part 3: renewable energy resources - german aerospace center · slide 6 trieb 0 200 400 600 800...

63
Folie 1 Vortrag > Autor > Dokumentname > Datum Part 3: Renewable Energy Resources Franz Trieb MBA Energy Management, Vienna, September 9-10, 2010

Upload: others

Post on 18-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Folie 1Vortrag > Autor > Dokumentname > Datum

Part 3: Renewable Energy Resources

Franz Trieb

MBA Energy Management, Vienna, September 9-10, 2010

Page 2: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 2Trieb

Solar ResourceAssessment

Page 3: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 3Trieb

GHI = DHI + DIF

Example:

DIF = 150W/m²DHI = 600W/m²

GHI = 750W/m²

Global Horizontal Irradiation (GHI)

diffuse

direct

diffuse

Global Horizontal Irradiation (GHI)

Diffuse Irradiation (DIF)Direct Horizontal Irradiation (DHI)

Page 4: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 4Trieb

DNI = DHI / sin

Example:

= 50°DHI = 600W/m²

DNI = 848W/m²

DNI > DHI

Direct Normal Irradiation (DNI)

direct

Direct Normal Irradiation (DNI)

Direct Horizontal Irradiation (DHI)

Page 5: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 5Trieb

Solar Energy Resources

Fixed Non-Concentrating PV Global (Direct+Diffuse) Irradiation on a Surface tilted towards

Equator (GTI)

Sun-Tracking Non-Concentrating PV Global Normal (Perpenticular) Irradiation on a Surface Tracking

the Sun (GNI)

Sun-Tracking Concentrating PV and CSP Direct Normal Irradiation on a Surface Tracking

the Sun (DNI)

Fixed Horizontal Array and Solar Updraft Global Horizontal Irradiance (GHI)

Page 6: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 6Trieb

0

200

400

600

800

1000

1200

3985 3990 3995 4000 4005 4010 4015 4020 4025 4030

Hour of Year

Sola

r Irr

adia

nce

[W/m

²]

GNIDNIGHIDHIDIF

Solar Energy Resources Time Series

site: Munich, data: meteonorm

Page 7: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 7Trieb

Long-term Variability of Solar Irradianceover 10 years of measurement to get long-term mean within ± 5%

Page 8: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 8Trieb

Inter Annual Variability

Strong inter annual and regional variations

Average of the direct normal irradiance from 1999-2003

1999

2001

2000

2002

2003

deviationto mean

kWh/m²a

Page 9: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 9Trieb

DNI GroundMeasurements

www.dlr.de/tt/aqua-csp

Page 10: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 10Trieb

Solar Radiation Instruments

direct irradiancefield pyrheliometerabsolute cavity radiometer (current world reference of calibration)combined measurementsuncertainty: 1%* rotating shadowband pyranometeruncertainty: 2%

*target accuracy of Baseline Surface Radiation Network (BSRN)

Page 11: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 11Trieb

Precise Sensors (also for calibration of RSP):

Thermal sensors: pyranometer and pyrheliometer,precise 2-axis tracking

Advantage:

+ high accuracy

+ separate GHI, DNI and DHI sensors(cross-check through redundant measurements)

Disadvantages:

- high acquisition and O&M costs

- high susceptibility for soiling

- high power supply

GHI DNIDHI

Page 12: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 12Trieb

Instrumentation for Unattended Sites:Rotating Shadowband Pyranometer (RSP)

Advantages:

+ low acquisition cost

+ low maintenance cost

+ low susceptibility for soiling

+ low power supply

Disadvantage:

- special correction for good accuracy necessary (established by DLR)

Sensor: Si photodiodeshadow band

pyranometer sensor

Global HorizontaI Irradiation (GHI) measurement

diffushorizontal

Page 13: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 13Trieb

Availability of Ground Measured Data

long term measurements at meteorological stationsNational Meteorological officesWorld Radiometric Network (WRDC)Baseline Surface Radiation Network (BSRN)Own measurements

Page 14: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 14Trieb

DNI fromSatellite Data

www.dlr.de/tt/aqua-csp

Page 15: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 15Trieb

Properties of Solar Radiation

Rayleigh scattering and absorption (ca. 15%)

Absorption (ca. 1%)

Scatter and Absorption ( ca. 15%, max. 100%)

Reflection, Scatter, Absorption (max. 100%)

Absorption (ca. 15%)

Ozone.……….…....

