Parallel Redundancy Protocol (PRP) Ethernet Reference ... Redundancy Protocol (PRP) Ethernet Reference Design for Substation Automation TI Designs Parallel Redundancy Protocol (PRP) Ethernet Reference

Download Parallel Redundancy Protocol (PRP) Ethernet Reference ...  Redundancy Protocol (PRP) Ethernet Reference Design for Substation Automation TI Designs Parallel Redundancy Protocol (PRP) Ethernet Reference

Post on 06-Feb-2018

216 views

Category:

Documents

2 download

Embed Size (px)

TRANSCRIPT

<ul><li><p>RJ-45</p><p>RJ-45</p><p>SPI Flash/NOR-Flash/</p><p>Micro SD</p><p>24 VDC-DC </p><p>Converter</p><p>DDR3 SRAM</p><p>EEPROM</p><p>TPS65910(Power </p><p>Management IC)</p><p>AM3359 (Processor)</p><p>TLK110(Ethernet </p><p>PHY)</p><p>Clock</p><p>TLK110(Ethernet </p><p>PHY)</p><p>ARM Cortex-A8</p><p>PRU-ICSS</p><p>PRU</p><p>PRU</p><p>MII/RMII</p><p>MII/RMII</p><p>I2C</p><p>EMIF </p><p>3.3-VLDO</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>1TIDUBN6June 2016Submit Documentation Feedback</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>Parallel Redundancy Protocol (PRP) Ethernet Reference Design forSubstation Automation</p><p>TI DesignsParallel Redundancy Protocol (PRP) Ethernet ReferenceDesign for Substation Automation</p><p>SmartReflex, Sitara, Code Composer Studio are trademarks of Texas Instruments.PHYTER is a registered trademark of Texas Instruments.Cortex is a registered trademark of ARM Limited.ARM is a registered trademark of ARM.All other trademarks are the property of their respective owners.</p><p>Design OverviewThis TI Design is a solution for high reliability,low-latency network communications forsubstation-automation equipment in smart gridtransmission and distribution networks. It supports theParallel Redundancy Protocol (PRP) specification inthe IEC 62439 standard. This solution is a lower-costalternative to FPGA approaches and provides theflexibility and performance to add features such asIEC 61850 support without additional components.</p><p>Design Resources</p><p>TIDEP0054 Design FolderAM3359 Product FolderTLK110 Product FolderTPS65910 Product FolderTMDSICE3359 Tools FolderSYSBIOSSDK-IND-SITARA Tools Folder</p><p>ASK Our E2E Experts</p><p>Design Features Compliant to IEC 62439-3 Clause 4 Specification</p><p>for PRP-Ethernet Communications Traffic Filtering Based on Virtual Local-Area</p><p>Network (VLAN) IDs, Multicast and BroadcastSupport, and Built-in Storm Prevention andSupervision Mechanism</p><p> Zero Recovery Time in Case of Network Failure Dual-Ported Full-Duplex 100-Mbps Ethernet Fully Programmable Solution Provides Platform for</p><p>Integration of Additional Applications</p><p>Featured Applications Substation and Distribution Automation Protection Relays Smart-Grid Communication Factory Automation</p><p>An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and otherimportant disclaimers and information.</p><p>http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBN6http://www.ti.com/tool/TIDEP0054http://www.ti.com/product/AM3359http://www.ti.com/product/TLK110http://www.ti.com/product/TPS65910http://www.ti.com/tool/tmdsice3359http://www.ti.com/tool/sysbiossdk-ind-sitarahttp://e2e.ti.comhttp://e2e.ti.com/support/applications/ti_designs/</p></li><li><p>Background www.ti.com</p><p>2 TIDUBN6June 2016Submit Documentation Feedback</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>Parallel Redundancy Protocol (PRP) Ethernet Reference Design forSubstation Automation</p><p>1 BackgroundA substation is a key component of the electricity-grid infrastructure, located everywhere from powergeneration facilities throughout the distribution network to the low-voltage feeders serving residences andbusinesses. Substations are a primary factor in transforming voltage levels for transmission andperforming important functions such as switching, monitoring, and protecting sub-systems in order tomaintain grid efficiency and reliability. Traditional-substation systems focused on fault monitoring that canbe manually fixed by switching to backup subsystems.</p><p>Consumers, regulators, and grid operators demand increasing reliability of electricity delivery. Theintroduction of automatic switching and protection of subsystems increases the demand for the automationof substation operations and communications to monitor grid conditions and communicate information togrid operators.