part 3-1

Upload: tran-anh-tan

Post on 10-Jan-2016

213 views

Category:

Documents


0 download

DESCRIPTION

hay

TRANSCRIPT

  • I. Hm bin phc

    II. Chui phc

    III. Tch phn ng

    IV. im bt thng, zeros v thng d

    V. ng dng ca l thuyt thng ds

    Part 3:

    Hm bin phc

    Created and edited by: Nguyen Phuoc Bao Duy

  • Hm bin phc

    1. nh ngha

    2. Gii hn, lin tc v kh vi

    3. Phng trnh Cauchy-Riemann

    4. Hm lin hp v hm iu ha

    5. Mt s hm bin phc c bn

    Created and edited by: Nguyen Phuoc Bao Duy

  • 1. nh ngha

    V d 1.01:

    Created and edited by: Nguyen Phuoc Bao Duy

    Hm bin phc l hm c bin l s phc.

    w = f(z) = u(x,y) + j.v(x,y) with z = x + jy

    2 2 2

    2 2 2 2

    ( ) .2

    1.

    cos .sinaz ax

    w z x y j xy

    yxw j

    z x y x y

    w e e ay j ay

  • 2. Gii hn, lin tc v kh vi

    Cn lu rng, trongmt phng phc, z c thtin n z0 theo nhiu quo khc nhau, do giihn L l khng duy nhttrong nhiu trng hp.

    Created and edited by: Nguyen Phuoc Bao Duy

    Nu f(z) l mt hm bin phc, f(z) c gii hn l Lkhi z tin ti z0 nu vi mi > 0, lun tn ti mt > 0sao cho:

    |f(z) L| < vi mi z trong min S:0 < |z z0| <

  • iu kin y l f(z0) phi c xc nh v f(z)tin n f(z0) khi z tin n z0 theo qu o bt k.

    Vi z l s phc v tin v 0 theo qu o bt k.

    Created and edited by: Nguyen Phuoc Bao Duy

    Nu

    ta ni rng f(z) lin tc ti z0.0

    0lim ( ) ( )z z

    f z f z

    f(z) kh vi ti z0 nu tn ti gi tr L:

    0 000

    ( ) ( )lim '( )

    z

    f z z f zL f z

    z

    2. Gii hn, lin tc v kh vi

  • Khng phi hm phc no cng kh vi!

    V d 1.02:

    Xt hm phc sau

    Gi s f(z) kh vi ti z0, khi :

    Vy hm phc ny khng kh vi ti bt k gi tr no.

    Created and edited by: Nguyen Phuoc Bao Duy

    ( )f z z

    0 0 0 00 0 0 0

    ( ) ( )'( ) lim lim lim

    1 0

    1 0

    z z z

    f z z f z z z z zf z

    z z z

    if z along the real axis

    if z along the imaginary axis

    2. Gii hn, lin tc v kh vi

  • 3. Phng trnh Cauchy-Riemann

    Nu f(z) = u(x,y) + j.v(x,y) tha mn phng trnhCauchy-Riemann ti z0 v ti mi im thuc lncn ca z0, ta ni rng f(z) gii tch ti z0.

    Nu f(z) gii tch ti mi gi tr ca z, f(z) l mthm gii tch.

    Created and edited by: Nguyen Phuoc Bao Duy

    Cho w = f(z) = u(x,y) + j.v(x,y) kh vi ti z = x + jy, khi ti gi tr (x,y):

    v

    (*) c gi l phng trnh Cauchy-Riemann

    (*)

    '( )

    u v v uand

    x y x y

    u v v uf z j j

    x x y y

  • V d 1.03:

    Dng phng trnh Cauchy-Riemann kim tra tnhkh vi ca cc hm s sau:

    p n:

    a. Khng kh vi ti bt k im no

    b. Ch kh vi ti z = 0, f(0) = 0.

    c. Kh vi ti mi im (hm gii tch)f(z) = 2z.

    d. Hm gii tch; f(z) = aeaz.

    Created and edited by: Nguyen Phuoc Bao Duy

    2

    . ( ) . ( ) .Re{z}

    . ( ) . ( ) aza f z z b f z z

    c f z z d f z e

    3. Phng trnh Cauchy-Riemann

  • Hai hm thc u(x,y) v v(x,y) tha mn phngtrnh Cauchy-Riemann vi mi gi tr x, y R cgi l mt cp hm lin hp.

