paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2....

58
Paramodularity Cris Poor Fordham University TORA IX Texas-Oklahoma Representations and Automorphic Forms Norman, April 2018 Cris Paramodularity TORA 1 / 58

Upload: others

Post on 13-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Paramodularity

Cris PoorFordham University

TORA IXTexas-Oklahoma Representations and Automorphic Forms

Norman, April 2018

Cris Paramodularity TORA 1 / 58

Page 2: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

A Survey of the Paramodular Conjecture

1. Part I . All elliptic curves defined over Q are modular.

2. Part II . All abelian surfaces defined over Q with minimalendomorphisms are paramodular.

3. Part III . Systematic Evidence for the Paramodular Conjecture

4. Part IV . Paramodular Conjecture 2.0

5. Part V . Heuristic tables of paramodular forms.

Cris Paramodularity TORA 2 / 58

Page 3: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

All elliptic curves E/Q are modular

Theorem (Wiles; Wiles & Taylor; Breuil, Conrad, Diamond & Taylor)

Let N ∈ N. There is a bijection between

1. isogeny classes of elliptic curves E/Q with conductor N

2. normalized Hecke eigenforms f ∈ S2(Γ0(N))new with rationaleigenvalues.

In this correspondence we have L(E , s,Hasse) = L(f , s,Hecke).

Eichler (1954) proved the first examplesL(X0(11), s,Hasse) = L(η(τ)2η(11τ)2, s,Hecke).

Shimura gave a construction from 2 to 1.

Weil added N = N.

Cris Paramodularity TORA 3 / 58

Page 4: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

L-functions of elliptic curves over Q

1. The local Hasse p-Euler factor is the characteristic polynomial ofFrobenius on the Tate module T`(E ) of the elliptic curve E .

Qp(E , t) = det(I − t Frobp |T`(E )Ip

)2. The local Hasse Zeta function can be computed by counting points

on the elliptic curve E over finite fields.

Zp(E , t) = exp

( ∞∑n=1

#{Points on E/Fpn}tn

n

)=

Qp(E , t)

(1− t)(1− pt)

3. Global Hasse L-function

L(E , s,Hasse) =∏

primes p

Qp(E , p−s)−1

Cris Paramodularity TORA 4 / 58

Page 5: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

An example: LMFDB 11.a3

1. E [F] = {(x , y , z) ∈ P2(F) : y2z + yz2 = x3 − x2z}

n 1 2 3 4 5 6 7

#E [F2n ] 5 5 5 25 25 65 145

2. The Hasse Zeta function at p = 2:

Z2(E , t) = exp

(5t + 5

t2

2+ 5

t3

3+ 25

t4

4+ · · ·

)=

1 + 2t + 2t2

(1− t)(1− 2t)

3. ∴ Q2(E , t) = 1 + 2t + 2t2

Cris Paramodularity TORA 5 / 58

Page 6: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

An example: LMFDB 11.a3

1. Global Hasse L-function

L(E , s,Hasse) =∏

primes p

Qp(E , p−s)−1 = 1− 2

2s− 1

3s+

2

4s+

1

5s+ · · ·

2. There is an elliptic modular newform f11 ∈ S2 (Γ0(11))

f11(τ) = q − 2q2 − q3 + 2q4 + q5 + · · ·

= η(τ)2η(11τ)2 = q∞∏n=1

(1− qn)2(1− q11n)2

=1

2 1 1 11 2 0 11 0 8 41 1 4 8

(τ)− 1

2 0 1 00 2 0 11 0 6 00 1 0 6

(τ)

Cris Paramodularity TORA 6 / 58

Page 7: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

All elliptic curves E/Q are modular (again)

Theorem (Wiles; Wiles & Taylor; Breuil, Conrad, Diamond & Taylor)

Let N ∈ N. There is a bijection between

1. isogeny classes of elliptic curves E/Q with conductor N

2. normalized Hecke eigenforms f ∈ S2(Γ0(N))new with rationaleigenvalues.

In this correspondence we have L(E , s,Hasse) = L(f , s,Hecke).

Credit Taniyama (1956) and Shimura (∼ 1963) for importantmodularity conjectures.

In its final form, this is a classification theorem.

Cremona has led the classification of E/Q up toconductor N ≤ 400 000. (johncremona.github.io/ecdtata)

Cris Paramodularity TORA 7 / 58

Page 8: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Part TwoThe Paramodular Conjecture

1. What are abelian surfaces A/Q?

2. What are paramodular forms f ∈ Sk(K (N))?

3. How does the Paramodular Conjecture relate the two?

Cris Paramodularity TORA 8 / 58

Page 9: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Abelian Varieties

Let K ⊆ C be an algebraic number field.

