federation,

sigma Xi, Barnard college, the new england aquarium, the seattle aquarium, the society of women

geographers, and the national Parks conservation association.

BIO

The urgency of exploringthe deep frontier

Tuesday 20:00

www.dipc10.eu 17

Mark T

hie

ssen

Wednesday 10:30encounter

Page 20: Passion for Knowledge conference program and speaker booklet

Passion and responsibility were two major driving forces in my professional and private endeavours.Passion has an emotional origin. It leads to curiosity and the desire to understand. Responsibility,on the other hand, originates from the recognition of societal connectivity and interdependence.It stems from the need to serve society by educating future leaders and by solving urgent problemsthat might even threaten global survival. Education is by far the most relevant academic task, whileresearch is a most efficient educational tool.

In my professional engagement, I was enormously lucky that my contributions in the developmentof magnetic resonance led to novel tools of undeniable societal importance. Magnetic resonancehas today an extremely broad spectrum of applications ranging from solid state physics to chem-istry, molecular biology, and to brain imaging. It was evident to me from the beginning that onlybroad, comprehensive approaches and interdisciplinary engagements will lead to advances in sci-ence as well as in the humanities. So to say, as a counterbalance to my scientific activities, I becamedeeply fascinated by Central Asian painting art. During the past millennium, it has developed anenormous virtuosity in the graphical representation of emotions and of aspects that are beyond amathematical scientific description. In this way it is complementary and addresses human domainsnot properly addressed by science.

however, my overarching thoughts are dominated by deep concerns regarding a beneficial futureof mankind. Undeniably, we are living today on the account of future generations and follow afrightfully non-sustainable track. To find avenues toward a better world and toward more con-science, compassion, and foresight among our fellow-citizens should be a most important goalof all academic endeavours.

Richard Ernst1991 nOBEL PRIzE In ChEMISTRy

richard ernst was born in winterthur (switzerland). He studied and subsequently served on the facultyof the swiss federal institute of technology (etH-Zurich) from which he is now retired. Prof. ernst received both his diplomas in chemistry (1957) and Phd in physical chemistry (1962) from etH. from1963 to 1968 he worked as a research chemist at Varian associates in Palo alto, california (usa). in1968 he returned to switzerland to teach at etH and became professor in 1976. He is a Honorary doctorof the technical university of Munich and the university of Zurich. Prof. ernst was awarded the nobelPrize in chemistry in 1991 for his contributions towards the development of fourier transform nuclearmagnetic resonance (nMr) spectroscopy while at Varian associates and the subsequent developmentof multi-dimensional nMr techniques. these underpin applications of nMr both to chemistry (nMrspectroscopy) and to medicine (Mri). Prof. ernst also received louisa gross Horwitz Prize in 1991. Heis member of the world Knowledge dialogue scientific Board and foreign fellow of the Bangladeshacademy of sciences. the 2009 Bel air film festival featured the world premiere of a documentaryfilm on ernst; science Plus dharma equals social responsibility.

BIO

Passion and responsibility. Education,magnetic resonance,and Central Asian painting art

Wednesday 17:00

18 www.dipc10.eu

Page 21: Passion for Knowledge conference program and speaker booklet

Fifty years ago, the inventors of the laser were motivated by

curiosity. They could not foresee that lasers would become indispensible tools for technology and

science. During the last decade, lasers have revolutionized precision measurements of time and

frequency. Laser frequency makes it possible to accurately count the ripples of a light wave, and

they have become the most precise measuring tools available to man. Their invention has been

motivated by precise optical spectroscopy of the simple hydrogen atom, which is yielding accurate

values of fundamental constants and permits stringent test of fundamental physics laws. Today,

laser combs provide the long missing clockwork for optical atomic clocks, with applications rang-

ing from new tests of Einstein’s theory of relativity to telecommunications and satellite navigation.

Laser combs are revolutionizing molecular spectroscopy by dramatically extending the resolution

and recording speed of Fourier spectrometers. high harmonic generation promises to extend fre-

quency comb techniques and precise spectroscopy into the extreme ultraviolet and soft x-ray

regime. The calibration of astronomical spectrographs with laser combs will enable new searches

for earth-like planets in distant solar systems, and may reveal the continuing expansion of space

in the universe. By offering control of the electric field of extremely short light pulses, laser combs

have become key tools for the emerging field of attosecond science.

