pad&avz optimalpaths-for-climate-techfix (su-iew …...to the same special issue of energy...

62
This work is distributed as a Discussion Paper by the STANFORD INSTITUTE FOR ECONOMIC POLICY RESEARCH SIEPR Discussion Paper No. 15003 Designing an Optimal 'Tech Fix' Path to Global Climate Stability: Integrated Dynamic Requirements Analysis for the 'Tech Fix' By Adriaan van Zon and Paul A. David Stanford Institute for Economic Policy Research Stanford University Stanford, CA 94305 (650) 7251874 The Stanford Institute for Economic Policy Research at Stanford University supports research bearing on economic and public policy issues. The SIEPR Discussion Paper Series reports on research and policy analysis conducted by researchers affiliated with the Institute. Working papers in this series reflect the views of the authors and not necessarily those of the Stanford Institute for Economic Policy Research or Stanford University

Upload: others

Post on 22-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

This  work  is  distributed  as  a  Discussion  Paper  by  the    

STANFORD  INSTITUTE  FOR  ECONOMIC  POLICY  RESEARCH    

     

SIEPR  Discussion  Paper  No.  15-­‐003    

 Designing  an  Optimal  'Tech  Fix'  Path  to  Global  Climate  Stability:  

       Integrated  Dynamic  Requirements  Analysis  for  the  'Tech  Fix'  

By  

                     Adriaan  van  Zon  and  Paul  A.  David  

   

Stanford  Institute  for  Economic  Policy  Research  Stanford  University    Stanford,  CA  94305            (650)  725-­‐1874  

   The  Stanford  Institute  for  Economic  Policy  Research  at  Stanford  University  supports  research  bearing  on  economic  and  public  policy  issues.  The  SIEPR  Discussion  Paper  Series  reports  on  research  and  policy  analysis  conducted  by  researchers  affiliated  with  the  Institute.  Working  papers  in  this  series  reflect  the  views  of  the  authors  and  not  necessarily  those  of  the  Stanford  Institute  for  Economic  Policy  Research  or  Stanford  University  

Page 2: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

DesigninganOptimal'TechFix'PathtoGlobalClimateStability:IntegratedDynamicRequirementsAnalysisforthe‘TechFix’

By

*PaulA.David1,2andAdriaanvanZon2,3

1StanfordUniversity&AllSoulsCollege2UnitedNationalUniversity‐MERIT,Maastricht(NL)

3SBEUniversityofMaastricht(NL)

1stversion:28November20112ndversion:27November2012

3rdversion:15June2014Thisversion:10February2015

ABSTRACT

Thispaperanalyzestherequirementsforasocialwelfare‐optimizedtransitionpathtowardacarbon‐freeeconomy, focusing particularly on the deployment of low‐carbon technologies, and the roles ofengineeringupgradingofextantfacilities,anddirectedR&Dtoenhancingtheirproductivity. Thegoalineachcaseistoachievetimelysupply‐sidetransformationsintheglobalproductionregimethatwillavertcatastrophicclimateinstability,anddosoinamannerthatminimizesthesocialwelfarecostsofstabilizingthe levelof theatmospheric concentrationof greenhousegases (GHG).This “planning‐model” approachdeparts from conventional IAM exercises by dispensing with the need to make (generally dubious)assumptions about the macro‐level consequences of behaviors of economic and political actors inresponse to market incentives and specific public policy instruments, such as a carbon tax. It shiftsattention instead to the need for empirical research on critical technical parameters, and problems ofinter‐temporal coordination of investment and capacity utilization that will be required to achieve atimely,welfare‐optimizingtransition.Asuiteofheuristicintegratedmodelsisdescribed,inwhichglobalmacroeconomicgrowth isconstrainedbygeophysical systemwithclimate feedbacks, includingextremeweatherdamagesfromglobalwarmingdrivenbygreenhousegasemissions,andthethresholdlevelGHGconcentrationbeyondwhich theclimatesystemwillbe“tipped into”catastrophic runawaywarming. Avarietyoftechnologicaloptionsareidentified,eachcomprisinganarrayofspecifictechniquesthatshareadistinctiveinstrumentalroleincontrollingtheconcentrationlevelofatmosphericCO2. Thedevelopmentoflow‐carbontechnologiesthroughinvestmentinR&D,andtheirdeploymentembodiedinnewphysicalcapital formation, is explicitly modeled; as is the implementation of known engineering techniques to“upgrade”existingfossil‐fueledproductionfacilities.Thesocial‐welfareefficientexerciseoftheavailabletechnological options is shown to involve sequencing different investment and production activities inseparatetemporal“phases”that together formatransitionpathtoasustainable low‐carboneconomy—one inwhich gross CO2‐emissions do not exceed the Earth’s “natural” abatement capacity. Parametricvariationsofthe“tippingpoint”constraint inthesemodelswillpermitexplorationofthecorrespondingmodification in therequiredsequencinganddurationsof investmentandproduction in thephases thatformtheoptimaltransitionpath.Thepreliminarysolutions(usingmufti‐phaseoptimalcontrolmethods)expose important dynamic complementarities among technological options that are often presented assubstitutesbycurrentclimatepolicydiscussions.

