particle emissions of direct injection ic engine fed with a...

25
Andy Thawko , Harekrishna Yadav, Michael Shapiro and Leonid Tartakovsky 1 Particle Emissions of Direct Injection IC Engine Fed with a Hydrogen-rich Gaseous Fuel 23 rd ETH Conference on Combustion Generated Nanoparticles 18 June 2019

Upload: others

Post on 16-May-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

Andy Thawko, Harekrishna Yadav, Michael Shapiro and Leonid Tartakovsky

1

Particle Emissions of Direct Injection IC

Engine Fed with a Hydrogen-rich

Gaseous Fuel

23rd ETH Conference on Combustion Generated Nanoparticles

18 June 2019

Page 2: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

2

Scientific background- Fuel Reforming

Experimental Setup

Performance of ICE with Thermo-Chemical Recuperation

Particle Emission

Summary

Outline

Page 3: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

3

Source: U.S Energy Information Administration (April 2018)

Petroleum consumption for transportation

92

35

92

3

92% of the transportation energy consumption is from crude oil

Page 4: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

4

Emissions Unit Euro 1 Euro 2 Euro 3 Euro 4 Euro 5a Euro 6b/c

NOx

mg/km

- - 500 250 180 80HC+NOx 970 700 560 300 230 170

CO 2720 1000 640 500 500 500PM 140 80 50 25 5.0 4.5PN #/km - - - - - 6 ∙ 1011

Emissions Unit Euro 1 Euro 2 Euro 3 Euro 4 Euro 5a Euro 6b/c

THC

mg/km

- - 200 100 100 100NOx - - 150 80 60 60

HC+NOx 970 500 - - - -CO 2720 2200 2300 1000 1000 1000

PM - - - - 5.00 4.50

PN #/km - - - - - 6 ∙ 1011

Diesel Passenger Cars:

Gasoline Passenger Cars:

European emission legislation

Page 5: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

5

Coolant

Output

Exhaust

400 C < TExhaust < 900 C

Fuel energy distribution

About 1/3 of

the energy

Page 6: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

6

Feasible solution

Emission mitigation

Crude oil dependency

reduction

Efficiency improvement

The goal

Page 7: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

7

On-board Fuel

reforming

Emission mitigation

Crude oil dependency

reduction

Efficiency improvement

Our goal

Waste heat recoveryMethanol - alternative

(renewable) fuel

Hydrogen combustion

Page 8: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

8

Primary fuel selectionMETHANOL

LIQUID METHANOL:

Promising primary liquid fuel

Low carbon-intensity

Potentially renewable

Can be produced from natural gas or

coal

Alternative for oil as a short term solution

Can be produced from captured CO2 – PtX fuel (electrofuel)

No significant infrastructure change needed

Low reforming temperatures

GASEOUS REFORMING PRODUCTS:

Hydrogen-rich gaseous fuel:

(75%)H2+(25%)CO2

Better fuel properties

LHV increase

Higher antiknock quality

High laminar flame speed

Wide flammability limits

Zero-impact pollutant emissions

No problems of onboard hydrogen

storage

3 ( ) 2 ( ) 2 2

3 ( ) 2

2 5 ( ) 4 2

1) MethanolSteam Reforming (MSR): 3 50kJ/mol

2)MethanolDecomposition (MD): 2 90 kJ/mol

3)EthanolDecomposition (ED): 50kJ/mol

g g

g

g

CH OH H O CO H H

CH OH CO H H

C H OH CH CO H H

Page 9: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

9

Thermo-Chemical Recuperation (TCR)

Primary alternative (renewable)

and low-carbon intensity liquid fuel

Waste heat recovery process

On-board hydrogen production

Ultra-low pollutant emissions

Methanol Steam Reforming (MSR)

CH3OH+H2O → 3H2+CO2 ΔH≈50 kJ/mol

High-Pressure Thermo-Chemical Recuperation

Poran, Thawko et al., Int. J Hydrogen Energy, 2018

Page 10: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

33

10

Single cylinder, spark ignition engine (Robin

EY-20 based)

Bore x Stroke, mm 67x52

Displacement, cm3 183

Compression ratio 6.3

Power, kW @ speed, rpm 2.2 @ 3000

Fuel

supply

system

Gasoline Carburetor

Hydrogen-Rich

Reformate

Direct

injectionEngine head with pressure transducer spark plug and injector

5 - In-cylinder pressure sensor

6 - Reformate direct injector

7 – Encoder

9 – Engine control system

24 – Reformer

33 – EEPS system

Experimental Setup

Page 11: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

11

Measured reformate composition

Methanol Steam Reforming (MSR)