Theodor hänsch2005 nOBEL PRIzE In PhySICS

Max-Planck-Institut für Quantenoptik, Garching, andLudwig-Maximilians-Universität, Munich, Germany

theodor Hänsch was born in Heidelberg (germany). He obtained his diploma and Phd from the

ruprecht-Karls-universität in Heidelberg in 1969. He subsequently worked as a professor at stanford

university in california (usa) from 1975. in 1986, Prof. Hänsch returned to germany, both as director

of the Max-Planck-institut für Quantenoptik and as Professor of experimental physics and laser spec-

troscopy at the ludwig-Maximilians-universität in Munich. in 1970, he invented a new type of laser

which generated light pulses with an extremely high spectral resolution. using this device, he managed

to measure the transition frequency of the Balmer line of atomic hydrogen with a much higher preci-

sion than any previous techniques. in the late 90s, he developed with his team a new refined method

to measure the frequency of laser light even more accurately, using a device called the optical frequency

comb generator. He then used this new technique to measure the lyman line of atomic hydrogen to

the extraordinary accuracy of one part in one hundred trillion. with this precision we can now detect

changes in the fundamental physical constants of the universe. Prof. Hänsch received the nobel Prize

in Physics in 2005 for his contributions in the development of laser-based spectroscopy.

BIO

A passion for precision

Wednesday 18:00

www.dipc10.eu 19

Page 22: Passion for Knowledge conference program and speaker booklet

Chemical reactions ordinarily occur within vast mobs of

molecules, obscuring what actually happens. This talk will describe how such molecular wildness

has been tamed to reveal the intimate dynamics of single reactive collisions between pairs of

molecules. Key tools have been supersonic jets that send beams of molecules traveling into high

vacuum; spectroscopic techniques, especially exploiting lasers; and extremely sensitive detection

methods. As well as illustrating some prototypical cases, my talk will emphasize beckoning frontiers.

Among them is pursuit of ultracold conditions which make the molecules, in accord with quantum

mechanics, behave like waves rather than particles. Another exotic emerging area, dealing with

“quantum information”, seeks to attain greatly enhanced computational power. Landmark episodes

include interchanging light and matter waves as well as teleportation, called by Einstein “spooky

action at a distance”.

Dudley herschbach1986 nOBEL PRIzE In ChEMISTRy

harvard University, Cambridge, Massachusetts, USA

dudley Herschbach was born in san Jose, california (usa). He received his Bsc degree in Mathematics

(1954) and Msc in chemistry (1955) at stanford university, followed by an aM degree in Physics (1956)

and Phd in chemical Physics (1958) at Harvard university. He started lecturing in physics and chemistry

at Berkeley university in 1958. in 1963 he returned to Harvard as Professor of chemistry where he

became Baird Professor of science (1976-2003). He is now a research Professor emeritus at Harvard

and has also joined the texas a&M university faculty in 2005 as part-time Professor of Physics. Prof.

Herschbach is a member of many academies and institutions and has received numerous international

honors and awards. along with his collaborator yuan t. lee and the canadian chemist John c. Polanyi,

he received the nobel Prize in chemistry in 1986 for their contributions concerning the dynamics of

elementary chemical processes. Herschbach is a passionate advocate of science education and science

for the general public. He frequently lectures students of all ages. He serves as chair of the Board of

trustees of science service, which publishes science news and conducts the intel science talent

search and the intel international science and engineering fair. Herschbach also lent his voice for the

simpsons “treehouse of Horror XiV” episode, where he presents the nobel Prize in Physics to Prof. frink.

BIO

Taming wild molecules

Tuesday 19:00

20 www.dipc10.eu

Wednesday 10:30encounter

Page 23: Passion for Knowledge conference program and speaker booklet

In this generously illustrated lecture several views of chemistry will be presented, stressing its psy-

chological dimension and its tie to the arts: First of all, chemistry is, as it has always been, the art,

craft, business of substances and, importantly, their essential transformations. It is now also the

science of microscopic molecules, both simple and complex. And then there are people’s percep-

tions of chemistry — alternating between seeing the healing and the hurting aspects of this truly

anthropic science. The underlying psychological tensions will be explored, as will the strong ele-

ment of creation or synthesis in chemistry, which brings chemistry close to the arts.

