parte2_clase03_analog view of digital signals

Upload: bala-krishna

Post on 03-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    1/63

    Analog view of digital Signals

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    2/63

    Generalities

    Interconnects degrade the quality of digital signal Capacitance: charge and discharge implies reduced

    edge speed

    Inductance: induced voltages implies offsets reducing

    edges speed, non monotonic edges, delays and logiclevel violations

    Transmission lines: finite propagation speed impliesdelays and voltage plateaus

    Resistance: In short rise/falls times

    In long interconnects

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    3/63

    Digital Signal appearance

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    4/63

    Digital Signal appearance

    Overshoot/Undershoot: impedance mismatch,

    crosstalk, ground and power bounce (package),

    and multiple reflections .

    Plateaus: usually introduced by longinterconnects adding delay depending on where

    the signal is sampled.

    monotonic: to prevent double clocking or meta-

    stability

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    5/63

    Modeling Frequency contents and Bandwidth

    Lumped models: small compared withwavelength at the highest interest frequency

    Digital waveforms split in to categories Un-terminated: (TTL, CMOS, etc) usually with

    exponential decay

    Terminates: (ECL, LVDS, etc) usually trapezoidal

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    6/63

    Trapezoidal Systems with small capacitance and

    terminated nets

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    7/63

    Trapezoidal

    First roll 2.78/Tw

    Second roll 2.78/

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    8/63

    Exponential Edges

    Rise and fall depend on

    Using the Fourier Transform

    Excellent with 4/good with 1/g

    Power spectrum, power spectrum envelope

    Low pass filter requires BW>=1.4/

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    9/63

    Output of a D Flip-Flop

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    10/63

    Transmission Lines

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    11/63

    Introduction

    Any pair of wires and conductors carrying currents in oppositedirections form transmission lines.

    Transmission lines are essential components in any electrical/

    communication system. They include coaxial cables, two-wire lines,

    microstrip lines on printed-circuit-boards (PCB). (Note that at very

    high frequencies, any conductor on a PCB must be considered astransmission lines.)

    The characteristics of transmission lines can be studied by the

    electric and magnetic fields propagating along the line. But in most

    practical applications, it is easier to study the voltages and currents

    in the line instead.

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    12/63

    Examples

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    13/63

    Fields

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    14/63

    Wave equation

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    15/63

    Voltage/Current Waves

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    16/63

    Voltage and current equations

    Relation between instantaneous voltage v and current i at any pointalong the line:

    For periodic signals, Fourier analysis can be applied and it is more

    convenient to use phasors of voltage V and current I.

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    17/63

    Voltage and current equations

    Decoupling the above equations, we get

    where is called the propagation constant, and is in generalcomplex.

    is the attenuation constant, is the phase constant.

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    18/63

    Voltage and current equations

    The general solutions of the

    second-order, linear differentialequation for V, I are :

    V+, V-, I+, I- are constants (complex phasors). The terms

    containing e- z represent waves travelling in +zdirection;

    terms containing + z represent waves travelling inz

    direction.

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    19/63

    Lossless transmission line

    Propagation constant imaginary

    Equations in time domain

    Phase Velocity

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    20/63

    Some transmission lines

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    21/63

    Some transmission lines

    Careful, approximations grossly wrong for some w,h

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    22/63

    RG58

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    23/63

    Transmission lines impedance curves

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    24/63

    Transmission lines impedance curves

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    25/63

    Transmission lines impedance curves

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    26/63

    Driving a line: equivalent circuit

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    27/63

    Transmission point

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    28/63

    Termination: Equivalent circuit

    fl d T l h

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    29/63

    Reflections and Telegraphers equation

    G l i i li bl

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    30/63

    General transmission line problem

    P l i

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    31/63

    Pulse propagation

    F Sl d

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    32/63

    Fast an Slow edges

    TOF time of flight

    For slow rise times, the transmitted wave has sufficient time to reflect off theload and return to the driver before the driver has completed its transition. Theload then modifies the impedance seen by the driver and affects its switchingcharacteristics. In other words, the driver feels the load while it switches. For

    this situation to occur, the edge rate must be greater than twice the TOF .

    For fast rise times with edge rates less than twice the TOF, the drivercompletes its transition before any of the transmitted wave can reflect from theload and return. During the logic transition, the driver sees only thetransmission lines characteristic impedance. In this situation, the loading doesnot affect the drivers switching behavior.

    S r nd P r ll l T rmin ti n

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    33/63

    Source and Parallel Termination

    Signaling with fast edges on source

    terminated and on source plusparallel terminated transmission

    lines; 1ns rise and fall times with

    1ns delay: (a) voltage, (b) power.

    2C because of symmetry of vcc and gnd transmission lines

    Source and Parallel Termination

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    34/63

    Source and Parallel Termination

    Signaling with slow edges on

    source terminated and on source

    plus parallel terminated

    transmission lines; 4ns rise and fall

    times with 1ns delay: (a) voltage,

    (b) power.

    S T i ti l

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    35/63

    Source Termination only

    Without parallel termination at the load, the +1 reflection coefficient at the loadcauses the voltage to essentially double. The large reflected wave travels back tothe driver where it is absorbed by the matched source impedance. Due to thepresence of the reflected waveform, the signal integrity along the transmission lineis not good, but it can be quite good at the load, which is where it matters for apoint to point net.

    Unterminated nets are common with both TTL and CMOS to minimize powerdissipation. With good source match, the signal integrity at the load can be quitegood. However, the reflected wave is signficant and can cause difficulties on morecomplex topologies (such as multidrop nets). Also, a bidirectional bus using sourcetermination can be slower because it must wait for the signal to return andterminate in the source impedance before the bus can be turned around intoreceive mode

    Nonideal Signaling

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    36/63

    Nonideal Signaling

    Switching Incidence

    If the first incidence is insufficient, then the voltage must build to a sufficient level totrigger the receiver. The voltage wave reflects off of the receiver, propagates back to the

    source, reflects there, and propagates back to the receiver. If the voltage is sufficient at

    this second arrival, then the receiver switches, and the signaling is said to be second

    incidence. If the signal is again insufficient, then switching may occur at the third

    incidence, fourth incidence, and so on. Anything other than first incidence switching

    involves a time penalty of two TOFs per incidence.

    PC Board Test

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    37/63

    PC Board Test

    Discontinuities

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    38/63

    Discontinuities

    Capacitive Load The capacitive load introduces a delay

    adder of ln 2.

    Series inductance the series inductor causes noise by creating areflected pulse and adds delay to the signal due

    to edge rate degradation. For the step input, the

    reflected pulse voltage peak equals the amplitude

    of the step, while the delay adder is ln 2.

    For series inductance and shunt capacitance, the frequency-dependent impedance of these discontinuitiescauses frequency-dependent reflection coefficient

    Trapezoidal ramp examples

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    39/63

    Trapezoidal ramp examples

    Impedance Step The general rule of thumb is to keep all transmission lines at the

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    40/63

    Impedance Step The general rule of thumb is to keep all transmission lines at thesame characteristic impedance; otherwise, reflections are generated

    with amplitudes given by the reflection coefficient.

    impedance of transmission lines can be essentially constant over very broad bandwidths, so the reflection coefficient can be strongly frequency-independent.

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    41/63

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    42/63

    Clculo del largo de pistas

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    43/63

    Clculo del largo de pistas

    velocidad de propagacin tpica del 66% de la luz: tr:tiempo de trepada de la seal [ns]

    tpd:tiempo de propagacin [ns]

    lmax:largo mximo de la pista [cm]

    Con plano de tierra, utilizando FR-4 se tiene que lalongitud mxima aproximada esta dada por: lmax= 9 x t r

    con tiempo de trepadas de 1ns la distancia mxima de una pistaes menor a 10 cm

    Terminaciones de lnea:

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    44/63

    Terminaciones de lnea:

    Terminaciones de lnea:

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    45/63

    Terminaciones de lnea:

    Tipo de terminacin Partesagregadas

    Retardo agregado Consumo Valores Comentario

    Terminacin resistivaen serie

    1 S Bajo Rs= Z0- R0Buen margen de ruido encontinua

    Terminacin resistiva

    en Paralelo1 Pequeo Alto R= Z

    0

    El consumo es un problema

    Red Thevening 2 Pequeo Alto R= 2 x Z0El consumo en CMOS esun problema

    Red RC 2 Pequeo MedioR= Z0C=20~600pF

    Verificar ancho de banda y capacidadadicionada

    Red con diodo 2 Pequeo Bajo -Limita sobre pico;Algo de rebote en los diodos

    Terminacin Serie

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    46/63

    Terminacin Serie

    sta alternativa es ptima en los casosdonde slo se tiene una carga al final de la lnea, es

    decir, para enlaces punto a punto. Se utiliza siempre y cuando la impedancia R0 de lafuente sea menor que Z0 .Para dimensionar Rs se considera la siguiente condicin:RsZ0- R0

    Rs: Resistencia serieZ0: Impedancia caractersticaR0: Resistencia de salida de la fuente

    En la actualidad se suele utilizar una resistencia de 33. La utilizacin de la terminacinserie minimiza el rebote.