Aerosol…….………..…...……

Water Vapor…….……...………

Clouds………….………..

Air molecules..……

Direct normal irradiance at ground

Radiation at the top of atmosphere

Page 16: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 16Trieb

Clear Sky Model Input Data

Aerosol optical thicknessGACP Resolution 4°x5°, monthly climatologyMATCH Resolution 1.9°x1.9°, daily climatology

Water Vapor: NCAR/NCEP ReanalysisResolution 1.125°x1.125°, daily values

Ozone: TOMS sensorResolution 1.25°x1.25°, monthly values

Page 17: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 17Trieb

Calculation of Solar Radiation from Remote Sensing

Gext

Gdirect, clear Gdiffuse, clear

Atmospheric Model

Gclear sky

+

Gsurface

Images of one month

METEOSAT image

Corrected image Ground albedo

cloud-index)(

)(

minmax

min

n

clear sky indexnnfk 1)(*

·

Methods used: • Heliosat-2 for the

visible channel• IR brightness

temperature as indicator for high cirrus clouds(T < -30°C, DNI = 0)

Page 18: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 18Trieb

Satellite Data: SOLEMI – Solar Energy Mining

SOLEMI is a service for high resolution and high quality dataCoverage: Meteosat Prime up to 22 years, Meteosat East 10 years (in 2008)

Meteosat Prime Meteosat East

www.solemi.com

Page 19: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 19Trieb

product input area period provider

NASA SSE World 1983-2005 NASA

Meteonorm World 1981-2000 Meteotest

Solemi 1991-> DLR

Helioclim 1985-> Ecole de Mines

EnMetSol 1995-> Univ. of Oldenburg

Satel-light Europe 1996-2001 ENTPE

PVGIS Europe Europe 1981-1990 JRC

ESRA Europe 1981-1990 Ecole de Mines

Resource Products: Input and Coverage

<10 years 10-20years >20 years

Page 20: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 20Trieb

product input temp resolution spatial resolution

NASA SSE averag. daily profile 100 km

Meteonorm synthetic hourly/min 1 km (+SRTM)

Solemi 1h 1 km

Helioclim 15min/30min 30 km // 3-7 km

EnMetSol 15min/1h 3-7 km // 1-3 km

Satel-light 30min 5-7 km

PVGIS Europe averag. daily profile 1 km (+ SRTM)

ESRA averag. daily profile 10 km

Resource Products: Resolution

synthetic high resolution values measured high resolution values

Page 21: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 21Trieb

product parameters

NASA SSE GHI, DNI, DHI, clouds

Meteonorm GHI,DNI,DHI, shadowing, illuminance

Solemi GHI, DNI

Helioclim GHI, DNI

EnMetSol GHI, DNI,DHI, spectra

Satel-light GHI,DNI, DHI, illuminance

PVGIS Europe GHI,DHI, shadowing

ESRA GHI, DNI, DHI

Resource Products: Parameters

Page 22: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 22Trieb

CombiningSatellite and Ground Data

www.dlr.de/tt/aqua-csp

Page 23: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 23Trieb

0

200

400

600

800

1000

1200

13 14 15 16 17 18

day in march, 2001

W/m

²

groundsatellite

Example of Hourly Time Series for Plataforma Solar de Almería (Spain)

Validation of the data

Page 24: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 24Trieb

Ground Measurement vs. Satellite Data

Ground MeasurementAdvantages+ high accuracy (depending on sensors)

+ high time resolution

Disadvantages- high costs for installation and O&M- soiling of the sensors- sometimes sensor failure- no possibility to gain data of the past

Satellite DataAdvantages+ spatial coverage+ long-term data (more than 20 years)

+ effectively no failures+ no soiling+ no ground site necessary+ low costs

Disadvantages- lower time resolution- low accuracy at high time resolution

Page 25: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 25Trieb

Simple Model

GACP Aerosols and Simple Cloud FunctionBias 12%, RMSD 47%Comparing ground and satellite data frequency distribution function showsa problem:

• over-estimate of frequency of high DNI

Page 26: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 26Trieb

Inaccuracy of Aerosol Dataall for Julyall same scale(0 – 1.5)

GADS

Toms

GOCART

NASA GISS v1 / GACP

NASA GISS v2 1990

AeroCom

Page 27: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 27Trieb

Inaccuracy of Cloud Transmission Function

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

clo

ud

tra

nsm

issi

on

cloud index

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Sun-satellite angle 60-80

-26 °C-16 °C-6 °C4 °C

14 °C-30°C - -20°C-20°C - -10°C

-10 °C - 0°C0°C - 10 °C

>10°C

Simple Cloud Function τ = e-10*ciComplex Cloud Function:Different exponential funktions fordifferent geometries and brightness temperatures