JELcodes:Q540,Q550,O310,O320,O330

Keywords:globalwarming,tippingpoints,catastrophicclimateinstability,technologyfixoptions,R&Dinvestments,capital‐embodiedinnovations,optimalsequencing,IAMandDIRAMpolicydesignapproaches,multi‐phaseoptimalcontrol,sustainableendogenousgrowth

*Contactauthor:[email protected]  

   

Page 3: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐1‐

DesigninganOptimal'TechFix'PathtoGlobalClimateStability:IntegratedDynamicRequirementsAnalysisforthe‘TechFix’

1.OverviewandOrganizationofthePaper

OurmainpurposeinthesepagesistostimulatefreshthinkingaboutnothinglessthanthedesignofacoherentglobalprogramthatwouldmobilizethetechnicalandeconomicresourcesthatwillbeneededtoimplementeffectiveandtimelyactionsstabilizetheEarth’sclimate.Morespecifically,theconcernofthepaperfocusesonanalysingtherequirementsforasocialwelfare‐optimizedtransitionpathtowardalow‐carbonproductionregimethatwouldbebothviableandsufficienttoavertcatastrophicclimateinstability,andtherebypreservethefuturepossibilitiesofsustainabledevelopmentandcontinuingeconomicgrowth.

Tofixideasandbegintomakeanalyticalheadway,wedescribeasuiteofheuristic“integrated”modeloflong‐runmacroeconomicgrowth,i.e.,modelsinwhichendogenousgrowthisconstrainedbyfeedbacksfromthegeophysicalsysteminwhichtheglobaleconomicsub‐systemisembedded.Twoamongthefeedbackeffectsthatdirectlyconstraintheeconomicgrowtharemodeledexplicitly:firstly,thereisthepotentialforcontinuingemissionsofgreenhousegases(GHG)toraisetheleveloftheiratmosphericconcentration(measuredinCO2‐equivalentppmv),increasingradiativeforcingandcorrespondinglyelevatedmeantemperatureoftheEarth’ssurface,elevatedmoisturecontentoftheatmosphereand,consequentlymorefrequentratesofextremeweatherdamagestoinfrastructuresandlossesinproductivecapacity.Thesecond,andstillmoreseriousconstraintarisesfromrecognitionoftheexistenceofoneormoreclimate“tippingpoints”orthresholdsthatoncecrossedwouldinitiateaself‐reinforcing,“runawaywarming”processthatwouldbringinitstraincatastrophicdamagestohumanwelfareandwell‐being.

ApolicycommitmentthatembracesthePrecautionaryPrincipleandthereforeseekstoavertaglobalclimatedisasterwillbeseentobetantamounttoimposingahard“carbon‐budget”constraintontheoptimaltransitionpathtoastabilizedclimate.ThisfollowsfromdefiningacatastrophetippingpointintermsofacriticalthresholdlevelofCO2–eppmvintheatmosphere,which(giventhelattermeasure’sinitiallevel)servestofixthecumulativenetadditionsvolumeofGHGemissions,andhenceintheCO2‐equivalentatmosphericconcentrationofthosegases)thatdoesnotcrossthestipulatedthresholdleadingtocatastrophe.Thus,anyconjecturedcatastrophetippingpointsetsa“carbon‐budget,”andacorrespondingclimate‐stabilizingtransitionpaththatcanbeoptimized–ifitisfeasible,giventheotherconstraintsonthedynamicalreallocationofglobalresources.

Page 4: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐2‐

Asecondobtrusiverespectinwhichtheapproachtobedescribedheredeviatesfromthestyleofintegratedclimatepolicyassessmentmodeling(IAM)thathasbecomefamiliarinthefieldofenvironmentalandenergyeconomicsappliedtoclimatepolicyissues,1istobeseeninitsexplicitattentiontothetechnologicaltransformationsthatwillneedtobeeffectedinorderforaprogramofclimatestabilizationtosucceed.Ratherthanpositinganunchangingaggregateproductionfunctionfortheglobaleconomy,weproposetoconsideraportfoliooftechnologicaloptionscomprisingseveraldistinguishableclassesoflineartechniques,eachcharacterizedbyacommoninstrumentalroleincontrollingtheconcentrationlevelofatmosphericCO2.Thedevelopmentofalternative,low‐carbontechnologiesthroughinvestmentindirectedR&D,andtheirdeploymentembodiedinnewphysicalcapitalformation,areexplicitlymodeled,asareinvestmentsinimplementingknownengineeringtechniquesto“upgrade”existingfossil‐fueledproductionfacilities—loweringtheiraverageflowrateofCO2perunitofoutputandtherebyrenderingexistingcapitalstock“greener.”