Definition

An abelian variety A/K is a projective variety defined over K with analgebraic group law also defined over K .

g=1 Elliptic curves: Ahol∼= C1/ (Z + τZ) for τ ∈ H.

g=2 Abelian surfaces: Ahol∼= C2/

(DZ2 + ZZ2

)for Z ∈ H2.

D = diag(1, d) for d ∈ N gives the type of “polarization” of A.

H2 = {Z ∈ Msym2×2(C) : ImZ > 0}, the Siegel upper half space.

But for g > 1 the equations defining A inside a projective space arecomplicated!

Cris Paramodularity TORA 9 / 58

Page 10: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

How can we construct some abelian surfaces?

1. If C is a curve of genus 2 defined over Q, then

A = Jac(C)

is an abelian surface defined over Q with principal polarization, i.e.,type D = diag(1, 1).

2. If a genus 3 curve C3 is a ramified double cover of a genus 1 curve C1,then the abelian surface

A = Prym(C3/C1) = Jac(C3)/ Jac(C1)

has a natural polarization of type D = diag(1, 2).

Cris Paramodularity TORA 10 / 58

Page 11: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Definition of Siegel Modular Forms

Siegel Upper Half Space: Hn = {Z ∈ Msymn×n(C) : ImZ > 0}.

Symplectic group: σ =(A BC D

)∈ Spn(R) acts on Z ∈ Hn by

σ · Z = (AZ + B)(CZ + D)−1.

Γ ⊆ Spn(R) such that Γ ∩ Spn(Z) has finite index in Γ and Spn(Z)

Slash action: For f : Hn → C and σ ∈ Spn(R),(f |kσ) (Z ) = det(CZ + D)−k f (σ · Z ).

Siegel Modular Forms: Mk(Γ) is the C-vector space of holomorphicf : Hn → C that are “bounded at the cusps” and that satisfyf |kσ = f for all σ ∈ Γ.

Cusp Forms: Sk(Γ) = {f ∈ Mk(Γ) that “vanish at the cusps”}

Cris Paramodularity TORA 11 / 58

Page 12: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Definition of paramodular form

A paramodular form is a Siegel modular form for a paramodulargroup. In degree 2, the paramodular group of level N, is

Γ = K (N) =

∗ N∗ ∗ ∗∗ ∗ ∗ ∗/N∗ N∗ ∗ ∗N∗ N∗ N∗ ∗

∩ Sp2(Q), ∗ ∈ Z,

K (N) is the stabilizer in Sp2(Q) of Z⊕ Z⊕ Z⊕ NZ.TK (N)\H2 is a moduli space for complex abelian surfaces withpolarization type (1,N). (T is “transpose” here.)

The paramodular Fricke involution splits paramodular forms into plusand minus spaces.

Sk (K (N)) = Sk (K (N))+ ⊕ Sk (K (N))−

Cris Paramodularity TORA 12 / 58

Page 13: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

All abelian surfaces A/Q with a minimal endomorphismgroup over Q are paramodular

Paramodular Conjecture (Brumer and Kramer 2009)

Let N ∈ N. There is a bijection between

1. isogeny classes of abelian surfaces A/Q with conductor N andendomorphisms EndQ(A) = Z,

2. lines of Hecke eigenforms f ∈ S2(K (N))new that have rationaleigenvalues and are not Gritsenko lifts from Jcusp2,N .

In this correspondence we have

L(A, s,Hasse-Weil) = L(f , s, spin).

The direction 1→ 2 is still believed, but 2→ 1 will be amended later.

Cris Paramodularity TORA 13 / 58

Page 14: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Remarks

The endomorphisms defined over Q should be minimal:EndQ(A) = Z. (Where is this condition in the elliptic case?)The Paramodular conjecture addresses the typical case. WhenEndQ(A) > Z, modularity is known.

Newform theory for paramodular groups:Ibukiyama 1984; Roberts and Schmidt 2007 (LNM 1918).

Grit : Jcuspk,N → Sk (K (N)), the Gritsenko lift from Jacobi cusp forms ofindex N to paramodular cusp forms of level N is an advanced versionof the Maass lift.

Cris Paramodularity TORA 14 / 58

Page 15: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Do the arithmetic and automorphic data match up?Looks like it.

By 1997, Brumer has a long list of N that could possibly be the conductorof an abelian surface A/Q and begins campaigning for the computation ofcorresponding automorphic forms.

Theorem (PY 2009)

Let p < 600 be prime. If p 6∈ {277, 349, 353, 389, 461, 523, 587} thenS2(K (p)) consists entirely of Gritsenko lifts.

This exactly matches Brumer’s “Yes” list for prime levels p < 600.