</p><p>Operators need to continually monitor the health of networks and take action to maintain the operationwith efficiency. This need leads to the requirement for reliable and low-latency communications betweenthe control center of the operator and high-value nodes such as substations.</p><p>The International Electro-Technical Commission (IEC) released specifications for industrial-Ethernetcommunications under the IEC 62439 standard. The PRP specification is one of the IEC 62439-3standards that provides a static redundancy Ethernet-based protocol that supports critical real-timesystems that require continuous monitoring.</p><p>http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBN6</p></li><li><p>www.ti.com System Description</p><p>3TIDUBN6June 2016Submit Documentation Feedback</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>Parallel Redundancy Protocol (PRP) Ethernet Reference Design forSubstation Automation</p><p>2 System DescriptionThis design details a reliable high-speed PRP communication solution that is compliant with IEC 62439-3Clause 4 for substation automation.</p><p>This is a cost-effective alternative to ASIC- or FPGA-based Ethernet solutions while delivering equalperformance. The programmable nature of the solution allows operating different redundancy Ethernetprotocols without hardware modification and adding applications such as IEC 61850 without requiringadditional system costs.</p><p>Figure 1 shows the overall-system architecture. The PRP supports dual-port full-duplex Ethernetcommunication over star topology. The system includes Ethernet PHY as layer 1 and Ethernet MAC andPRP as layer 2. An application-example project, provided in the software-development kit (SDK) softwarepackage [ 5 ], enables developers to build applications on top of those protocols through direct API calls orby using network-development kit (NDK) libraries to import network stacks. Hard real-time application canbe implemented by using direct API call, and a TCP/IP based application can be implemented by usingNDK stacks provided by TI.</p><p>Figure 1. System Architecture</p><p>http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBN6</p></li><li><p>x x xx x xNode 2Node 1</p><p>Node 4 Node 3</p><p>xx</p><p>xxxxxx</p><p>xxxxxx</p><p>xxxxxx</p><p>xx</p><p>xxxxxx</p><p>xxxxxx</p><p>xxxxxx</p><p>Switch Switch</p><p>LAN A LAN B</p><p>System Description www.ti.com</p><p>4 TIDUBN6June 2016Submit Documentation Feedback</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>Parallel Redundancy Protocol (PRP) Ethernet Reference Design forSubstation Automation</p><p>2.1 Parallel Redundancy Protocol (PRP)PRP is a redundancy protocol for Ethernet networks (standardized using IEC 62439-3 Clause 4) that isselected as one of the redundancy protocols for substation automation in the IEC 61850 standard. PRP isapplication-protocol independent and can be used by most industrial-Ethernet applications that requirereliable high-speed communications.</p><p>The PRP supports star topology, which ensures a fixed-hop delay with cost of infrastructure.</p><p>Figure 2 shows PRP operation over star topology. Once a packet is generated at Node 1, the samepacket is sent through LAN A and B, and the destination (Node 3) receives duplicated packets if bothdeliveries succeed. The redundancy provides zero-recovery time if the packet fails to be delivered in onedirection.</p><p>Figure 2. PRP Star Topology</p><p>2.2 Ethernet PHYThe Ethernet PHY, based on IEEE standard 802.3, is responsible for transmitting and receiving data overEthernet lines.