Explicitmodelingofdistinctelementsinthearrayofavailableandlatenttechnologicaloptions,andtheassumptionthatthetechniquesinquestionmustbeembodiedinphysicalcapital(whetherinfrastructuralordirectlyproductiveassets)representanimportantrespectinwhichthepresentapproachdepartsfromtheleadingintegrated(policy)assessmentmodels’treatmentoftechnologicalchangesintheglobalproductionregime,whetherthroughthefurtherdiffusionofavailabletechniques(andthescrappingphysicalcapitalembodyingearliervintages),orthedevelopmentanddeploymentofrecenttechnologicalinnovations.2

Thesocial‐welfareefficientdeploymentoftheavailabletechnologicaloptionsisshowntoinvolvesequencingdifferentinvestmentandproductionactivitiesindistincttemporal“phases”eachofwhichsatisfythefirst‐orderconditionsforanoptimalcontrolsolution,andtakentogetherformatransitionpathtoasustainablelow‐carboneconomy—oneinwhichgrossCO2‐emissionsdonotexceedtheEarth’s“natural”abatementcapacity.Followingtheminimax‐regretcriterionfordecisionsaboutpolicyactions,welfareoptimizationofthetechfixprogrammustsatisfytheconditionthatthe

designachievesstabilizationoftheatmosphericconcentrationofCO2‐eqivppmvatalevel

1SeefurtherdiscussioninSect.4(below),especiallytheIAMmodelsfollowingandextendingtheparadigmaticDICEmodelofNordhaus(1993,2002,2007)andothercontributionstothisliteraturereviewedinKellyandKolstad(1999),andmorerecentlyinAckermanetal.(2009).

2The“technologicalportfolio”approachpresentedhere(basedonfunctionaldistinctionsamong“techniques”)isconsistentinspiritwithpreviousefforts(e.g.,Bosettietal.,2006,andothercontributionstothesamespecialissueofEnergyJournal)tocombinedetailed“bottomup”representationsofengineeringrealitiesintheenergysectorwith“topdown”modellingoftheglobalmacroeconomicandclimatesystems.Inordertoexplicitlyexaminetheimplicationsofswitchingbetweentechnologiesthatmustbeembodiedinphysicalcapital,wehavesacrificedengineeringdetailsforgreatercomputationaltractabilityoftheresultingmulti‐stageoptimalcontrolproblem.

Page 5: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐3‐

justbelowthespecified“catastrophetippingpoint.”GiventhecurrentatmosphericconcentrationofGHG,thisservestoimposeaconditionalnet“carbonemissionsbudget”constraintupontheoptimaltransitionpathcorrespondingtothespecified“catastrophetippingpoint”.Bysolvingthemodelforanarrayofalternativeconjecturedtipping‐point,itisthenpossibletoexplorethedynamicsofthealteredtechnologicalandinvestmentrequirementsthatwill(just)expendthebudgetbytakingtheindicatedtransitionpathstothecorrespondingstableclimate..

InterpretingapplicationofthePrecautionaryPrincipleas“minimaxregret”strategy,wouldprovideaformaljustificationforinvestigatingtherequirementsofwelfare‐optimaltransitionpathsthatwouldsufficetohaltnetadditionstotheatmosphericconcentrationofGHGsjustbeforethesystemcrossingaconjecturedcatastrophictipping‐point.3,isthatdoingsowouldeschewrelyinguponexpectedutilitymaximizingsolutions.Toobtainthelatterwouldcallforquantitativeassessmentsofthebalancebetweenfuturesocietalwelfarebenefitsandcosts.But,inthepresentincompletestateofscientificandeconomicunderstandingofthedynamicprocessesthatwouldbeinvolved,thoseassessmentsentailacceptinghighlydubiousquantitativeguessesregardingthetimedistributionandmagnitudesofmaterialdamagestopopulationsandproductivecapacitythatwouldentailcatastrophiclossesinutilityterms.Furthermore,ifthepossibilityofabruptandcatastrophicclimatechangesistobeexplicitlyacknowledged,italsowouldbenecessarytoacceptuncertainandhighlysubjectiveestimatesoftheprobabilitydistributionoftheGHGconcentrationlevelscorrespondingtothethresholdvaluesofvarious“tippingelements”intheEarth’sclimatesystem.

Thereis,however,andavailableattractivealternativetotheclassic“minimaxregret”strategyforrationalchoicedecisionsunderuncertainty,whichtypicallyisinvokedasaformalizationofthePrecautionaryPrinciplewhoseapplicationcouldaccountforhumanactorsobserveddeparturesfromthepredictionsimpliedbySavage’s(1951)postulated“sure‐thingprinciple.4AsformulatedbyLoomesandSugden(1982),

3Theminimax‐regretcriterionintroducedbySavage(1951)callsforchoosingtheaction(s)fromtheavailablesetthatwillminimizethemagnitudeof‘regret’associatedwiththeworstcasesocialwelfareoutcomes.Whentheoutcomevariablesareutilities(asisusualinwelfareanalysis),theminimax‐regretcriterionisbasedondifferencesinexpectedoutcomes,andthepresenceofuncertaintyrequiresassigning(subjective)probabilitiestoalternativeplausiblestatesoftheworld.TheworstcaseoutcomeofnottakingagivenprogramthatwouldstabilizetheclimatebeforereachinglevelkofMGTisthecastastrophiconsetofirreversible,self‐reinforcingglobalwarming–whichwouldexhypothesisensuefromexceedinglevelk.UnderanalternativestatethereisnosuchtippingpointbeforeoratMGTlevelk,andtheoutcomeoftakingtheactionisthewelfarelossoftheunnecessarystabilizationefforttostopthere.Ifthewelfareindexesarelinear,andthestatesoftheworldareindependentoftheactioninquestion,thenthisapproachisconsistentwithexpectedutilitytheory,wheresubjectiveprobabilitiesmaybeassignedtothestatesoftheworld,andthedecisioncriterionisthedifferencebetweentheexpectedpayofffornottakingandtakingthestabilizationaction.ThisapproachhasbeenimplementedbyCai,JuddandLontzek(2012b),LemoineandTrager(2012).But,aswillbeseen,onecanjustifyassertingthePrecautionaryPrinciplewithouthavingtoassignsubjectiveprobabilitiestothetippingpoint’sconjecturedlocations..

4SeeLoomesandSugden(1982),SlovicandTversky(1974),KahenmanandTversky(1979).

Page 6: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐4‐

thisapproachholdsthatarationalactorchosesbetweenactions(includingaparticularactionandinaction)soasthemaximizethemathematicalexpectationofmodifiedutility.Supposingthatexpectedmodifiedutilityistheobjectivefunctionmaximizedbyrationalactorsisjustifiedonthegroundsofsimplicityandconsistencywiththeempiricalevidenceofmostofthewelldocumentedbehavioraldeparturesfromtheconventionalframeworkofmaximizingexpectedutilityamongavailablechoices.5

Undertheassumptionthatthecurrentgenerationplacesavalueonfuturegenerations’welfare(conceivingofthelatterasasubjectivestateoffelicity),decisionstobetakeninthefaceofanuncertainexistentialthreat‐‐suchasthatofenteringintoanirreversiblecatastrophicstatethatwillentailextremedeprivationsforfuturegenerations‐‐mayweightcurrentsacrificesofutilityagainsttheprospectofmaintainingmorehopefulconditionsforfuturegenerations.Costlyactionsofthiskindwould,ineffect,sacrificethesubjectivefelicityofcurrentmaterialconsumptioninordertoavoidthesubjectiveinfelicityofcontemplatingthesituationthattheyhavemadeinadequatesacrificestoavertthe“hopeless”situationinwhichfuturegenerationswouldbeleftbymaterializationofthecatastrophicalternative.6

ThiswouldseemtocommenditselfastherationalapplicationofthePrecautionaryPrincipleinregardtodecisionsonactionsaimedatstabilizingtheEarth’sclimate.That,ofcourse,ispremisedonacceptingthepropositionsthat(i)thereexistoneormore“tippingpoints”intheatmosphereconcentrationlevelofGHG),and(ii)atleastoneofthesethresholdswouldbecrossedwithinthelifetimesofpresentmembersoftheworld’spopulation,unlessmajorcutsinthevolumeofGHGemissionsarenotbegunimmediately.Uncertaintiesabouttheextentofthematerialsacrificesofcurrenteconomicwelfarethataneffectiveprogramofthatkindwillentail–duetouncertaintiesandambiguitiesinthelocationofthetipping‐point(s),inthestatedependentdynamics

5Thisapproachproceedsfromtheviewthatpsychologicalexperiencesofregret(andrejoicing)cannotbeproperlyconceptualizedas“rational”or“irrational”–becausethey,likesorrowandjoyaresubjectivestates;theclassof‘objects’thatmaybetakentoproduceutilityisthusexplicitlyheldtoincludesubjectivestates(feelingsaboutamaterialstateoftheworld)aswellastheutilitydirectlyderivedfromthatworldstate.RatherthanfollowingKahenmanandTversky(1979,1981)bysuper‐imposingatheoryofsystematicbehavioralviolationsupontheexpectedutilitytheoryderivingfromvonNeumannandMorgenstern(1947),LoomesandSugden(1982)formulatea“modifiedutilityfunction”forthedecisionagent,inwhichincrementsordecrementsinutility(felicity)correspondingtotheexperiencedsensations(joyvs.regret)thatareassociatedwithcontemplationofthefactualandcounter‐factualoutcomesofconditionsthatactuallyhaveormighthavebeenachieved.Inotherwords,thisformulationassumesthatthedegreeofregret(orjoy)experienceddependsuponcomparisonoftheutilityof“whatis”with“whatmighthavebeen.”

6Beliefinthepossibilityof“abetterfuture”,oratleastafuturemoreviablethanthepresentundergirdsdeferralofgratification,andindividualbehaviors(saving,investing,acquiringknowledge)thatplaycriticalrolesintheaccumulationofproductivetangibleassets,aswellastheformationandmaintenanceofformalinstitutionsandsocialorganizationsthatstructurecooperationinthecollectivecreationofpublicgoods.Therefore,itisreasonabletoviewthewidespreadprospective“lossofhope”foraviablematerialfutureamongmembersofthehumanpopulationasposingagrave“existentialthreat”.

Page 7: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐5‐

oftheofEarth’sclimateunderconditionsofcontinuedwarming,andintheeffectivenesswithwhichbothpublicandprivateresourcereallocationplanscanbeimplemented,andcorrectedinmid‐course‐‐implyanon‐zeroprobabilitythatsomeofthesacrificeofthesocialwelfareoffuturegenerationswillbeperceivedtobe“excessive”orevenunnecessary.7

Ourapproachinexploringtherequirementsforoptimallydesignedtransitionstoastabilizedclimatethereforeproceedsfromthepositionthatinthecomparisonbetweenthetwocontemplatedsourcesofexpectedregret,thepreponderanceinthebalanceisoverwhelminglyonthesideofdecidinguponactionstoseektoavoidinadequatelystrongstabilizationmeasuresandtoacceptthehigherrisksofregretsassociatedwithhavingtakenactionsthatwillturnouttohavebeenunnecessarilycostly.Inotherwords,thisformulationassumesthatthedegreeofregret(orjoy)experienceddependsuponcomparisonoftheutilityof“whatis”with“whatmighthavebeen.”Decisionsthatmustbemadeinthefaceoftheexistentialthreatofenteringanirreversiblecatastrophicstate–recognitionofwhichwoulddeprivefuturegenerations(thatsharethedecision‐taker’snotionsofrationality)of“hope”forthepossibilityofallthingsconditionalonthesustainableexistenceofarecognizableformofcivilsociety.Preservationofthathopefulstateofwarrantsactionsentailingdegreesofmaterialsacrificethatwillnotcompromisetheviabilityofthefuturestateinwhichhopefulnesscanbemaintained.Costlyactionsofthiskindwill,ineffect,sacrificethematerialconditionsoftheviableworldlefttofuturegenerationsinordertoavertthehopelessnessofthecatastrophicalternative.

Itshouldalsoberemarkedherethat“excessiveprecaution”issubjecttocorrectioninsomemeasureonceithasbecomerecognized;andtherewouldremainscopeforarrangingsubsequentfurthercompensationforthoseinfuturegenerationsthathadbeenmostdamagedbyerrorsinpolicyplanningandimplementationfailures,rendingsuchremedialactionsanoptionforresourcereallocationandredistributivedecisionsbytheircontemporariesinthestabilizedandeconomicallysustainable(“green”)globalregimeofproduction.Thesameremedialoptions,however,willbeavailablewherefeasibleprecautionaryoptionsremaininadequatelyexploited.Ourapproachinexploringtherequirementsforoptimallydesignedtransitionstoastabilizedclimatethereforeproceedsfromtheviewthatincomparisonsbetweenthetwocontemplatedsourcesofexpectedregret,thepreponderanceinthebalanceisoverwhelminglyonthesideofdecidinguponactionscalculatedtoavoidinadequately

7Such“excessiveprecaution,”however,wouldbesubjecttocorrectioninsomemeasureonceithasbeeninitiated;aswellastosubsequentfurtheradjustmentbyfuturegenerationsthatmaybetterrecognizethescaleofcatastrophethathasbeenaverted.Thiscourseofactionwouldalsoprovidefurtheroptionsforresourcereallocationandredistributivedecisionsinthestabilizedandeconomicallysustainable(“green”)globalregimeofproduction.Thesameremedialoptions,however,arenotavailableinthecasewherefeasibleprecautionaryoptionsareinsufficientlyexploited.

Page 8: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐6‐

strongstabilizationmeasuresandtoaccepttheentailedhigherrisksofregretsassociatedwithhavingtakenprecautionsthatwillturnouttohavebeenunnecessary.8