CH3OH+H2O → 3H2+CO2 ΔH≈50 kJ/mol

Poran, Thawko, Eyal, Tartakovsky, Int. J Hydrogen Energy, 2018

Page 12: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

12

0

10

20

30

40

50

60

70

80

90

100

Efficiency CO CO2 HC NOx

En

gin

e P

erfo

rma

nce

Imp

rov

emen

t [%

]

MSR

HP-TCR

Poran, Thawko, Eyal, Tartakovsky, Int. J Hydrogen Energy, 2018

0.10

0.15

0.20

0.25

0.30

0.35

1 3 5

Ind

ica

ted

Eff

icie

ncy

IMEP [bar]

Gasoline

MSR 40 bar

MSR 50 bar

HP-TCR

Thermo-Chemical Recuperation system Performance

Page 13: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

13

MSR

CH3OH+H2O → 3H2+CO2

Total particle concentration comparison

Page 14: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

14

Particle size and number distribution- Effect of Fuel

Page 15: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

15

Size (nm)

De

ns

ity

(g/c

m3)

0 50 100 150 200 250 300 350 400 450 500 5500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Consant density

Exponential decay

Particle size and mass distribution- Effect of Fuel

Based on Maricq’s et al. density distribution

𝑚𝑝 = 𝜌𝑒𝑓𝑓4

3𝜋(𝐷𝑝

2)3

𝜌𝑒𝑓𝑓 = 1.2378 ×4

3𝑒−0.0048𝐷𝑝

Maricq et al., Aerosol Science and Technology, 2006

Page 16: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

16

Singh et al., Fuel ,2016

Total particle concentration comparison

Previous studies showed significant PN reduction with hydrogen combustion

Page 17: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

17

High compression ratio ICE

Page 18: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

18

Single cylinder, Petter AD1 based

Bore x Stroke, mm 80x73

Displacement, cm3 367

Compression ratio 16

Power, kW @ speed, rpm 5.3 @ 3000

Fuel

injection

system

Diesel Direct

Hydrogen-Rich

Reformate

direct

port

Experimental setup

A comparison of direct and port reformate injection

Spark

system

Port injector

Direct gas

injector

Diesel

injector

Pressure sensor

Encoder

Throttle

Page 19: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

19

Fuel injection strategy - Efficiency

Wide open throttle in all cases

13-19% improvement for MSR DI

23-26% improvement for MSR PI

PI limitations:

Maximal power loss

Low volumetric efficiency

Abnormal combustion- backfire, pre-ignition

Page 20: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

20

High pressure hydrogen-rich reformate injection

Underexpanded gaseous jet

Possible mechanisms for particle formation

Page 21: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

21

Classification Nozzle pressure ratio (NPR)

Subsonic jet 1 < 𝑃0/𝑃∞ < 1.893

Moderately

underexpanded jet 2.08 < 𝑃0/𝑃∞ < 3.8

Highly underexpanded

jet3.84 < 𝑃0/𝑃∞

Crist S. et al., AIAA J., 1966

Snedeker RS. et al., J. Fluid Mechanics, 1971

Underexpanded jet in gaseous fuel DI

Page 22: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

22

Jet-wall impingement

Lubricant vapor entrainment towards the gaseous jet

Hydrogen low quenching distance

Stoichiometric ratio

Kim et al. (2001)

Particle formation in DI-ICE fed by hydrogen-rich

reformate- Possible mechanisms

Page 23: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

23

DI-ICE with High-Pressure Thermo-Chemical Recuperation was developed enabling:

Efficiency improvement (up to 39%)

Gaseous pollutant emission reduction (up to 94%, 96% and 97% for NOx, CO and HC, respectively)

Direct injection of reformate leads to higher particle formation compared to gasoline

Future research will focus on identification of particle formation mechanism, and development of

methods to mitigate particle emission

Summary

Page 24: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

24

The financial support of:

Israel Science Foundation (ISF)

Israel Ministry of Environmental Protection

Israel Ministry of Energy

Nancy and Stephen Grand Technion Energy Program (GTEP)

The Council for Higher Education (CHE)- Planning and Budgeting Committee (PBC)

is highly appreciated

Acknowledgments

Page 25: Particle Emissions of Direct Injection IC Engine Fed with a …nanoparticles.ch/archive/2019_Thawko_PR.pdf · 2019. 6. 27. · 24 –Reformer 33–EEPS system Experimental Setup

25

Andy Thawko

Technion – Israel Institute of Technology Grand Technion Energy Program

email: [email protected]

Leonid Tartakovsky

Technion – Israel Institute of Technology Mechanical Engineering Faculty

Grand Technion Energy Program

email: [email protected]

Further information: