page 1 dr. gareth j. bennett trinity college dublin 1e10 lecture in design mechanical &...

34
Dr. Gareth J. Bennett Trinity College Dublin Page 1 1E10 Lecture in Design 1E10 Lecture in Design Mechanical & Manufacturing Engineering Mechanical & Manufacturing Engineering Dynamics for the Mangonel”. Dr. Gareth J. Bennett

Upload: estevan-giffin

Post on 14-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Dr. Gareth J. BennettTrinity College Dublin

Page 1

1E10 Lecture in Design1E10 Lecture in DesignMechanical & Manufacturing EngineeringMechanical & Manufacturing Engineering

“Dynamics for the Mangonel”. Dr. Gareth J. Bennett

Dr. Gareth J. BennettTrinity College Dublin

Page 2

ObjectiveObjective

A small model Mangonel

Dr. Gareth J. BennettTrinity College Dublin

Page 3

ObjectiveObjective

Can we predict the distance?

Dr. Gareth J. BennettTrinity College Dublin

Page 4

ObjectiveObjective

A larger version!

Dr. Gareth J. BennettTrinity College Dublin

Page 5

ObjectiveObjective

What are the factors that control the distance? (The dynamics)

Dr. Gareth J. BennettTrinity College Dublin

Page 6

ModellingModelling

Bigger means further?Some of the issues related to

scaling up are discussed in Prof. Fitzpatrick’s lecture!

(Reflect on these)

Dr. Gareth J. BennettTrinity College Dublin

Page 7

ModellingModelling

For a given “size”, can we maximise the distance?What are the key parameters that control the distance?Can we formulate a model that will help us design our Mangonel?

Dr. Gareth J. BennettTrinity College Dublin

Page 8

FundamentalsFundamentals

force = mass x acceleration (ma)

work = force x distance (Fs) energy== work power = rate of work

(work/time)

Dr. Gareth J. BennettTrinity College Dublin

Page 9

Derived Units

Force (1N=1kgm/s2) Work (1J=1Nm=1kgm2/s2) Energy (J) Power (1W=1J/s)

Dr. Gareth J. BennettTrinity College Dublin

Page 10

Dynamics

Starting with some basic equations

Speedav=distance/time

Accelerationav=velocity/time

Dr. Gareth J. BennettTrinity College Dublin

Page 11

Dynamics

Can derive equations for linear motion (for constant acceleration)

v=u+ats=ut+1/2at2

v2=u2+2as

u=initial velocity

v=final velocity

t=time duration

a=acceleration

s=distance travelled

Dr. Gareth J. BennettTrinity College Dublin

Page 12

Dynamics

Example 1: (1-D)Kick a ball straight up. Given

a given initial velocity, how high will it go?

Dr. Gareth J. BennettTrinity College Dublin

Page 13

Dynamics

Example 1: (1-D)

Use equation:v2=u2+2as

s=u2/2g

a=-g

u

v=0 (at top)

s=?

Dr. Gareth J. BennettTrinity College Dublin

Page 14

Dynamics

Example 2: (1-D)Drop a rock from a cliff. How

long will it take to hit the ground/sea?

Dr. Gareth J. BennettTrinity College Dublin

Page 15

Dynamics

Example 2: (1-D)

Dr. Gareth J. BennettTrinity College Dublin

Page 16

Dynamics

Example 2: (1-D)

Use equation:s=ut+1/2at2

s=1/2at2

t (from stopwatch)

u=0 (at top)

s=?

Dr. Gareth J. BennettTrinity College Dublin

Page 17

Dynamics

Example 2: (1-D)

s=1/2at2

t (from stopwatch)

u=0 (at top)

s=?

Example Result: t=3s =>s=44m

However!

t=2.5s =>s=31m

t=3.5s =>s=60m

Sensitive to error: proportional to square of t!

Dr. Gareth J. BennettTrinity College Dublin

Page 18

Dynamics

Can we use these equations to model the trajectory of the missile?

And hence predict the distance?A 2-D problem!

Dr. Gareth J. BennettTrinity College Dublin

Page 19

Dynamics

y

x

Dr. Gareth J. BennettTrinity College Dublin

Page 20

Dynamics

y

x

Discretise the curve

1

2

3 4

s

Dr. Gareth J. BennettTrinity College Dublin

Page 21

Dynamics

y

x

Not u and v now but

v1, v2, v3, v4, etc…..

1

2

3 4

v1

v2

v3v4

Dr. Gareth J. BennettTrinity College Dublin

Page 22

Dynamics

y

x

We can decompose vectors (v, s, a) into x, y components

1

2

3 4

s1x

s1s1y

Dr. Gareth J. BennettTrinity College Dublin

Page 23

Dynamics

v=u+at becomes:

•vx2=vx1+ax1Δt

•vy2=vy1+ay1Δt

s=ut+1/2at2 becomes:

•Δsx=vx1Δt+1/2ax1Δt2

•Δsy=vy1Δt+1/2ay1Δt2

Acceleration is constant (for no drag of lift – we’ll return to this point later)

ax=0!

ay=-g

t2-t1= Δt (keep time interval constant)

Dr. Gareth J. BennettTrinity College Dublin

Page 24

Dynamics – Assignment1

Use Excel to study trajectory of missile

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01theta (degrees) 30.00theta (radians) 0.52

Input Data

Initial Conditions

vx=Vel*cos(theta)

vy=Vel*sin(theta)

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01theta (degrees) 30.00theta (radians) 0.52

Input Data

Initial Conditions

vx=Vel*cos(theta)

vy=Vel*sin(theta)

Dr. Gareth J. BennettTrinity College Dublin

Page 25

Dynamics

t2=t1+

Δt

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81theta (degrees) 30.00theta (radians) 0.52

Input Data

Dr. Gareth J. BennettTrinity College Dublin

Page 26

Dynamics

x2=x1+vx1Δt+1/2ax1Δt2

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81theta (degrees) 30.00theta (radians) 0.52

Input Data

Dr. Gareth J. BennettTrinity College Dublin

Page 27

Dynamics

y2=y1+vy1Δt+1/2ay1Δt2

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81theta (degrees) 30.00theta (radians) 0.52

Input Data

Dr. Gareth J. BennettTrinity College Dublin

Page 28

Dynamics

vx2=vx1+ax1Δt

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81theta (degrees) 30.00theta (radians) 0.52

Input Data

Dr. Gareth J. BennettTrinity College Dublin

Page 29

Dynamics

vy2=vy1+ay1Δt

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81theta (degrees) 30.00theta (radians) 0.52

Input Data

Dr. Gareth J. BennettTrinity College Dublin

Page 30

Dynamics

Const=0!

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81theta (degrees) 30.00theta (radians) 0.52

Input Data

Dr. Gareth J. BennettTrinity College Dublin

Page 31

Dynamics

Const=-g

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81theta (degrees) 30.00theta (radians) 0.52

Input Data

Dr. Gareth J. BennettTrinity College Dublin

Page 32

Dynamics

Copy formula down

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81theta (degrees) 30.00 3.00 0.02 0.17 0.10 8.66 4.80 0.00 -9.81theta (radians) 0.52 4.00 0.03 0.26 0.15 8.66 4.70 0.00 -9.81

5.00 0.04 0.35 0.19 8.66 4.61 0.00 -9.816.00 0.05 0.43 0.24 8.66 4.51 0.00 -9.817.00 0.06 0.52 0.28 8.66 4.41 0.00 -9.818.00 0.07 0.61 0.33 8.66 4.31 0.00 -9.819.00 0.08 0.69 0.37 8.66 4.21 0.00 -9.81

10.00 0.09 0.78 0.41 8.66 4.11 0.00 -9.8111.00 0.10 0.87 0.45 8.66 4.02 0.00 -9.8112.00 0.11 0.95 0.49 8.66 3.92 0.00 -9.8113.00 0.12 1.04 0.53 8.66 3.82 0.00 -9.8114.00 0.13 1.13 0.57 8.66 3.72 0.00 -9.8115.00 0.14 1.21 0.60 8.66 3.62 0.00 -9.8116.00 0.15 1.30 0.64 8.66 3.53 0.00 -9.8117.00 0.16 1.39 0.67 8.66 3.43 0.00 -9.8118.00 0.17 1.47 0.71 8.66 3.33 0.00 -9.8119.00 0.18 1.56 0.74 8.66 3.23 0.00 -9.81

Input Data

Dr. Gareth J. BennettTrinity College Dublin

Page 33

Dynamics

Plot x versus y using chart wizard

Position t x y vx vy ax ayVel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81theta (degrees) 30.00 3.00 30.01 0.17 0.10 8.66 4.80 0.00 -9.81theta (radians) 0.52 4.00 30.53 0.26 0.15 8.66 4.70 0.00 -9.81

5.00 30.53 0.35 0.19 8.66 4.61 0.00 -9.816.00 30.53 0.43 0.24 8.66 4.51 0.00 -9.817.00 30.53 0.52 0.28 8.66 4.41 0.00 -9.818.00 30.53 0.61 0.33 8.66 4.31 0.00 -9.819.00 30.53 0.69 0.37 8.66 4.21 0.00 -9.81

10.00 30.53 0.78 0.41 8.66 4.11 0.00 -9.8111.00 30.53 0.87 0.45 8.66 4.02 0.00 -9.8112.00 30.53 0.95 0.49 8.66 3.92 0.00 -9.8113.00 30.53 1.04 0.53 8.66 3.82 0.00 -9.8114.00 30.53 1.13 0.57 8.66 3.72 0.00 -9.8115.00 30.53 1.21 0.60 8.66 3.62 0.00 -9.8116.00 30.53 1.30 0.64 8.66 3.53 0.00 -9.8117.00 30.53 1.39 0.67 8.66 3.43 0.00 -9.8118.00 30.53 1.47 0.71 8.66 3.33 0.00 -9.8119.00 30.53 1.56 0.74 8.66 3.23 0.00 -9.8120.00 30.53 1.65 0.77 8.66 3.13 0.00 -9.8121.00 30.53 1.73 0.80 8.66 3.04 0.00 -9.8122.00 30.53 1.82 0.83 8.66 2.94 0.00 -9.81

Input Data

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 2.00 4.00 6.00 8.00 10.00

Dr. Gareth J. BennettTrinity College Dublin

Page 34

Assignment 1

Mangonel Dynamics Design Tool using Excel

Work in groups and/or individually in computer rooms today and during week to

1.Create excel spreadsheet as demonstrated

2.Plot x versus y

3.Study effect of changing velocity

4.Study effect of changing angle

An assignment will be set based on this work. Assignment to be submitted individually – no copying!