Tostudytherequirementsofatimely(catastrophe‐averting)transition,weformulateasequenceofoptimalcontrolsub‐problemslinkedtogetherbytransversalityconditions,thesolutionofwhichdeterminestheoptimumallocationofresourcesandsequencingoftheseveralphasesimpliedbytheoptionsunderconsideration.Parametricvariationsofthetippingpointconstraintinthesemodelswillpermitexplorationofthecorrespondingmodificationintherequiredsequencinganddurationsofinvestmentandproductioninthephasesthatformtheoptimaltransitionpath.Thepreliminarysolutionsusingmulti‐phaseoptimalcontrolmethodsexposetheimportantdynamiccomplementaritiesamongtechnologicaloptionsthatareoftenpresentedassubstitutesbycurrentclimatepolicydiscussions.Further,the“planning‐model”approachdepartsfromconventionalIAMexercisesalsobyeschewingdubiousassumptionsaboutthebehaviorsofeconomicandpoliticalactorsinresponsetomarketincentivesandspecificpublicpolicyinstruments;itshiftsattentioninsteadtotheneedforempiricalresearchoncriticaltechnicalparameters.andproblemsofinter‐temporalcoordinationofinvestimentandcapacityutilizationthatwillberequiredtoachieveatimely,welfare‐optimizingtransition.

2.BackgroundandMotivation

ClimatechangeisnowconvincinglylinkedtoincreasingatmosphericconcentrationsofGHG(greenhousegases).9Amongthosewhohaveexaminedtherelevantscientificdatatherehasbeenagrowingconsensusthatthisposesaninter‐relatedhostofworrisomeproblems.Moreover,ratherthanconvenientlygoingaway,orbeinggraduallybeingaccommodatedbyadaptationsonthepartoftheworld’speoples,theseproblemsarelikelytogrowworse.Whileonmanyspecificpointsofclimatescienceuncertainties,doubtsanddisagreementpersist,theunderlyingphysicalandchemicalprocessesresponsibleforanthropogenic“greenhouseeffects”warmingtheEarth’surfacearefirmlygrounded,asistheaccumulatingmassofempiricalobservationsattestingtotheriseinmeanglobaltemperaturethathastakenplace

8ThegermofthefollowingargumentforembracingthePrecautionaryPrinciple,formulatedasthecaseforadoptingaminimaxregretstrategy,wasadvancedinaclimatepolicybriefpublishedontheeveofthe2009UNCopenhagenConference(seeDavid,etal.(2009:pp.2‐3).Intheinterim,theemergenceconsensusamongclimateandenvironmentalscientistsonthelikelyexistenceof“tippingpoints”initiatingabruptandcatastrophicalterationsofEarth’sclimate(furtherdiscussedinsection3.1,below),andtheabsenceofanysignificantgloballyconcertedactionsonrapidreductionofGHGemissions,hasrenderedonlymorecompellingthecasefordesigning(costly)policiesthatcouldrapidlystabilizetheatmosphericconcentrationofGHG.

9SeeIPCC(2007),”SummaryforPolicyMakers,”andtheSternReview(Stern,2006)foranextensiveoverviewofthecausesandconsequencesofclimatechange.

Page 9: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐7‐

duringthepasttwocenturies.10Together,thesefindingsfirmlyundergirdthescientificallyinformedwarningsabouttheconsequencesofcontinuing“businessasusual”basedonburningfossilfuels.

TherisinglevelsofmoisturethatwillaccompanythewarmingoftheEarth’ssurfaceinthetemperatelatitudescanbeexpectedtodrivemorefrequentandmoresevereweathercycles,bringingheavierprecipitation,strongerwindsandweather‐relateddamagestophysicalpropertyandlossesofhumanlife.Moreover,itismorethanconceivablethatatsomepointinthenotverydistantfuturecontinuingthecurrentrateofGHGemissionsandunimpededglobalwarmingwillusherinanageofcatastrophicallyabruptclimatechanges,characterizedbychaoticinstabilitiesinEarth’sclimates.11Thiswoulddrasticallycurtailthefractionoftheworld’scurrentpopulationthatwouldbeabletoachieveastateof“adaptivesurvival”preservingsubstantialresemblancestopresentstateofcivilization.

MitigatingenvironmentaldamagesfromCO2,methaneanddangerousparticulateemissionsbymoreextensivelydeployingknowntechnologies,andreplacingcarbon‐basedproductionsystemswiththosethatutilizenewandeconomicallyefficient“carbon‐free”technologies,aretwoobviouscoursesofactionthatmaybeabletoavertthesegrimfutureprospects.Togetherwithstillmoreradicaladaptationsthatpossiblymaybeachievedbygeo‐engineeringtocaptureandsequesterexistingatmosphericcarbonandmethane,theseformthecoreofthetechnologicaloptionswhosedevelopmentanddeploymentarethefocusofthisexploratoryexaminationofthedynamicsofafeasibleandtimelytransitiontoasustainablelow‐carbonglobaleconomy.