Cris Paramodularity TORA 15 / 58

Page 16: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

L-functions of abelian surfaces over Q

1. The local Hasse-Weil p-Euler factor is the characteristic polynomial ofFrobenius on the Tate module T`(A) of the abelian surface A.

Qp(A, t) = det(I − t Frobp |T`(A)Ip

)2. When the isogeny class of A/Q contains a Jacobian or a Prym then

computation of the Hasse-Weil p-Euler factors will be easy. However,it may be difficult to find a representative abelian surface.

3. Global Hasse-Weil L-function

L(A, s,H-W) =∏

primes p

Qp(A, p−s)−1

Cris Paramodularity TORA 16 / 58

Page 17: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

L-functions of abelian surfaces over Q

1. For N < 1000, we have seen mainly Jacobians, Pryms, and Weilrestrictions, but the algorithmic challenges searching for A/Q willgrow with the conductor N.

2. In the special case when A = Jac(C ) is the Jacobian of a genus twocurve C , we have

L(A, s,H-W) = L(C , s,H-W)

3. The local Hasse-Weil p-Euler factors for A = Jac(C ) are accessible bycounting points

Zp(C , t) = exp

( ∞∑n=1

#{Points on C/Fpn}tn

n

)=

Qp(C , t)

(1− t)(1− pt)

Cris Paramodularity TORA 17 / 58

Page 18: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

An example: LMFDB: Genus 2 Curve 277.a.277.1

1. A277 = Jac(C277) for C277 given by the hyperelliptic curvey2 + (x3 + x2 + x + 1)y = −x2 − x

2. Magma will compute Hasse-Weil Euler factors of a curve:> G:=x^ 3 + x^ 2 + x + 1; F:=-x^ 2 - x;

(y2 + G (x)y = F (x) is the equation)> C:=HyperellipticCurve(F,G);

> J:=Jacobian(C);

> h2:=EulerFactor(J,GF(2)); h2;

4*x^ 4 + 4*x^ 3 + 4*x^ 2 + 2*x + 1

> h3:=EulerFactor(J,GF(3)); h3;

9*x^ 4 + 3*x^ 3 + x^ 2 + x + 1

> h5:=EulerFactor(J,GF(5)); h5;

25*x^ 4 + 5*x^ 3 - 2*x^ 2 + x + 1

Cris Paramodularity TORA 18 / 58

Page 19: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

An example: a paramodular newform of level 277

How can we make a newform in S2 (K (277))?

Both Gritsenko lifts and Borcherds products can help.Both are built from Jacobi forms.

Dimension formulas. No— not in weight two.

Theta series. No— the trace from Γ0(p)→ K (p) gives zero.

Modular symbols. — no such theory yet.

Cris Paramodularity TORA 19 / 58

Page 20: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Fourier-Jacobi expansions

Fourier expansion of Siegel modular form:

f (Z ) =∑T≥0

a(T ; f )e(tr(ZT ))

Fourier expansion of paramodular form f ∈ Mk(K (N)) in coordinates:

f ( τ zz ω ) =

∑n,r ,m∈Z:

n,m≥0, 4Nnm≥r2

a((

n r/2r/2 Nm

); f )e(nτ + rz + Nmω)

Fourier-Jacobi expansion of paramodular form f ∈ Mk(K (N)):

f ( τ zz ω ) =

∑m∈Z:m≥0

φm(τ, z)e(Nmω)

Cris Paramodularity TORA 20 / 58

Page 21: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Fourier-Jacobi expansion (FJE)

FJE: f ( τ zz ω ) =

∑m∈Z:m≥0

φm(τ, z)e(Nmω)

The Fourier-Jacobi expansion of a paramodular form is fixed term-by-termby the following subgroup of the paramodular group K (N):

P2,1(Z) =

∗ 0 ∗ ∗∗ ∗ ∗ ∗∗ 0 ∗ ∗0 0 0 ∗

∩ Sp2(Z), ∗ ∈ Z,

P2,1(Z)/{±I} ∼= SL2(Z) n Heisenberg(Z)

Thus the coefficients φm are automorphic forms in their own right andeasier to compute than Siegel modular forms. This is one motivation forthe introduction of Jacobi forms.

Cris Paramodularity TORA 21 / 58

Page 22: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Definition of Jacobi Forms: AutomorphicityLevel one

Assume φ : H× C→ C is holomorphic.