Page 28: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 28Trieb

Combining Ground and Satellite Assessments

Satellite dataLong term averageYear to year variabilityRegional assessment

Ground dataSite specificHigh temporal resolution possible (up to 1 min to model transient effects)Good distribution function

Page 29: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 29Trieb

Enhanced Model

MATCH Aerosol, v37 complex cloud transmission function. Bias 2%, RMSD 33 %enhanced distribution function

Page 30: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 30Trieb

Good Solar Resource Assessments

Based on long term data

Site specific, high spatial resolution

Sufficient temporal resolution for the application

Modeled data set has been benchmarked, information on quality isavailable

For large projects: Based on combined sources (e.g. Satellite and ground data, overlap necessary).

Page 31: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 31Trieb

Hourly monthly mean of DNI in Wh/m²

hour

Annual sums of DNI [kWh/m²] for one site

Monthly sums of DNI [kWh/m²] for one siteHourly DNI [Wh/m²] for one site

Resource Assessment for Site Performance ModellingTime series: for single sites, e.g. hourly, monthly or annual

Page 32: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 32Trieb

Assessment of CSP Potentials

www.dlr.de/tt/csp-resources

Page 33: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 33Trieb

Land Cover (GLCC))

Protected Areas (WDPA)

Industry , Population(D CW , GLCC)

Geomorphology(D CW , GLCC)

Hydrology (DCW, GLCC )

Slope (GLOBE)

Overlay, Reclass

Exclusion Mask

Cloud Index (Meteosat))

Aerosol Optical T hickness(GACP)

Ozone(TOMS)

W ater Vapour(NCAR/NCEP)

Atmospheric Gases (constant)

Elevation (GLOBE)

Overlay, Annual Integration

DNI Atlas

Extraterrestrial Solar Irradiation

Overlay, Statistics

Potential Areas

CSP Model

Potential Electricity

Definition of Regions & Countries

optional + compulsive

all excluded

5 km security zone

10 km security zone

inland water

threshold 2.1%

5 x 5 km resolut ion

100 x 125 km resolution, interpolated

400 x 500 km resolut ion, interpolated

250 x 250 km resolut ion, interpolated

constant distribut ion

1 x 1 km resolution

seasonal variation

def ined within REAC CESS

Transformation

Data Base

Land Cover (GLCC))

Protected Areas (WDPA)

Industry , Population(D CW , GLCC)

Geomorphology(D CW , GLCC)

Hydrology (DCW, GLCC )

Slope (GLOBE)

Overlay, Reclass

Exclusion Mask

Cloud Index (Meteosat))

Aerosol Optical T hickness(GACP)

Ozone(TOMS)

W ater Vapour(NCAR/NCEP)

Atmospheric Gases (constant)

Elevation (GLOBE)

Overlay, Annual Integration

DNI Atlas

Extraterrestrial Solar Irradiation

Overlay, Statistics

Potential Areas

CSP Model

Potential Electricity

Definition of Regions & Countries

optional + compulsive

all excluded

5 km security zone

10 km security zone

inland water

threshold 2.1%

5 x 5 km resolut ion

100 x 125 km resolution, interpolated

400 x 500 km resolut ion, interpolated

250 x 250 km resolut ion, interpolated

constant distribut ion

1 x 1 km resolution

seasonal variation

def ined within REAC CESS

Transformation

Data Base

Methodology of Solar Power Potential Assessment

www.dlr.de/tt/csp-resources

Page 34: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 34Trieb

Clouds + Dust + Vapour + Ozone + Atmosphere ....