AprogramofpublicandprivateR&Dinvestmentsyieldingdirectedtechnicalchangesofthiskindshouldbeviewedasa“supply‐sidestrategy”inthecampaigntostabilizeglobalGHGconcentrationsataviablelevel.Theintentionofthispaperisgive“technologyfix”programofthatkinditswarrantedcentralplaceineconomicresearchonthedesignofpolicytomitigateCO2emissions.Thatwouldconstituteaquiteradicalreorientationofthediscussion,for,ontheoccasionsduringthepastdecadewhentechnologicalchangefiguredexplicitlyintheeconomicsliteraturedevotedtoclimatechangepolicy,itusuallyhasbeenpresentedasanancillaryandoptionalcomplementtoimplementing“carbonpricing.”Carbontaxes,orthe“capandtrade”schemesthathave

10SeeSolomonetal.,eds.(2007)onthephysicalbasisandscientificevidenceforIPCCconclusionsregardingglobalwarminganditssourcesinhumanactivity.“Climateskepticism”and“globalwarmingdenial”shouldnotbeconfusedwiththegenerallyacknowledgedscientificuncertaintiesthatstillsurroundthevaluessomekeyparametersinquantitativemodelsoftheprocessesinvolvedinanthropogenicglobalwarming‐‐e.g.,themagnitudeofthe“climatesensitivity”(linkingchangesinmeanglobalsurfacetemperaturetorelativegaininatmosphericGHGconcentration),andthecriticalleveloftemperaturegainthatwouldtriggerirreversiblerunawaywarmingandcatastrophicclimateinstability.Seefurtherdiscussionbelowanddetailsinfootnotes6‐7.

11Seee.g.,Alley(2000);Alley,Marotzke,Nordhaus,Overpecketal.,(2003);HallandBehl(2006),andfurtherdiscussioninSect.2.1(below).

Page 10: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐8‐

beenadvocatedasthemeansofcreatingaglobalmarketforcarbon‐emissionspermitsandderivativeinstruments,wouldworktomitigateCO2emissionsprimarilybyraisingthecurrentandexpectedfuturerelativepricesoffossilfuelsasasourceofenergy.Weretheytohavethateffect,thevolumeofdemandforgoodsandservices(e.g.,electricitysupply,transportation)thatwereespeciallycarbon‐intensiveintheirmethodsofproductionwouldbereducedbytheprivateoptimizingadjustmentsmadebyproducersandconsumersresponsetothealteredstructureofpricesofenergysourcesandcarbon‐intensivefinalgoodsandservices.12

Thatstrategyhasgainedbroadsupportamongeconomistsastheapproachthatmoredirectlyattackstherootcauseoftheglobalwarmingexternality‐‐namely,unregulatedandun‐pricedreleasesofCO2–whileleavingthechoiceofmitigationtacticstoagentsintheprivatesector.Anunfortunateconsequenceofthepreoccupationofeconomistswithassessingtheeffectivenessofcarbonpricingandtryingtogaugethewelfare‐optimalscheduleofcarbontaxesledtothedevelopmentofcomputationalmodelsthatglossoverthecomplicatedresourceallocationdynamicsofthetransitiontoalow‐carbonglobalregimeofproduction;and,insodoing,havedeflectedattentionfromthepotentiallygreaterroleofdirectedtechnologypolicyinitiativesbythepublicsectorthatwouldcombinetechnicalstandard‐settingwithdirectandindirectfundingsubsidies,andthepossibilitiesinstitutionalchangesthatwouldremoveexistingbarrierstorapidglobaldiffusionofeffective“greentechnologyinnovations.”

Consequently.itishardtopointtoabodyofpreviousintegratedanalysisdevotedtoassessingglobalclimatepolicydesignsthatconsideranarrayoftechnologicaloptionsinvolvinginvestmentindeployingavailableengineeringtechniquesthatwilllowerthecarbon‐intensityofexistingproductionfacilities,directedR&Dexpenditurestoenhancethecostcompetivenessandreliabilityofcarbon‐freeenergysources(vis‐à‐visfossilfuels),andadoptionsubsidestospeeddiffusionofinnovationsandtherealizationoffurtherincrementalimprovementsfromlearningunderfieldconditions.Butitisencouragingtonotethatacademicpapersthatdiscussedthepertinenceofendogenoustechnologicalchangeinthecontextofclimatepolicyhadbeguntoemergeevenbeforethedebacleoftheattemptatthe2009CopenhagenConferencestrengthenandexpandtoKyotoTreatyprotocols.13

12ThisaspectoftheenvironmentalandenergyeconomicsliteratureiswellrepresentedintheextensivereviewarticlebyAldy,Krupnick,Newelletal.(2010),which,intheconcisewordsofitsabstract“providesanexhaustivereviewofcriticalissuesinthedesignofclimatemitigationpolicybypullingtogetherkeyfindingsandcontroversiesfromdiverseliteraturesonmitigationcosts,damagevaluation,policyinstrumentchoice,technologicalinnovation,andinternationalclimatepolicy.”Theauthorsfocusfirstonthebroadissueofhowhighpolicyassessmentssuggestthenear‐andmedium‐termpricesetongreenhousegasemissionswouldneedtobe,bothundercost‐effectivestabilizationofglobalclimateandundernetbenefitmaximizationorPigouvianemissionspricing.Theythenturntodiscussionoftheappropriatescopeofregulation,questionsregardingpolicyinstrumentchoice,complementarytechnologypolicy,andinternationalpolicyarchitectures.”