</p><p>http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBN6</p></li><li><p>RJ-45</p><p>RJ-45</p><p>SPI Flash/NOR-Flash/</p><p>Micro SD</p><p>24 VDC-DC </p><p>Converter</p><p>DDR3 SRAM</p><p>EEPROM</p><p>TPS65910(Power </p><p>Management IC)</p><p>AM3359 (Processor)</p><p>TLK110(Ethernet </p><p>PHY)</p><p>Clock</p><p>TLK110(Ethernet </p><p>PHY)</p><p>ARM Cortex-A8</p><p>PRU-ICSS</p><p>PRU</p><p>PRU</p><p>MII/RMII</p><p>MII/RMII</p><p>I2C</p><p>EMIF </p><p>3.3-VLDO</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>www.ti.com Block Diagram</p><p>5TIDUBN6June 2016Submit Documentation Feedback</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>Parallel Redundancy Protocol (PRP) Ethernet Reference Design forSubstation Automation</p><p>3 Block DiagramFigure 3 shows the block diagram. The primary devices for this design are the AM3359, TLK110, and theTPS65910. The AM3359 ARM Cortex-A8 microprocessor is the host processor used to support PRPand user applications running under a TI real-time operating system (RTOS) environment. The TLK110 isthe Ethernet PHY device and two TLK110s are used to create redundant-Ethernet communications in thisdesign. The TPS65910 is an integrated-power management IC (PMIC) with four DC-DCs, eight lowdropouts (LDOs), and a real-time clock (RTC).</p><p>These devices were chosen because of the: Programmable real-time unit subsystem and industrial-communication subsystem (PRU-ICSS) that</p><p>allows independent operation for real-time communication stacks High-performance ARM core that allows supporting the real-time applications for substation automation Programmable-flexible design that can be upgraded to different Ethernet-based redundancy protocols</p><p>without hardware modification High-performance Ethernet PHY to meet the requirements of IEEE 802.3 with high margins in terms of</p><p>cross-talk and alien noise</p><p>Figure 3. Block Diagram</p><p>http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBN6</p></li><li><p>Block Diagram www.ti.com</p><p>6 TIDUBN6June 2016Submit Documentation Feedback</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>Parallel Redundancy Protocol (PRP) Ethernet Reference Design forSubstation Automation</p><p>3.1 AM3359The AM3359 microprocessors (based on the ARM Cortex-A8 processor) are enhanced with image,graphics processing, peripherals, and an industrial-interface option for PRP and high-availability seamlessredundancy (HSR). The PRU-ICSS is separate from the ARM core, allowing for independent operationand clocking for increased efficiency and flexibility. The PRU-ICSS unit contains two PRUs; each PRUincludes a 32-bit RISC processor capable of running at 200 MHz that supports real-time protocol for PRPand HSR. The PRUs support additional media-independent interfaces (MIIs) and reduced media-independent interfaces (RMIIs) to connect to the Ethernet PHY devices directly.</p><p>The programmable nature of the PRU-ICSS, the access to pins, events, and all system-on-chip (SoC)resources provide flexibility when implementing fast, real-time, specialized-data handling (see Figure 4).</p><p>Figure 4. AM3359 Functional Block Diagram</p><p>http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBN6</p></li><li><p>www.ti.com Block Diagram</p><p>7TIDUBN6June 2016Submit Documentation Feedback</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>Parallel Redundancy Protocol (PRP) Ethernet Reference Design forSubstation Automation</p><p>3.2 TLK110The TLK110 (see Figure 5) is a single-port Ethernet PHY for 10BASE-T and 100BASE-TX signaling. Thisdevice integrates all of the physical-layer functions needed to transmit and receive data on standardtwisted-pair cables. The TLK110 supports the standard MII and RMII for direct connection to a media-access controller (MAC). The TLK110 is designed for power-supply flexibility and can operate with asingle 3.3-V power supply. The TLK110 can also operate with combinations of 3.3- and 1.55-V powersupplies for reduced power operation. The TLK110 uses mixed-signal processing to perform equalization,data recovery, and error correction to achieve robust operation over CAT 5 twisted-pair wiring. This devicemeets the requirements of IEEE 802.3 and maintains high margins in terms of cross-talk and alien noise.