Roald hoffmann1981 nOBEL PRIzE In ChEMISTRy

Cornell University, Ithaca, new york, USA

roald Hoffmann was born in Zolochiv (Poland). Having survived the war, he moved to the united states

in 1949. He studied chemistry at columbia university and then at Harvard university where he received

his Phd in 1962. Prof. Hoffman has been at cornell university since 1965. “applied theoretical chemistry”

is the way roald Hoffmann likes to characterize the particular blend of computations stimulated by e

xperiment and the construction of generalized models, of frameworks for understanding, that is his

contribution to chemistry. in more than 500 scientific articles and two books he has taught the chem-

ical community new and productive ways to look at the geometry and reactivity of molecules, from

organic through inorganic to infinitely extended structures. His work continues, now close to con-

densed matter physics. in 1981 he shared the nobel Prize in chemistry with Kenichi fukui, for his the-

oretical work on the course of chemical reactions. as a writer, Hoffmann has carved out a land between

science, poetry, and philosophy through many essays, four non-fiction books , five collections of poetry

including the bilingual (spanish-english) “catalista”, and three plays.

BIO

Chemistry’s essential tensions: Three views

Thursday 17:00

www.dipc10.eu 21

Tuesday 10:30encounter

Page 24: Passion for Knowledge conference program and speaker booklet

Advanced drug delivery systems are having an enormous im-

pact on human health. We start by discussing our early research on developing the first controlled

release systems for macromolecules and the isolation of angiogenesis inhibitors and how these

led to numerous new therapies. For example, new drug delivery technologies including nanopar-

ticles and nanotechnology are now being studied for use treating cancer and other illnesses. We

then discuss new ways of using nanotechnology to deliver DnA and siRnA and novel microchips

for drug delivery. Approaches for creating new biomaterials are then evaluated and examples where

such materials are used in brain cancer and shape memory applications are discussed. Finally, by

combining mammalian cells, including stem cells, with synthetic polymers, new approaches for

engineering tissues are being developed that may someday help in various disease. Examples in

the areas of cartilage, skin and spinal cord repair are discussed.

Robert Langer2008 PRInCE OF ASTURIAS AWARD

Massachusetts Institute of TechnologyCambridge, Massachusetts, USA

robert langer was born in albany, new york (usa). He received his Bsc from cornell university in 1970

and his scd from the Massachusetts institute of technology (Mit) in 1974, both in chemical engineer-

ing. He is now david H. Koch institute Professor at Mit. He served as a member of the united states

food and drug administration’s science Board, the fda’s highest advisory board, from 1995– 2002

and as its chairman from 1999–2002. Prof. langer is considered as the father of smart drug release,

following his development of innovative biomimetic materials, such as polymers, nanoparticles or

chips, which enable a controlled distribution of drugs in the human body. His research has allowed for

the successful treatment of various types of cancer, such as prostate and brain. He is also one of the

pioneers of tissue engineering, leading to controlled reconstruction and growth of tissues and organs

by means of new biodegradable materials used as scaffolds. langer has received over 170 major awards

including the 2006 united states national Medal of science; the charles stark draper Prize, considered

the equivalent of the nobel Prize for engineers and the 2008 Millennium Prize, the world’s largest tech-

nology prize. among numerous other awards langer has received are the dickson Prize for science

(2002), the Max Planck research award (2008) and the Prince of asturias award for technical and sci-

entific research (2008).