φ : H2 → C( τ zz ω ) 7→ φ(τ, z)e(mω)

Assume that φ transforms by χ det(CZ + D)k for

P2,1(Z) =

∗ 0 ∗ ∗∗ ∗ ∗ ∗∗ 0 ∗ ∗0 0 0 ∗

∩ Sp2(Z), ∗ ∈ Z,

Cris Paramodularity TORA 22 / 58

Page 23: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Definition of Jacobi Forms: Support

Jacobi forms are tagged with additional adjectives to reflect thesupport supp(φ) = {(n, r) ∈ Q2 : c(n, r ;φ) 6= 0} of the Fourierexpansion

φ(τ, z) =∑n,r∈Q

c(n, r ;φ)qnζr , q = e(τ), ζ = e(z).

φ ∈ Jcuspk,m : automorphic and c(n, r ;φ) 6= 0 =⇒ 4mn − r2 > 0

φ ∈ Jk,m: automorphic and c(n, r ;φ) 6= 0 =⇒ 4mn − r2 ≥ 0

φ ∈ Jweakk,m : automorphic and c(n, r ;φ) 6= 0 =⇒ n ≥ 0

φ ∈ Jwhk,m: automorphic and c(n, r ;φ) 6= 0 =⇒ n >> −∞

(“wh” stands for weakly holomorphic)

Cris Paramodularity TORA 23 / 58

Page 24: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Index Raising Operators V (`) : Jk ,m → Jk ,m`from Eichler-Zagier

The Jacobi V (`) are images of the elliptic T (`).

Elliptic Hecke Algebra −→ Jacobi Hecke Algebra

∑SL2(Z)

(a bc d

)7→∑

P2,1(Z)

a 0 b 00 ad − bc 0 0c 0 d 00 0 0 1

∑ad=`

b mod d

SL2(Z)

(a b0 d

)7→

∑ad=`

b mod d

P2,1(Z)

a 0 b 00 ` 0 00 0 d 00 0 0 1

T (`) 7→ V (`)

Cris Paramodularity TORA 24 / 58

Page 25: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Fourier-Jacobi expansion of the Gritsenko lift

Any Jacobi cusp form can be the leading Fourier-Jacobi coefficient of aparamodular form.

Theorem (Gritsenko)

For φ ∈ Jcuspk,m the series Grit(φ) converges and defines a map

Grit : Jcuspk,m → Sk (K (m))ε , ε = (−1)k .

Grit(φ)( τ zz ω ) =

∑`∈N

(φ|V`)(τ, z)e(`mω).

Cris Paramodularity TORA 25 / 58

Page 26: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Borcherds Product Summary

Theorem (Borcherds, Gritsenko, Nikulin)

Given ψ ∈ Jwh0,N(Z), a weakly holomorphic weight zero, index N Jacobi

form with integral coefficients

ψ(τ, z) =∑

n,r∈Z: n≥−No

c (n, r) qnζr

there is a weight k ′ ∈ Z, a character χ, and a meromorphic paramodularform Borch(ψ) ∈ Mmero

k ′ (K (N))(χ)

Borch(ψ)(Z )=qAζBξC∏

n,m,r∈Z

(1− qnζrξNm

)c(nm,r)converging in a nghd of infinity and defined by analytic continuation.

Cris Paramodularity TORA 26 / 58

Page 27: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Theta Blocks: a great way to make Jacobi formsdue to Gritsenko, Skoruppa, and Zagier

Dedekind Eta function η ∈ Jcusp1/2,0(ε)

η(τ) = q1/24∏n∈N

(1− qn)

Odd Jacobi Theta function ϑ ∈ Jcusp1/2,1/2(ε3vH)

ϑ(τ, z) = q1/8(ζ1/2 − ζ−1/2

)∏n∈N

(1− qn)(1− qnζ)(1− qnζ−1)

TBk [d1, d2, . . . , d`](τ, z) = η(τ)2k−`∏`

j=1 ϑ(τ, djz) ∈ Jmerok,m (ε2k+2`)

where 2m = d21 + d2

2 + · · ·+ d2` and di ∈ N.

Cris Paramodularity TORA 27 / 58

Page 28: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

There are 10 dimensions of Gritsenko lifts in S2 (K (277))

We have dimS2(K (277)) = 11 whereas the dimension of Gritsenko lifts inS2(K (277)) is dim Jcusp2,277 = 10.

Let Gi = Grit (TB2(Σi )) ∈ S2 (K (277)) for 1 ≤ i ≤ 10 be the lifts of the10 theta blocks given by:

Σi ∈ { [2, 4, 4, 4, 5, 6, 8, 9, 10, 14], [2, 3, 4, 5, 5, 7, 7, 9, 10, 14],[2, 3, 4, 4, 5, 7, 8, 9, 11, 13], [2, 3, 3, 5, 6, 6, 8, 9, 11, 13],[2, 3, 3, 5, 5, 8, 8, 8, 11, 13], [2, 3, 3, 5, 5, 7, 8, 10, 10, 13],[2, 3, 3, 4, 5, 6, 7, 9, 10, 15], [2, 2, 4, 5, 6, 7, 7, 9, 11, 13],[2, 2, 4, 4, 6, 7, 8, 10, 11, 12], [ 2, 2, 3, 5, 6, 7, 9, 9, 11, 12] }.