</p><p>Figure 5. TLK110 Functional Block Diagram</p><p>http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBN6</p></li><li><p>Block Diagram www.ti.com</p><p>8 TIDUBN6June 2016Submit Documentation Feedback</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>Parallel Redundancy Protocol (PRP) Ethernet Reference Design forSubstation Automation</p><p>3.3 TPS65910The TPS65910 (see Figure 6) is an integrated power-management IC that provides three step-downconverters, one step-up converter, eight LDOs, and is designed to support the specific powerrequirements of OMAP-based applications. Two of the step-down converters provide power for dualprocessor cores and are controllable by a dedicated class-3 SmartReflex software for optimum-powersavings. The third converter provides power for the IOs and memory in the system. The device includeseight general-purpose LDOs providing a wide range of voltage and current capabilities. The LDOs arecontrollable by the I2C interface. The use of the LDOs is flexible; they are intended to be used in thefollowing ways: Two LDOs are designated to power the phase-locked loop (PLL) and video digital to analog converter</p><p>(DAC) supply rails on the OMAP-based processors Four general-purpose auxiliary LDOs are available to provide power to other devices in the system Two LDOs are provided to power double-data rate (DDR) memory supplies in applications requiring</p><p>these memories</p><p>The device contains an embedded-power controller (EPC) to manage the power sequencing requirementsof the OMAP systems and an RTC.</p><p>http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBN6</p></li><li><p>VFB1</p><p>INT1</p><p>PWRON</p><p>VREF</p><p>REFGND</p><p>Test interface</p><p>CLK32KOUT</p><p>VAUX33</p><p>VMMC</p><p>OSC32KIN</p><p>OSC32KOUT</p><p>TESTV</p><p>SLEEP</p><p>NRESPWRON</p><p>PWRHOLD</p><p>BOOT1BOOT0</p><p>SDASR_EN2</p><p>SCLSR_EN1</p><p>SDA_SDI</p><p>VDAC</p><p>VPLL</p><p>VAUX1</p><p>VRTC</p><p>Real-timeclock</p><p>VFB3</p><p>SW3</p><p>VDIG2</p><p>VAUX2</p><p>VDIG1</p><p>VDD1(SMPS)</p><p>VCC1</p><p>GND1</p><p>SW1</p><p>VFBIO</p><p>VBAT</p><p>VCC7</p><p>VCC7</p><p>VCC7</p><p>VBAT</p><p>VBAT</p><p>VBATVCC6</p><p>VCC3VCC4</p><p>VCC5</p><p>VCC 7</p><p>VBAT</p><p>VCC7</p><p>VDDIO</p><p>VDDIO</p><p>AGND2</p><p>AGND</p><p>AGND</p><p>GNDAGNDA</p><p>DGND</p><p>VAUX33</p><p>REFGND</p><p>GND3</p><p>OSC32-kHz</p><p>SCL_SCK</p><p>BuscontrolGPIO_CKSYNC</p><p>Powercontrolstate-</p><p>machine</p><p>Analogreferences</p><p>and comparators</p><p>VB</p><p>AC</p><p>KU</p><p>P</p><p>Backupmanagement</p><p>VRTC (LDO)and POR</p><p>VFB2</p><p>VCC2</p><p>GND2</p><p>SW2</p><p>VCCIO</p><p>GNDIO</p><p>SWIO</p><p>GN</p><p>DP</p><p>AGND</p><p>AGND2</p><p>AGND2</p><p>VDAC(LDO)</p><p>VPLL(LDO)</p><p>VAUX1(LDO)</p><p>VAUX2(LDO)</p><p>VDIG1(LDO)</p><p>AGND2</p><p>AGND2</p><p>AGND2</p><p>VDIG2(LDO)</p><p>VAUX33(LDO)</p><p>VMMC(LDO)</p><p>I C2</p><p>I C2</p><p>AGND2</p><p>AGND</p><p>AGND</p><p>VCC7</p><p>VCC7</p><p>VCC4</p><p>VDD2(SMPS)</p><p>VIO(SMPS)</p><p>VDD3(SMPS)</p><p>SWCS046-001</p><p>GNDP: Power pad ground</p><p>Ci(VCC7)</p><p>Co(VRTC)</p><p>Co(VREF)</p><p>Co(VDAC)</p><p>Ci(VCC5)</p><p>CBB</p><p>Co(VPLL)</p><p>Co(VAUX1)</p><p>Ci(VCC4)</p><p>Co(VAUX2)</p><p>DGND AGND AGND2 GND3Co(VMMC)</p><p>VBAT</p><p>Ci(VCC4)</p><p>Co(VAUX33)</p><p>Co(VDIG2)</p><p>Co(VDIG1)</p><p>Co(VIO)</p><p>Ci(VCCIO)</p><p>VBAT</p><p>Ci(VCC2)</p><p>Co(VDD2)</p><p>VBAT</p><p>Ci(VCC1)</p><p>Co(VDD1)</p><p>Co(VDD3)</p><p>Ci(VDD3)</p><p>www.ti.com Block Diagram</p><p>9TIDUBN6June 2016Submit Documentation Feedback</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>Parallel Redundancy Protocol (PRP) Ethernet Reference Design forSubstation Automation</p><p>Figure 6. TPS65910 Functional Block Diagram</p><p>http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBN6</p></li><li><p>xx</p><p>xx</p><p>x</p><p>UART</p><p>xx</p><p>xx</p><p>x</p><p>UART</p><p>Host Interface</p><p>NOR Flash</p><p>Rotary Switch</p><p>Eight LEDsTLK110DDR324-V I/O</p><p>LCD</p><p>Power</p><p>SPI Flash</p><p>MMC</p><p>USB JTAG</p><p>Pin 1Pin 2</p><p>Pin 3J5- Boot Jumper</p><p>CPSW and ICSS Jumpers</p><p>D1D2</p><p>Pin 1Pin 2Pin 3</p><p>Port 0Port 1</p><p>Getting Started Hardware www.ti.com</p><p>10 TIDUBN6June 2016Submit Documentation Feedback</p><p>Copyright 2016, Texas Instruments Incorporated</p><p>Parallel Redundancy Protocol (PRP) Ethernet Reference Design forSubstation Automation</p><p>4 Getting Started HardwareFigure 7 shows AM3359 ICE (Industrial Communication Engine) EVM revision 2.1A. The EVM includesvarious flash devices that are supported by the AM3359, DDR memory, and power-management devices.The EVM is designed to support multiple communication standards by providing various interfaces suchas Ethernet, CAN, and RS-485.</p><p>Figure 7. ICE EVM Revision 2.1A</p><p>4.1 EVM ConfigurationThe ICE EVM provides multiple boot options of NOR-flash, SPI-flash,...</p></li></ul>