BIO

Novel biomaterials

Monday 18:00

22 www.dipc10.eu

Page 25: Passion for Knowledge conference program and speaker booklet

The evolution of the universe has generated more and more complex matter through self-organi-

zation, up to living and thinking matter. Animate as well as inanimate matter, living organisms as

well as materials, are formed of molecules and of the organized entities resulting from the interac-

tion of molecules with each other. Chemistry provides the bridge between the molecules of inan-

imate matter and the highly complex molecular architectures and systems which make up living

organisms. Synthetic chemistry has developed a very powerful set of methods for constructing

ever more complex molecules. Supramolecular chemistry seeks to control the formation of mo-

lecular assembly by means of the interactions between the partners. The designed generation of

organized architectures requires the handling of information at the molecular level in a sort of mo-

lecular programming, thus also linking chemistry with information science. The field of chemistry

is the universe of all possible entities and transformations of molecular matter, of which those ac-

tually realized in nature represent just one world among all the worlds that await to be created.

Conceptual considerations on chemistry and science in general will be presented.

Jean-Marie Lehn 1987 nOBEL PRIzE In ChEMISTRy

ISIS, Université de Strasbourg and Collège de FranceParis, France

Jean-Marie lehn was born in rosheim (france). He studied chemistry at the university of strasbourg,

where he obtained his Phd in 1963. following his post doctorate studies, he spent a year at Harvard

university in cambridge, Massachusetts (usa) working with Prof. robert Burns woodward on the chem-

ical synthesis of vitamin B12. He was appointed Professor of chemistry at the university of strasbourg

in 1970 and joined the faculty at the prestigious collège de france in 1980. Prof. lehn shared the nobel

Prize in chemistry in 1987 with charles J. Pedersen and donald J. cram for his studies on the chemical

basis of “molecular recognition” (the way in which a receptor molecule recognizes and selectively binds

a substrate), which also plays a fundamental role in biological processes. over the years his work led

to the definition of a new field of chemistry, which he has proposed calling “supramolecular chemistry”

as it deals with the complex entities formed by the association of two or more chemical species held

together by non-covalent intermolecular forces, whereas molecular chemistry concerns the entities

constructed from atoms linked by covalent bonds. subsequently, the area developed into the chemistry

of “self-organization” processes and more recently towards “adaptive chemistry”. lehn is a member of

many academies and institutions and has received numerous international honors and awards.

BIO

From matter to life: Chemistry? Chemistry!

Tuesday 18:00

www.dipc10.eu 23

Page 26: Passion for Knowledge conference program and speaker booklet

Electromagnetism encompasses much of modern technology. Its influence rests on our ability to

deploy materials that can control the component electric and magnetic fields. A new class of ma-

terials has created some extraordinary possibilities such as a negative refractive index, and lenses

whose resolution is limited only by the precision with which we can manufacture them. Cloaks

have been designed and built that hide objects within them, but remain completely invisible to ex-

ternal observers. The new materials, named metamaterials, have properties determined as much

by their internal physical structure as by their chemical composition and the radical new properties

to which they give access promise to transform our ability to control much of the electromagnetic

spectrum.

Sir John Pendry FELLOW OF ThE ROyAL SOCIETy

Imperial College London, UK

sir John Pendry as born in england. He has been working at the Blackett laboratory, imperial college

london (uK) since 1981. He began his career in the cavendish laboratory at the university of cam-

bridge, followed by six years at the daresbury laboratory of the science and technology facilities

council (uK), where he headed the theory group. in collaboration with the Marconi company, he

designed a series of completely novel artificial materials, or “metamaterials”, with properties not found

in nature. successively metamaterials with negative electrical permittivity, then with negative magnetic

permeability were designed and constructed. this project culminated in the proposal for a ‘perfect lens’

whose resolution is unlimited by wavelength. He is popularly known for his research into refractive

indexes and creation of the first practical "invisibility cloak". John Pendry was head of the Physics de-

partment at imperial college london and principal of the faculty of Physical sciences. the long list of

awards he has received includes, his post as fellow of the royal society (1984), Honorary fellow of

downing college at cambridge university, the dirac Medal of the institute of Physics (1996), the royal

Medal of the royal society (2006), as well as being knighted for his services to science (2004).