    Mt hm tha mn phng trnh Laplace cgi l hm iu ha.

    u(x,y) l mt hm iu ha nu:

    Nu f(z) = u(x,y) + j.v(x,y) l hm gii tch, khi c u(x,y) v v(x,y) u l hm iu hoi, khi chngc gi l hai hm iu ha lin hp.

    Created and edited by: Nguyen Phuoc Bao Duy

    4. Hm gii tch v hm iu ha

    2 2

    2 20

    u uLaplace equation

    x y

  • V d 1.04: Cho u(x,y) = x2 y2 + 2x, tm hm lin hpv(x,y) sao cho f(z) = u + j.v l hm gii tch theo bin z.

    p n:

    vi F(x) l hm theo mt bin x.

    trong C l hng s. V bi khng cho thm iukin no xc nh C, nn ta c th chn C bng 0.

    F(z) = x2 y2 + 2x + j(2xy + 2y) = z2 + 2z

    Created and edited by: Nguyen Phuoc Bao Duy

    2 2 2 2 ( )u v

    x v xy y F xx y

    2 2 0v u dF dF

    y y F Cx y dx dx

    4. Hm gii tch v hm iu ha

  • V d 1.05: Given u(x,y) = ex(xcosy ysiny)

    a. Chng minh u(x,y) l hm iu ha

    b. Tm hm lin hp v(x,y) sao cho w = u + j.v l hmgii tch.

    c. Ch ra rng v(x,y) cng l mt hm iu ha.

    p n:

    a. Kim tra phng trnh Laplace

    b. Dng phng trnh Cauchy-Riemann tm v(x,y):

    Created and edited by: Nguyen Phuoc Bao Duy

    2 2

    2 20

    u u

    x y

    ( , ) ( sin cos )

    ( ) ( cos sin ) . ( sin cos )

    x

    x x z

    v x y e x y y y

    w f z e x y y y j e x y y y ze

    4. Hm gii tch v hm iu ha

  • V d 1.06: Tm hm gii tch f(z) = u + j.v, vi 2u + v =ex(cosy siny) v f(1) = 1.

    p n:

    f(z) l hm gii tch ux = vy and uy = -vx:

    Created and edited by: Nguyen Phuoc Bao Duy

    1

    2

    2 (cos sin )

    2 ' ' (cos sin )

    2 ' ' ( sin cos ) ' 2 '

    (cos 3sin ) ( )5

    (3cos sin ) ( )5

    x

    x

    x x

    x

    y y x x

    x

    x

    u v e y y

    u v e y y

    u v e y y u v

    eu y y F y

    ev y y F y

    4. Hm gii tch v hm iu ha

  • V d 1.06 (tt):

    Kim tra ux = vy v uy = -vx F1(y) = c1, F2(y) = c2 (c1,c2: hng s)

    Kim tra vi f(1) = 1

    Created and edited by: Nguyen Phuoc Bao Duy

    1 2( ) (cos 3sin ) . (3cos sin )

    5 5

    x xe ef z y y c j y y c

    1 2

    31

    5 5

    e ec and c

    3( ) (cos 3sin ) 1 . (3cos sin )

    5 5 5 5

    1 3( ) ( ) 1

    5

    x x

    z

    e e e ef z y y j y y

    jf z e e

    4. Hm gii tch v hm iu ha

  • 5.1. Hmm phc

    Tnh cht ca ez:

    e0 = 1

    ez + w = ezew

    ez 0, z

    e-z = 1/ez

    ez = 1 z = 2nj , n Z

    Nu ez + p = ez , z p = 2nj

    ez l hm tun hon vi chu k 2nj.