Remark: The Gritsenko lifts of these ten theta blocks are all Borcherdsproducts as well.

Cris Paramodularity TORA 28 / 58

Page 29: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

The nonlift paramodular eigenform f277 ∈ S2 (K (277))

f277 =Q

L(proven holomorphic)

Q = −14G 21 − 20G8G2 + 11G9G2 + 6G 2

2 − 30G7G10 + 15G9G10 + 15G10G1

− 30G10G2 − 30G10G3 + 5G4G5 + 6G4G6 + 17G4G7 − 3G4G8 − 5G4G9

− 5G5G6 + 20G5G7 − 5G5G8 − 10G5G9 − 3G 26 + 13G6G7 + 3G6G8

− 10G6G9 − 22G 27 + G7G8 + 15G7G9 + 6G 2

8 − 4G8G9 − 2G 29 + 20G1G2

− 28G3G2 + 23G4G2 + 7G6G2 − 31G7G2 + 15G5G2 + 45G1G3 − 10G1G5

− 2G1G4 − 13G1G6 − 7G1G8 + 39G1G7 − 16G1G9 − 34G 23 + 8G3G4

+ 20G3G5 + 22G3G6 + 10G3G8 + 21G3G9 − 56G3G7 − 3G 24 ,

L = −G4 + G6 + 2G7 + G8 − G9 + 2G3 − 3G2 − G1.

Cris Paramodularity TORA 29 / 58

Page 30: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

A newform f −587 ∈ S2(K (587))−.Gritsenko, P–, Yuen (2016)

Construct theta blocks φ ∈ Jcusp2,587 and Ξ ∈ Jcusp2,2·587:

φ = TB2[1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14]

Ξ = TB2[1, 10, 2, 2, 18, 3, 3, 4, 4, 15, 5, 6, 6, 7, 8, 16, 9, 10, 22, 12, 13, 14]

ψ =φ |V (2)− Ξ

φ∈ Jwh

0,587(Z)

ψ(τ, z) =∑n,r

c(n, r)qnζr = 4 +1

q+ ζ−14 + · · ·+ q134ζ561 + · · ·

f −587( τ zz ω ) = q2ζ68ξ587

∏(n,m,r)≥0

(1− qnζrξNm

)c(nm,r)

Cris Paramodularity TORA 30 / 58

Page 31: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

A nonlift newform f249 ∈ S2 (K (249)).P–, Shurman, Yuen (2017)

ψ249(τ, z) =ϑ(τ, 8z)

ϑ(τ, z)

ϑ(τ, 18z)

ϑ(τ, 6z)

ϑ(τ, 14z)

ϑ(τ, 7z)∈ Jw.h.

0,249(Z)

f249( τ zz ω ) = 14 q2ζ63ξ498

∏n,m,r∈Z: m≥0

if m = 0 then n ≥ 0if m = n = 0 then r < 0

(1− qnζrξmN)c(nm,r ;ψ249)

− 6 Grit(TB2(2, 3, 3, 4, 5, 6, 7, 9, 10, 13))

− 3 Grit(TB2(2, 2, 3, 5, 5, 6, 7, 9, 11, 12))

+ 3 Grit(TB2(1, 3, 3, 5, 6, 6, 6, 9, 11, 12))

+ 2 Grit(TB2(1, 1, 2, 3, 4, 5, 6, 9, 10, 15))

+ 7 Grit(TB2(1, 2, 3, 3, 4, 5, 6, 9, 11, 14)).

Cris Paramodularity TORA 31 / 58

Page 32: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

siegelmodularforms.org

Our paramodular website: www.siegelmodularforms.org

(Joint with J. Shurman, D. Yuen.)

Cris Paramodularity TORA 32 / 58

Page 33: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Pulling back: G a reductive algebraic group

Modularity

Arithmetic Automorphic

Motives −→ Galois representations ←− Automorphic reps

Motives −→ ρ : Gal(Q/Q)→ G (C) ←− Auto reps of G (A)

↑ ↑

Etale cohomology of varieties Automorphic forms

Abelian surfaces → Gal(Q/Q)→ GSp(4,C) ← paramodular, G = SO(5)

Abelian surfaces → L-functions ← paramodular f , G = SO(5)

Elliptic curves → Gal(Q/Q)→ GL(2,C) ← elliptic G = GL(2)

Cris Paramodularity TORA 33 / 58

Page 34: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Proven paramodularity!