BIO

Invisible cloaks and a perfect lens

Friday 17:00

24 www.dipc10.eu

Page 27: Passion for Knowledge conference program and speaker booklet

The engine of scientific progress is the fascination of what

has been accomplished and still can be achieved, the devo-

tion to achieve it, the passion to go beyond accepted knowl-

edge, skills, capabilities, and truths, and the satisfaction of unique accomplishments. They are the

seminal source of both novelty and discovery, the essence of scientific endeavors. Quite a bit of

this scientific spirit got lost in recent decades. Science operates increasingly with financial and

recognition incentives, with competition, with claims, with vain promises and assurances, and with

other personal promotion schemes. none of them made science and scientists any better, thinking

deeper and acting more progressive. Science has to find back to scientific values and believes, to

communicate results as an obligation, not for personal or institutional profile, and generally to set

and be again the standard of human action. Otherwise we loose the scientific freedom which is

still left and the trust of society which we still enjoy. In the context of discussing these critical issues,

I would like to express my wishes concerning some grand challenges in Science and Technology

on the nm scale. We have to make tomorrow to today while we are thinking about and dreaming

of the days after tomorrow.

heinrich Rohrer1986 nOBEL PRIzE In PhySICS

Heinrich rohrer was born in Buchs (switzerland). He received his Phd in experimental physics in 1960

from the swiss federal institute of technology (etH-Zurich) with a thesis on superconductivity. after

a two-year post-doctorate at rutgers university, new Jersey (usa), he joined the iBM Zurich research

laboratory in 1963 as a research staff member. in 1974/75 he spent a sabbatical at the university of

california, santa Barbara. His research interests included, in chronological order, Kondo systems, phase

transitions, multicritical phenomena, scanning tunnelling microscopy, and, most recently, nanome-

chanics. Prof. rohrer retired from iBM in 1997. for the invention of the scanning tunnelling microscope,

gerd Binnig and Heinrich rohrer were co-recipient of both the King faisal Prize and the Hewlett

Packard europhysics Prize in 1984, of the nobel Prize in Physics of 1986, and of the cresson Medal of

the franklin institute in Philadelphia (usa) in 1987. rohrer is a member of various academies and pro-

fessional societies and has received honorary degrees from several universities.

BIO

Science, fascination, passion

Friday 19:00

www.dipc10.eu 25

Wednesday 10:30encounter

Page 28: Passion for Knowledge conference program and speaker booklet

Fundamental physics is poised to take a great leap forward in coming years. An extraordinary in-

strument — the Large hadron Collider, or LhC is just coming into operation. Future generations

may come to view the LhC as the defining symbol of our culture, analogous our to the Pyramids

of ancient Egypt; but it’s much better! It will enable us to see whether some gorgeous ideas about

the ultimate laws of physics describe reality correctly.

I’ll start out by describing what the LhC is, viewed simply as an awesome physical object and en-

gineering project. Then I’ll explain why it has to be that way, to do the job it’s meant to do. Then,

in the bulk of the talk, I’ll discuss my vision for the next level of unification in physics. That vision

suggests specific new phenomena that should become visible using the LhC. So there will be, at

last, a crucial test for these ambitious ideas.

In a multimedia presentation including spectacular images, some amazing ideas, and a few jokes,

I'll demonstrate why this is an especially exciting time to be a physicist.

Frank Wilczek 2004 nOBEL PRIzE In PhySICS

Massachusetts Institute of TechnologyCambridge, Massachusetts, USA

frank wilczek was born in Mineola, new york (usa). He graduated in mathematics in 1970 and received

his Phd in physics from Princeton university. He later joined the faculty at the institute for advanced

study at Princeton and the institute for theoretical Physics at the university of california, santa Barbara.

He currently is Herman feshbach Professor of Physics at the Massachusetts institute of technology’s

theoretical Physics center. Prof. wilczek was awarded the lorentz Medal in 2002 and the High energy

and Particle Physics Prize in 2003 granted by the european Physical society. He was co-recipient of

the 2004 nobel Prize in Physics, together with david J. gross and H. david Politzer, for the discovery

of asymptotic freedom in the theory of the strong interaction, a fundamental breakthrough which

allowed for the development of quantum chromodynamics. His findings have come from an unusually

wide range of areas within physics, such as condensed matter physics, astrophysics and particle physics.

in 2005, he obtained the King faisal international Prize. Prof. wilczek contributes regularly to Physics

today and to nature, explaining topics at the frontiers of physics to wider scientific audiences. He

received the lilienfeld Prize of the american Physical society for these activities. two of his pieces have

been anthologized in Best american science writing (2003, 2005).