Direct Normal Irradiation (DNI)

repeat for 8760 h/y

W/m²

Long Term Average AnnualDirect Normal Irradiation Map

Solar Energy Resource Assessment

www.dlr.de/tt/csp-resources

Page 35: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 35Trieb

Solar Energy Resource Assessment

Page 36: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 36Trieb

Land Area Resource Assessment

add all layers

Exclusion of:slope,

land use,

water,

dunes,

national parks,infrastructure,

etc....

www.dlr.de/tt/med-csp

Page 37: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 37Trieb

Site Exclusion for Concentrating Solar Power Plants (Trough)

excluded

not excluded

www.dlr.de/tt/csp-resources

Page 38: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 38Trieb

Global Annual DNI > 2000 kWh/m²/y after Site Exclusion

see slide 8 for abbreviations

Page 39: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 39Trieb

CSP Performance Model Average Land Use Efficiency (LUE)= Solar-Electric-Efficiency (12%)x Land Use Factor (37%)= 4.5% for parabolic trough steam cycle

with dry cooling tower

Collector & Power Cycle Technology

Solar-Electric Aperture Related Efficiency

Land Use Factor Land Use Efficiency

Parabolic Trough Steam Cycle

11 - 16% 25 - 40% 3.5 - 5.6%

Central Receiver Steam Cycle

12 - 16% 20 – 25% 2.5 – 4.0%

Linear Fresnel Steam Cycle

8 - 12% 60 - 80% 4.8 - 9.6%

Central Receiver Combined Cycle*

20 - 25% 20 - 25% 4.0 – 6.3%

Multi-Tower Solar Array Steam or Combined Cycle*

15 - 25% 60 - 80% 9.0 – 20.0%

Page 40: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 40Trieb

DNI Class Africa Australia

Central Asia,

Caucase Canada China

Central South

America India JapankWh/m²/y TWh/y TWh/y TWh/y TWh/y TWh/y TWh/y TWh/y TWh/y2000-2099 102,254 6,631 14,280 0 8,332 31,572 7,893 02100-2199 138,194 18,587 300 0 18,276 20,585 1,140 02200-2299 139,834 36,762 372 0 43,027 24,082 550 02300-2399 141,066 87,751 177 0 28,415 20,711 774 02400-2499 209,571 148,001 64 0 11,197 6,417 426 02500-2599 203,963 207,753 0 0 11,330 3,678 13 02600-2699 178,480 142,490 0 0 2,180 5,120 119 02700-2800+ 346,009 49,625 0 0 3,079 11,827 15 0Total [TWh/y] 1,459,370 697,600 15,193 0 125,835 123,992 10,928 0

DNI Class Middle East Mexico

Other Developing

AsiaOther East

Europe Russia South Korea EU27+ USAkWh/m²/y TWh/y TWh/y TWh/y TWh/y TWh/y TWh/y TWh/y TWh/y2000-2099 3,432 1,606 4,491 6 0 0 866 14,0962100-2199 12,443 3,378 5,174 13 0 0 497 17,1142200-2299 39,191 3,650 10,947 2 0 0 660 21,7482300-2399 60,188 5,807 30,776 0 0 0 162 16,4022400-2499 71,324 15,689 19,355 0 0 0 90 23,9032500-2599 34,954 7,134 4,429 0 0 0 69 8,1162600-2699 32,263 1,534 253 0 0 0 31 2,3262700-2800+ 36,843 1,878 136 0 0 0 34 0Total [TWh/y] 290,639 40,675 75,561 21 0 0 2,409 103,704

Global CSP Potentials by DNI Classes and Regions (4.5% LUE)

www.dlr.de/tt/csp-resources

Page 41: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 41Trieb

0

150,000

300,000

450,000

600,000

750,000

900,000

1,050,000

1,200,000

1,350,000

1,500,000

Africa

Austra

lia

Central

Asia, C

auca

seCana

daChina

Central

South A

merica

India

Japa

nMidd

le Eas

tMex

ico

Other D

evelo

ping A

sia

Other E

ast E

urope

Russia

South

Korea

EU27+

USA

CSP

Pot

entia

l [TW

h/y] 2700-2800+

2600-26992500-25992400-24992300-23992200-22992100-21992000-2099

Global CSP Potentials by DNI Classes and Regions (4.5% LUE)

DNI kWh/m²/y

Total CSP Potential: 3,000,000 TWh/y

World Electricity Demand: 18,000 TWh/y

www.dlr.de/tt/csp-resources

Page 42: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 42Trieb

Solar Thermal Electricity Generating Potentials in Libya

Technical Potential - Libya

0

5000

10000

15000

20000

25000

30000

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

2800

> 2800

DNI [kWh/m²a]

Ele

ctric

ity P

oten

tial [

TWh/

y]

DNI [kWh/m²/y]

www.dlr.de/tt/med-csp

Page 43: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 43Trieb

Wind ResourceAssessment

Page 44: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 44Trieb

Outline

Logarithmic wind profile

WAsP based Resource Assessments

Numerical Wind Atlases

Offshore wind estimations

Page 45: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 45Trieb

Logarithmic wind profile

Wind speed increases with height above ground

Profile depends on surface properties (roughness length)

Resource assessments therefore need exact characterizations of the surroundings of the measurement and wind turbine site Image source: RISØ/DTU

Page 46: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 46Trieb

Site specific wind resource assessment

Important information is: Distribution of wind speeds(can be approximated by a Weibull distribution with parameters A and K)

Distribution of wind directionsWind rose shows probabilityof a wind from a certain sector(This needs to be set in relationwith the local roughness in thissector)

Page 47: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 47Trieb

How do I estimate the resource at a site?