    Terminaciones al final de la lnea

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    47/63

    Terminaciones al final de la lnea

    Cuando existen varias cargas

    conectadas a una misma lnea omltiples fuentes estn conectadas auna estructura de bus, se utilizanmtodos de terminacin al final de lalnea. La terminacin se debe colocarluego del ltimo dispositivo conectadoa la lnea. Las caractersticas de estatcnica de terminacin son las

    siguientes: La seal de inters viaja hacia el final de la

    lnea de transmisin sin degradacin en losniveles de tensin y corriente.

    La tensin transmitida se absorbe en lacarga

    El terminador remueve las reflexiones porser del mismo valor que la impedanciacaracterstica de la lnea, amortiguando

    sobrepicos.

    Terminacin con resistencia en paralelo

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    48/63

    Terminacin con resistencia en paralelo

    Esta terminacin agrega retardo de propagacin al aumentar la constante de

    tiempo =RC por el incremento de R en la red.. Una desventajade laterminacin resistiva es el consumo de potencia en continua, dado que se

    utilizan valores de entre 50 y 150. En general no se utilizan para familias

    TTL o CMOS debido a la gran corriente necesaria para mantener los niveles

    lgicos altos, al utilizar una resistencia a tierra o pull-down. En los casos de

    lgica ECL la resistencia se conecta a Vcc

    Terminacin Thevening

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    49/63

    Te ac T eve g

    Este tipo de terminacin es adecuado tanto para lgicas TTL como CMOS. La

    resistencia del par RC tiene el valor de la impedancia caracterstica de la lnea al igual

    que en la terminacin con resistencia en paralelo. El capacitar frena la tensin continua

    por lo que la fuente no debe proveer corriente extra debido a la terminacin cada vezque se establece un nivel en la lnea

    Desde el punto de vista de la adaptacin de impedancias todos los mtodos son

    equivalentes siendo la alternativa RC la que menos potencia consume. La resistencia es

    del valor de la impedancia caracterstica y el valor de la capacidad es muy pequeo, de

    entre 20 a 600 pF. La constante de tiempo RC producida por la terminacin debe ser

    dos veces mayor al retardo de propagacin de la lnea, en general se eligen valores demanera que la constante de tiempo sea tres veces el retardo de propagacin de la lnea

    Terminacin con diodo

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    50/63

    Se utilizan diodos principalmente para evitar los sobrepicos con baja disipacin depotencia. La principal desventaja es la respuesta a seales de alta frecuencia. Cuando

    se utilizan diodos rpidos, la velocidad de conmutacin de los mismos debe ser de al

    menos 4 veces el tiempo de trepada de la seal

    Los diodos no afectan la impedancia por lo que no evitan las reflexiones, por lo que en

    general si es necesario reducir o compensar la lnea debe complementarse con otra

    tcnica de terminacin. De todas formas en los casos donde se desconoce la impedanciade la lnea es conveniente y sencillo utilizar terminaciones con diodos

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    51/63

    Capacitive Crosstalk

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    52/63

    p

    A low-to-high transition on the aggressor line producespositive pulses on the victim line, while a high-to-lowtransition produces negative pulses

    at the far end,

    At the near far end,

    Inductive Crosstalk

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    53/63

    assuming a triangular edge on the aggressor waveform

    Total Crosstalk

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    54/63

    Topology

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    55/63

    p gy

    Maximum time rate

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    56/63

    Eye Diagrams

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    57/63

    Simultaneous Switching Noise

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    58/63

    SSN

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    59/63

    Time Margin

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    60/63

    Clock Skew

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    61/63

    Spider leg clock distribution network and

    d di ib i

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    62/63

    and tree distribution

    Low impedance Clock distribution

  • 8/11/2019 Parte2_clase03_Analog View of Digital Signals

    63/63