Q: How can you prove the L-functions of A and f agree?

A: You associate Galois representations to each of A and f and provethat their Galois representations are equivalent.

Q: How can you prove two Galois representations are equivalent?

A: Use a generalization of Faltings-Serre to GSp(4) to show that theGalois representations agree if enough traces of Frobenius agree.

The Hasse-Weil and spin L-functions of some A and f agree.N = 277: need primes up to p = 43N = 353: need primes as large as p = 137N = 587−: need primes up to p = 41(On arXiv— On the paramodularity of typical abelian surfaces,Brumer, Pacetti, Poor, Tornarıa, Voight, Yuen)

Cris Paramodularity TORA 34 / 58

Page 35: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Modularity of A731, a composite level: 731 = 17 · 43

1. Berger and Klosin have proven the modularity of

A731 = Jac(y2 = x6 − 6x4 + 4x3 + 9x2 − 16x − 4

),

the first modularity proof of a typical abelian surface with compositeconductor.

2. A731 has rational 5-torsion.

The candidate eigenform f731 ∈ S2 (K (731)) is congruent to aGritsenko lift modulo p = 5.

3. The Galois representations σA and σf associated to A731 and f731 arethe unique characteristic zero deformation of σA.

Tobias Berger and Krzysztof Klosin: Deformations of Saito-Kurokawa typeand the Paramodular Conjecture.

arXiv:1710.10228v2 (appendix by Poor, Shurman, Yuen)

Cris Paramodularity TORA 35 / 58

Page 36: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Part Three

Systematic Evidence for the Paramodular Conjecture

Cris Paramodularity TORA 36 / 58

Page 37: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Twisting

Let χ be the nontrivial quadratic Dirichlet character modulo p.

Twist L-functions:∑

n

anns7→∑

n χ(n)anns

Twist abelian surfaces: A 7→ Aχ

I only indicate the special case of Jacobians:Jac(y2 = f (x)

)7→ Jac

(py2 = f (x)

).

According to the Paramodular Conjecture, there should be a way totwist paramodular forms. (Well, weight two newforms . . . )

Atwist //

PC��

PC��

f?? // f χ

Cris Paramodularity TORA 37 / 58

Page 38: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Twisting

Johnson-Leung and Roberts have a theory of twisting paramodular forms.

Jennifer Johnson-Leung and Brooks Roberts: Twisting of SiegelParamodular Forms, Int. J. Number Theory 13 (2017).

Theorem. Let χ be the nontrivial quadratic Dirichlet charactermodulo an odd prime p - N. There exists a linear twisting map

Tχ : Sk (K (N))→ Sk(K (Np4)

)such that if f is a new eigenform and Tχ(f ) 6= 0 then

L (Tχ(f ), s, spin) = Lχ (f , s, spin) .

Therefore if f shows the modularity of A then Tχ(f ) shows themodularity of Aχ.

For example, for all p 6= 277, the surface Aχ277 is modular!

Cris Paramodularity TORA 38 / 58

Page 39: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Weil Restriction

Let E/K be an elliptic curve over a quadratic field K .

There exists an abelian surface over Q, AE = ResK/Q (E ), the Weilrestriction of E , whose Q-points are in bijection with the K -points of E .

If E is not isogenous to its conjugate over K then EndQ (AE ) = Z, andthe Paramodular Conjecture applies to the Weil restriction AE .

When K is real quadratic, E/K is modular with respect to someweight (2, 2) Hilbert modular form F for SL(OK ⊕ a).

Nuno Freitas and Bao V. Le Hung and Samir Siksek: Elliptic curvesover real quadratic fields are modular. Invent. Math. 201 (2015)

According to the Paramodular Conjecture, there should be a lift fromHilbert to paramodular forms.

Cris Paramodularity TORA 39 / 58

Page 40: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Weil Restriction

Johnson-Leung and Roberts have a theory of lifting Hilbert eigenforms toparamodular eigenforms

Jennifer Johnson-Leung, and Brooks Roberts: Siegel modular formsof degree two attached to Hilbert modular forms. J. Number Theory132 (2012)

For real quadratic K , the modularity of the Weil restrictionsAE = ResK/Q (E ) is shown by the J-LR paramodular lift of theHilbert eigenform that shows the modularity of E/K .

E/KWR //

Modularity��

A/Q

PC��

Hilbert formJL-R lift // Paramodular form

Cris Paramodularity TORA 40 / 58

Page 41: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Weil Restriction

For imaginary quadratic K , Berger, Dembele, Pacetti, and Sengun have asimilar theory lifting Bianchi eigenforms to paramodular eigenforms.

