part iii ilc bcd cavity

28
Hayama ILC Lecture, 2006. 5.23, Shuichi Noguchi 1 Part III ILC BCD Cavity Maximum Use of Potential Performance Maximum Use of each Cavity Performance Maximum Availability

Upload: chaela

Post on 08-Feb-2016

47 views

Category:

Documents


0 download

DESCRIPTION

Part III ILC BCD Cavity. Maximum Use of Potential Performance Maximum Use of each Cavity Performance Maximum Availability. Problems of Cavity for ILC Application. Large Scatter of Maximum Gradient Large Dynamic Lorentz Detuning Long MTBF for Critical Components - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

1

Part III ILC BCD Cavity

Maximum Use of Potential Performance Maximum Use of each Cavity Performance Maximum Availability

Page 2: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

2

Problems of Cavityfor ILC Application

Large Scatter of Maximum Gradient Large Dynamic Lorentz Detuning Long MTBF for Critical Components > 20 years --- < 5 % / year

Maximum Use of Potential Performance Maximum Use of each Cavity Performance Maximum Availability

Page 3: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

3

Common Numbers are necessary Number of Spare Cryomodules < 30 How many modules can we replace in a schedul

ed shutdown ? MTBF / Life Time ? How many critical component in a cryomodule ? Number of cavities to be repaired in a year < ? How is the lowest gradient we have to operate ? Distribution of the Max. Gradient Where do we set the threshold gradient ?

Page 4: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

4

ILC BCD Cavity Parameters  ILC BCD Cavity I=10mA, 1.5msec. X 5Hz ACD

    Idea Problem Comments  Material Niobium Bulk Well Established   Nb/Cu Clad, Single Crystal

Frequency 1.3GHz     Lower Frequency

Operating Temperature 2 k      Number of Cell 9     >9, Super Structure

Gradient 31.5 MV/m   Performance Scatter 35 MV/m

Duty 1.5 msec. X 5 Hz Pulse Operation Dynamic Lorentz Detuning  Cell Shape Elliptical     Low loss

Iris Aperture 70 mm     Smaller Aperture

Wall Thickness 2.8 mm   Need Stiffener                    

Input Coupler Double Window Coaxial Tunable Coupling Complex Many Candidates

HOM Coupler   High Pass + λ/ 4 Filter Compact  Jacket     Not Stiff  Tuner     Not Stiff Many Candidates

Magnetic Shield Outside of Jacket High Temperature Treatment   Inside of Jacket

         Vacuum Seal Al Alloy Hexagon      

                  

Page 5: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

5

DESY

Cavity Support   System is weak.

Page 6: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

6

Scatter of Maximum Gradient

Page 7: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

7

First Test Before Installation

After Installation

Gradient Distribution

Page 8: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

8

Lorentz ( Maxwell ) Detuning

S

22

kk0

kmode

k

KBA

aa

accacc

l

EldfdE

FFdld

ldfdfff

Kjacket

K tuner

K cavityF FFzFr

    TESLA Blade

STF Slide Jack

STF Ball Screw

A Hz/(MeV/m)2 0.5 0.5 1.2

B N/(MeV/m)2 0.047 0.047 0.051

df/dl Hz/μm 320 320 370dF/dl N/μm 3 3 1.8KS N/μm 13 80 60

Kjacket N/μm 26 96 58Ktuner N/μm 26 500 1700

Δf (30MV/m) Hz 1490 620 1360Fine Tuning

Stroke μm 3.7 1 2.9

Page 9: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

9

Mechanical Oscillation Modes

Multi-cell Mode (I)f = 87 Hz

Multi-cell Mode (II)f = 169 Hz

Tuner Mode f = 294 Hz

Single-cell Modef = 3.91 kHz

972MH Cavity

Tuner

Page 10: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

10

Stiff Jacket Baseplate (Ti)

Thick Titanium Baseplate No Stiffener

2.8 t 3.5 t

Page 11: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

11

Dynamic Lorentz DetuningResults at TTF  

Pkly < 10 % →   Detuning angle < 12 deg. , f < 46Hz

Page 12: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

12

TTF Lever Arm Tuner

Top Heavy

Page 13: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

13

TTF Blade Tuner

Page 14: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

14

Slide Jack Tuner

Piezo Stack

Drive Shaft

Taper

Invar Rod

Roller

Page 15: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

15

Tuner and Jacket

Input Coupler Port

Piezo Stack

Slide Jack

Drive ShaftTitanium Jacket

Support Base

Invar Rod

2K He Line

Motor OutsidePiezo Replacement OK

Page 16: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

16

A prototype coaxial ball screw tuner

Page 17: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

17

Input Coupler

Page 18: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

18

TTF-3 Coupler

Page 19: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

19

Page 20: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

20

Input Coupler for Baseline Cavity

5K cooling here80K cooling here

Beam pipeWarm window

Door-knob conversion

Cold window

Vacuum port

TRISTAN Type Coaxial Disk Ceramic

80 K 5 K 2 KStatic Loss 5 W 1.1 W 0.05 WDynamic Loss 3 W 0.2 W 0.03 W

Qext = 2.0 x 106

Prf = 350 kW

An improved input coupler design for simplicity with no tuning mechanism.

Page 21: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

21

Components for High Power Test Stand

Input Couplers Doorknobs

Coupling Waveguides

Page 22: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

22

Coupler Opening

Piezo can be replaced

Page 23: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

23

HOM Coupler

Page 24: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

24

Gradient Control

U(t)V(t)ωV(t)dtd

Qω)

QQj(1V(t)

dtd 2

oL

o

o

L2

2

)tan(exp)(exp)~~(~~ tT

jTtVVVV

FFdod

Page 25: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

25

jt

Tj

TtQ

QRPV

FFog expcostanexpexp1

12 2

jQ

QRIjQ

QRPV obog expcos

11exp

12 2

Page 26: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

26

Input Power Error

Coupling Error

Tuning Error

Phase Error

Cavity Voltage Error & Gain Reduction

Beam Phase

Page 27: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

27

Item Device Pros Cons CostPower Variable

DividerPower Efficient Can be equipped after

Necessary for other Cavities

Second Divider

Can be equipped after

Space, Not Power Efficient

Qin

Tunable Coupler

ComplicatedCan not be equipped afterwards

3-Stube Tuner

Can be equipped after Performance Measurement

3-Motors Most Expensive

Phase Shifter

Can be equipped after Performance Measurement

Page 28: Part III ILC BCD Cavity

Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi

28

  Rough Cost                    30% 50% 70% 100%                     

Control Replace by Fix WG     Need U-Part

  Replace by Tunable WG Manual    

  Replace by Tunable WG

Remote    

                 Power Add Second

Divider Fix   Need Space

    Manual        Remot

e      Replace Divider Fix ***        Manual ***        Remot

e ***                     

Coupling Add 3-Stub Tuner Fix   Need Space

    Manual   All from the beginning

    Remote    

                   Tunable Coupler Manual *** *** ***      All from the

beginningRemot

e *** *** ***