Local measurementHigh effort, needs time

Estimation from a more distant measurementThe WAsP Method

Wind AtlasesBased on measurementsNumerical wind atlas

Page 48: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 48Trieb

Measurements

Measurements of meteorological stations at 10m above ground are often of limited accuracy and use for wind energy applications

Dedicated 50m masts with at least 3 sensors at different heights are much more expensive but much better suited to derive data for wind energy.

Most such measurements are operated privately and the data is not accessible.

Page 49: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 49Trieb

The WAsP Method

WAsP: Wind Atlas Analysis Application Program

How to apply measurements from one location to new locations ?

Step 1: Create a generalized wind climate by removing local effects at measurement siteStep 2: Create a new local wind climate by adding local effects at the wind turbine site.

Page 50: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 50Trieb

What are local effects?

Nearby obstacls: Houses, close trees, etc.

Changes in roughness: From fields to wood, to settlements, ...

Changes in orography: Hills, valleys

Image source: RISØ/DTU

Page 51: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 51Trieb

The WAsP Approach

Local effects are removed from wind measurements to derive a generalized wind climate (for a uniform surface)The generalized wind climate is adapted to proposed sites. Input

A suitable number of measurementsA Meso-Scale numerical weather model.

Image source: RISØ/DTU

www.windatlas.dk

Page 52: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 52Trieb

Wind Atlas based on measurements

A suitable number of high quality measurements is characterized for its local effectsA generalized wind climate is produced for each measurement (roughness 0.03m, 50 m height)The measurements are combined into an atlasSample: European Wind Atlas by Troen and Petersen, 1989 based on 220 stationsLimitations for complex terrain and costal zones

Image source: RISØ/DTU

www.windatlas.dk

Page 53: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 53Trieb

Offshore

The wind profile is more complex due to larger thermal inertia of the waterwind and wave interactionstime lag of wave development

Nearly no measurements, very few platforms e.g. in front of the Danish or German coast

But: Wind speed can be assessed by measuring the wave height with radar satellites. Limitations exist close to the coast.

Page 54: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 54Trieb

Data sources

Wind Atlases of RISØ/DTU: www.windatlas.dkSWERA: http://swera.unep.net

Wind resource assessment is a commercial businessSome companies/institutions are:

AWS Truewind3tierGarrad HassanCenerNRELNational Met Offices

Page 55: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 55Trieb

Annual Average Wind Speed at 50 m Height

http://eosweb.larc.nasa.gov/sse/

[m/s]

Page 56: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 56Trieb

Example: Wind Cost Potential Functions

Page 57: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 57Trieb

ForestAgricultural LandWater Bodies

Urban AreasHighways

Protected Areas

Wind Speed in m/s

Wind Power Potentials in EuropeResource and Land Availability

Wind Data: German Meteorological service

Scholz 2009

Wind Speed in m/son available areas

Page 58: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 58Trieb

Wind Electricity Cost: Technology and Cost Status 2006

€ / kWh € / kWh

Scholz 2009

Page 59: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 59Trieb

Cost Potential Functions for Wind Power in Germany

Scholz 2009

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100 120 140 160 180 200[TWh]

[€/kWh]

20502030

2006

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100 120 140 160 180 200[TWh]

[€/kWh]

20502030

2006

learning curve

Page 60: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 60Trieb

Example: Offshore Wind Potentials

Page 61: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 61Trieb

Page 62: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 62Trieb

Page 63: Part 3: Renewable Energy Resources - German Aerospace Center · Slide 6 Trieb 0 200 400 600 800 1000 1200 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 Hour of Year Solar Irradiance

Slide 63Trieb

Country AEP

[TWh/a]BE 1.6DE 80.4DK 261.3NL 15.2NO 597.8UK 1050.4

Progressive ModelDRAFT!

www.windspeed.eu