Tobias Berger, and Lassina Dembele, and Ariel Pacetti, and MehmetHaluk Sengun: Theta lifts of Bianchi modular forms and applicationsto paramodularity. J. Lond. Math. Soc. (2) 92 (2015)

E/KWR //

modularity��

A/Q

PC��

Bianchi formBDPS lift // Paramodular form

Cris Paramodularity TORA 41 / 58

Page 42: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Do the arithmetic and automorphic data match up?

Theorem (P– Yuen 2009)

Let p < 600 be prime. If p 6∈ {277, 349, 353, 389, 461, 523, 587} thenS2(K (p)) consists entirely of Gritsenko lifts.

Paramodular Conjecture verified for prime levels p < 600 not listed above.Brumer and Kramer prove the absence of abelian surfaces.

The dimension formula of Ibukiyama (2007: Hamana Lake) forS4 (K (p)) was crucial to these computations.

Cris Paramodularity TORA 42 / 58

Page 43: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Do the arithmetic and automorphic data match up?

Theorem (Breeding, P– Yuen 2016)

For all N ≤ 60, S2(K (N)) consists entirely of Gritsenko lifts.

Paramodular Conjecture verified for many odd levels N ≤ 60. Brumer andKramer prove the absence of semistable abelian surfaces of odd conductor.

We proved an a priori bound on the number of Fourier-Jacobicoefficients needed to determine the space S2 (K (N)∗, χ).

Jeffery Breeding, Cris Poor, and David S. Yuen: Computations ofspaces of paramodular forms of general level. J. Korean Math. Soc.53 (2016)

Cris Paramodularity TORA 43 / 58

Page 44: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Do the arithmetic and automorphic data match up?

Theorem (P– Shurman, Yuen 2017)

Let N < 300 be square-free. If N 6∈ {249, 277, 295} then S2(K (N))consists entirely of Gritsenko lifts. Furthermore, there is exactly onedimension of nonlift eigenforms for S2(K (249)),S2(K (277)),S2(K (295)).

Paramodular Conjecture verified for odd squarefree levels N < 300, exceptas noted.

Cris Poor, Jerry Shurman, David S. Yuen: Siegel paramodular forms ofweight 2 and squarefree level, Int. J. Number Theory 13 (2017)

The dimension formula of Ibukiyama and Kitayama for S4 (K (N)) andsquarefree N was crucial to these computations.

Cris Paramodularity TORA 44 / 58

Page 45: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Part Four

The Paramodular Conjecture 2.0

Cris Paramodularity TORA 45 / 58

Page 46: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Perspective on classification results.

Elliptic curves over Q ↔ elliptic Q-newforms in S2(Γ0(N))

E over real quad K → Hilbert Q-newforms in S2(SL(OK ⊕ a))(but (←) is not quite done— see discussion in Freitas, Siksek:arxiv.org/pdf/1307.3162.pdf)

E over imaginary quad K → Bianchi Q-newforms in S2(Γ0(n))

But there is a problem going (←) from Bianchi newforms to E/K asnoted by John Cremona.

Cris Paramodularity TORA 46 / 58

Page 47: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Counterexamples

Ciaran Schembri is my source for this example.

Define a hyperelliptic curve Co/Q(i) of genus two byy2 = x6 + 4ix5− (6 + 2i)x4 + (7− i)x3− (9− 8i)x2− 10ix + (3 + 4i)

Ao = Jac(Co) is an abelian surface over Q(i) of conductor p45,1p437,2 of

norm 342252 = 1854.

O6 ↪→ EndQ(i)(Ao) where O6 is the maximal order of the rationalquaternion algebra of discriminant 6

There is a Bianchi newform fo ∈ S2(Γ0(p45,1p437,2)) with Q-rational

eigenvalues such that L(Ao , s,Hasse-Weil) = L(fo , s)2.

By Faltings, there can be no E/Q(i) with L(E , s,Hasse) = L(fo , s).(L-functions determine isogeny classes of abelian varieties)

Thus, the pairing between E/Q(i) and Bianchi newforms is not perfect.

Cris Paramodularity TORA 47 / 58

Page 48: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

A counterexample to the Paramodular conjecture 1.0

Frank Calegari pointed out counterexamples to the ParamodularConjecture in January, 2018.

By Weil restriction, B = WR(Ao/Q(i)) is an abelian fourfold definedover Q with EndQ(B)⊗Q an indefinite quaternion algebra.

The lift of Berger, Dembele, Pacetti, and Sengun givesf = BDPS-lift(fo) ∈ S2(K (N)). Note N = (16 · 185)2 = 8 761 600.