    Created and edited by: Nguyen Phuoc Bao Duy

    5. Mt s hm bin phc c bn

    ez = excosy + jexsiny

  • V d 1.07: gii phng trnh ez = 1 + 2j

    p n:

    V d 1.08: Chng minh cc hm sau y l cc hmgii tch:

    Created and edited by: Nguyen Phuoc Bao Duy

    2

    1

    cos sin 1 2

    cos 1 5

    sin 2 tan 2

    1ln 5 tan 2

    2

    z x x

    x x

    x

    e e y je y j

    e y e

    e y y

    z j

    21

    . ( ) . ( ) . ( )z zza f z e b f z e c f z ze

    5. Mt s hm bin phc c bn

  • 5.2. Hm cosin v sin phc

    Vit di dng u + jv:

    cosz = cosx.coshy jsinx.sinhy

    sinz = sinx.coshy + jcosx.sinhy

    trong

    Tnh cht ca sinz v cosz:

    sinz = 0 z = n; n Z

    cosz = 0 z=(2n + 1)/2; n Z

    sinz v cosz l hm tun hon vi chu k 2n; n Z*

    Created and edited by: Nguyen Phuoc Bao Duy

    cos ; sin2 2

    jz jz jz jze e e ez z

    j

    cosh ; sinh2 2

    y y y ye e e ey z

    5. Mt s hm bin phc c bn

  • V d 1.09: Tnh:

    a. sin(1 4j)

    b. cos(3 + 2j)

    V d 1.10: Chng minh rng:

    a. sin(z + w) = sinz.cosw + cosz.sinw

    b. cos(z + w) = cosz.cosw sinz.sinw

    V d 1.11: Chng min f(z)=cos2z l hm gii tch.

    Created and edited by: Nguyen Phuoc Bao Duy

    5. Mt s hm bin phc c bn

  • 5.3. Logarithm phc

    Calculate the complex logarithm: let z = rei and w = u + jv

    is any argument of z and n can be any integer, soeach nonzero z has infinitely many different complexlogarithms.

    Created and edited by: Nguyen Phuoc Bao Duy

    ln ww z z e

    ln

    2

    ln ln ( 2 )

    uj jvw u

    j jv

    r e u rz e re e e

    v ne e

    w z r j n

    5. Mt s hm bin phc c bn

  • Example 1.12: Calculate lnz with

    a. z = 1 + j

    b. z = -3

    Solution:

    In complex plane, we can take the logarithm of anegative number!

    Created and edited by: Nguyen Phuoc Bao Duy

    4. 1 2 ln(1 ) ln 2 24

    . 3 3 ln( 3) ln 3 (2 1)

    j

    j

    a z j e j j n

    b z e j n

    5. Mt s hm bin phc c bn

  • 5.4. nth Roots of a complex number

    Calculate the nth roots: let z = rej = rej( + 2k)

    nth roots of z has n distinct value!

    Created and edited by: Nguyen Phuoc Bao Duy

    1

    ; : integernnw z w z n

    ( 2 )1 1

    1

    0,1,..., 1

    2 2cos sin

    j k

    n n n

    n

    z r e with k n

    k kr j

    n n

    5. Mt s hm bin phc c bn

  • Example 1.13:

    a. Calculate 4th roots of 1 + j

    b. Calculate 5th roots of 1 (5th roots of unity)

    Solution:

    Created and edited by: Nguyen Phuoc Bao Duy

    1 244 2

    1 2 /444 8

    1 1

    8 8

    1 1

    8 8

    . 1 2 2

    1 2 0,1,2,3

    9 92 cos sin ; 2 cos sin ;

    16 16 16 16

    17 17 25 252 cos sin ; 2 cos sin

    16 16 16 16

    j kj

    j k

    a j e e

    w j w e with k

    w j j

    j j

    5. Mt s hm bin phc c bn

  • Example 1.13 (cont):

    Created and edited by: Nguyen Phuoc Bao Duy

    0 2

    25 5

    . 1

    1 0,1,2,3,4

    2 21; cos sin ;

    5 54 4

    cos sin ;5 5

    6 6cos sin ;

    5 58 8

    cos sin ;5 5

    j j k

    j k

    b e e

    w w e with k

    w j

    j

    j

    j

    5. Mt s hm bin phc c bn

  • 5.5. Complex Power zw

    Example 1.14: Compute all values of (1 j)1 + j

    Solution

    Created and edited by: Nguyen Phuoc Bao Duy

    ln ,w w zz e with z w are complex numbers

    1 (1 )ln(1 )

    24

    (1 ) ln 2 2 ln 2 224(1 )ln(1 ) 4ln 2 4

    21 4

    (1 )

    1 2 ln(1 ) ln 2 24

    (1 ) 2 cos ln 2 sin ln 24 4

    j j j

    j n

    j j n j nnj j

    nj

    j e

    j e j j n

    e e e e e

    j e j

    5. Mt s hm bin phc c bn