BIO

Anticipating a new Golden Age

Wednesday 19:00

26 www.dipc10.eu

Tuesday 10:30encounter

Page 29: Passion for Knowledge conference program and speaker booklet

The way to elucidating the high resolution structures of ribosomes, the cellular machines that

translate the genetic code into proteins, was far from being paved. It turned to be a sequence of

Everest climbing, just to find out that there are taller Everests still to be climbed. hibernating polar

bears, in which ribosomes are packed orderly inspired the intimation of these studies, which were

widely considered formidable. Once determined, the ribosomal structures revealed the decoding

mechanism, detected the mRnA path, identified the tRnA sites, elucidated the position and the

nature of the nascent proteins exit tunnel, illuminated the interactions of the ribosome with non-

ribosomal factors, such as the initiation, release. recycling factors and the first chaperone encoun-

tered by the nascent chains. Furthermore, these structures proved that the ribosome is a ribozyme

whose active site is situated within a highly conserved symmetrical region within the otherwise

asymmetric ribosome structure, which seems to be the remnant of the proto-ribosome, an appa-

ratus that functioned in the prebiotic are and formed peptide bonds and non-coded polypeptide

chains. Structures of complexes of ribosomes with antibiotics revealed the principles allowing an-

tibiotics clinical use, identified resistance mechanisms and showed the structural bases for discrim-

inating pathogenic bacteria from hosts, hence providing valuable structural information for

antibiotics improvement and the design of novel compound that can serve as antibiotics.

Ada yonath2009 nOBEL PRIzE In ChEMISTRy

Weizmann Institute of Science, Rehovot, Israel

ada yonath was born in Jerusalem (israel). after completing her Phd studies at the Massachusetts

institute of technology and carnegie Mellon university in the united states, she established the first

protein-crystallography laboratory in israel. she is currently director of the Helen and Milton a. Kimmel-

man center for Biomolecular structure and assembly at the weizmann institute of science in rehovot

(israel). Prof. yonath is a renowned crystallographer known for her pioneering work with the structure of

ribosomes. she successfully established the use of cryo-bio-crystallography, a new technique for crys-

tallographic studies of biological structures. Her research focussed on the mechanisms underlying protein

biosynthesis which led to the discovery of the ribosomal tunnel and revealed the dynamics involved

at the different steps of protein synthesis. in parallel with her colleagues Venkatraman ramakrishnan

and thomas a. steitz, she applied x-ray crystallography to decipher the structural basis for antibiotic

selectivity, showing how it plays a fundamental role in both clinical usefulness and therapeutical effec-

tiveness, thus paving the way for future structure-based drug design. she shared the 2009 nobel Prize

in chemistry with Venkatraman ramakrishnan and thomas a. steitz for her studies on ribosome struc-

ture and functions. she is the first israeli woman to become a nobel laureate and the only woman to

obtain the nobel Prize for chemistry in the last 45 years.

BIO

Everests, polar bears, unpaved roads, antibiotics and the evolving ribosome

Friday 18:00

www.dipc10.eu 27

Thursday 10:30encounter

Page 30: Passion for Knowledge conference program and speaker booklet

These events were made possible with the participation and support of our patrons, our sponsors and collaborators, and you.

Many thanks.

Page 31: Passion for Knowledge conference program and speaker booklet

Cre

ativ

e D

irectio

n a

nd

Desi

gn

: La

ure

n h

amm

on

d

<lh

amm

on

d@

ora

ng

e.fr

>

Pri

ntin

g:

Rep

rod

uccio

nes

Igar

a (w

ww

.igar

a.co

m)

Passion for Knowledge supports Euskampus and San Sebastián 2016

Page 32: Passion for Knowledge conference program and speaker booklet

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Celebrando 10 años

10 urteak ospatzen

Celebrating 10 years

Paseo Manuel de Lardizabal, 4 E-20018 Donostia–San Sebastián

events

www.dipc10.eu