L(B, s,H-W) = L(f , s, spin)2 and there can be no abeliansurface A/Q with L(A, s,H-W) = L(f , s, spin) due to the differentendomorphism rings EndQ(B)⊗Q 6= EndQ(A⊕ A)⊗Q, these beingisogeny invariants.

Cris Paramodularity TORA 48 / 58

Page 49: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

The Paramodular conjecture 2.0 (2018)

An abelian fourfold B/Q has quaternionic multiplication (QM) if EndQ(B)is an order in a non-split quaternion algebra over Q. A cuspidal, nonliftSiegel paramodular newform f ∈ S2(K (N)) with rational Heckeeigenvalues will be called a suitable paramodular form of level N.

Paramodular Conjecture (Brumer–Kramer)

Let N ∈ N. Let AN be the set of isogeny classes of abelian surfaces A/Qof conductor N with EndQ A = Z. Let BN be the set of isogeny classes ofQM abelian fourfolds B/Q of conductor N2. Let PN be the set of suitableparamodular forms of level N, up to nonzero scaling. There is a bijectionAN ∪ BN ↔ PN such that

L(C , s,H-W) =

{L(f , s, spin), if C ∈ AN ,

L(f , s, spin)2, if C ∈ BN .

Brumer and Kramer: QM implies N = M2s with s | gcd(30,M).

Cris Paramodularity TORA 49 / 58

Page 50: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Part Five

Heuristic Tables for the Paramodular Conjecture

(found by classifying initial Fourier-Jacobi expansions)

With updated dimensions from: Nonlift weight two paramodular eigenformconstructions, by Poor, Shurman, and Yuen. In progress.

And from: Antisymmetric paramodular forms of weights 2 and 3, byGritsenko, Poor, and Yuen: arXiv:1609.04146v1.

Cris Paramodularity TORA 50 / 58

Page 51: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Heuristic tables: k = 2 paramodular newforms: N ≤ 800.

+new nonlift = dim(

(S2(K (N))new)+ /Grit(Jcusp2,N

))−new = dim (S2(K (N))new)− .

The “=” means “proven.”

N +new −new various comments

249 = 1 BP+Grit; Jac

277 = 1 modular! Q/L; Jac

295 = 1 BP+Grit; Jac

349 = 1 BP+Grit; Jac

353 = 1 modular! BP+Grit; Jac

388 1 Jac

Cris Paramodularity TORA 51 / 58

Page 52: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

N +new −new various comments

389 = 1 BP+Grit; Jac

394 1 Jac

427 1 Jac

461 = 1 Tr(BP)+Grit; Jac

464 1 Jac

472 1 Jac

511 2 quad pair,√

5; 4-dim A/Q?

523 = 1 BP+Grit; Jac

550 1 no match known

Cris Paramodularity TORA 52 / 58

Page 53: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

N +new −new various comments

555 1 Jac

561 1 Prym

574 1 Jac

587 = 1 = 1 modular ! Tr(BP)+Grit and BP-; Jacs

597 1 Jac

603 1 Jac

604 1 Jac

623 1 Jac

633 1 Jac

Cris Paramodularity TORA 53 / 58

Page 54: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

N +new −new various comments

637 2 quad pair,√

2; 4-dim A/Q?

644 1 Jac

645 2 quad pair,√

2; 4-dim A/Q?

657 ≥ 1 modular! WR: E(9ζ6−8)/Q(√−3)

665 1 Prym

688 1 Jac

691 1 Jac

702 1 no match known

ζ6 = exp(2πi 16)

Cris Paramodularity TORA 54 / 58

Page 55: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

N +new −new various comments

704 1 Jac

708 1 Jac

709 1 Jac

713 1 ≥ 1 BP-; Jacs

731 = 1 Berger and Klosin: modular! Jac

737 1 Prym

741 1 Jac

743 1 Jac

Cris Paramodularity TORA 55 / 58

Page 56: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

N +new −new various comments

745 1 Jac

760 1 no match known

762 1 Jac

763 1 Jac

768 1 Jac

775 ≥ 1 modular! WR: E(5φ−2)/Q(√

5)

797 1 Jac

φ =1 +√

5

2

Cris Paramodularity TORA 56 / 58

Page 57: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Thanks to Armand Brumer for all his help, in particular for providing mewith the majority of the abelian surfaces in this talk.

Cris Paramodularity TORA 57 / 58

Page 58: Paramodularitysiegelmodularforms.org/pages/degree2/paramodular-wt2-all/... · 2018. 6. 13. · 2. normalized Hecke eigenforms f 2S 2(0(N))new with rational eigenvalues. In this correspondence

Thank you!

Cris Paramodularity TORA 58 / 58