13See,e.g.,Carraro,vanderZwaanandGerlagh(2003).Jaffe,NewellandStavins(2006)issalientamongthesepublications,asmuchforthecogencyofitsinsightsandargumentsasforthesparsenessofother

Page 11: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐9‐

Neithertheseearlyforaysintothisarea,norotherworkstoourknowledge,venturedtoexaminetherequireddynamicsequencingofdirectedR&Dandothertechnologypoliciesaffectingpublicandprivatesectorinvestmentsrequiredforatimelytransitiontoalow‐GHGemittingproductionregime,thepolicyissuethatisthefocusoftheresearchreportedhere.14

IthasbeensuggestedthatCO2emissionsmitigationachievedbytheintroductionofcarbon‐taxesor“cap‐andtrade”schemesfor“pricing”transferableemissionspermits,couldindirectlyachievewhatwouldotherwisehavetobeaccomplishedbymeansofsocialexpendituresforpublicresearchanddevelopmentprojectsandtaxsubsidiesforprivateinvestmentin“green”R&D,andpossiblyimplementingtheresultantinnovationsincarbonfreephysicalcapitalformation.15Theargumentisthattheeffectofraisingthecostofcarbon‐intensiveprocessesandproductstoproducersandconsumerswillbetostimulateproducers’demandsforoffsetting,carbon‐freetechnologiesandinduceincrementalprivatefundingofthesearchofthoseinnovativemethods.

Althoughthatisapossibility,sotooistheoppositeoutcome.Ifraisingcarbontaxesdoeseffectivelycurtaildemandforhighlycarbon‐intensiveproducts,theresult

contributionsinthisgenre.Theypointout(Ibid.,p.169)thatbecausetheU.S.andotherdevelopedcountrieshadnotbeenactivelypursuingsignificantenvironmentalpolicyintervention,“thereislittleenvironmentalpolicy‐inducedincentivetodeveloptechnologiesthatreducegreenhousegasemissions.Inthissecond‐bestsetting,policytofostergreenhousegas‐reducingtechnologymaybeoneofthemainpolicyleversavailableandcanbejustifiedoneconomicgroundssolongasithaspositivenetbenefits.”Thesamepassage,however,concludeswiththecaveatthatusing“technologypolicyasasubstitutefor,ratherthanacomplementtoenvironmentalpolicy”couldbeacostlyapproach‐‐implyingthatthepayofftoR&Dismoreriskythancountingontheresponsestoincreasesintherelativepriceoffossilfuels,andthatthepure“technologypush”approachsacrificesthepotentialbenefitsofinducedinnovationresponsesfromtheprivatesector.14InthewakeoftheSternReport(2007)andtheCopenhagenConferenceeconomicargumentsforgreaterpublicandprivateinvestmentinR&D,andsubsidiesforthediffusionofadvancedtechnologiesdirectedtoloweringCO2emissionsbeganappearingwithgreatermorefrequently–althoughthesetypicallyremainedunspecific.Earlystatementsproposinga“technologyfix”approachincludeArrow,Cohen,Davidetal.(2008),NelsonandSarewitz(2008),Klemperer(2007/2009),David(2009),David,Huang,SoeteandvanZon(2009),andHendry(2010).None,toourknowledge,venturetoexaminetherequireddynamicpathofdirectedR&DandcapitalformationembodyinginnovationsthatwouldlowertheglobalrateofGHGemissionsperunitofrealoutput,whichisthefocusofthepresentwork.SuchtheoreticalandcomputationalmodellingofendogenousandinducedtechnicalchangethathasbeenundertakentodatehaslargelyfollowingthepioneeringworkofGoulderandSchneider(1999),whichisnotedbelow.

15Amongthepioneeringeffortstoexaminethepropositionthatraisingthepriceofcarbonwouldinducebeneficialprivateinvestmentsintechnologicalinnovation,seetheworkingpapersbyNordhaus(1997),andGoulderandMathai(1998,publishedin2002).GoulderandSchneider(1999)carriedthislineofinquiryfartherbyusingacomputablemulti‐sectorgeneralequilibriummodeltoquantitativelyassesstheextenttowhichrealGDPcostsofimposingCO2abatementtaxeswouldbealteredbytheeffectsofendogenoustechnologicalimprovementsresultingfromR&Dinvestmentinducedbytheeffectofthetaxontherelativepricesofcarbonvs.non‐carboninputs.Thismodellingexercisedidnot,however,undertakeanevaluationoftheefficacyofthehypothesizedinducedtechnicalchangesintermsofthemagnitudeoftheabsoluteabatementoftheeconomy’saggregateemissionsrate.Morerecentexercisesinintegratedclimatepolicyassessmenthaveundertakentodoso,asisnoticedbelow(insection2).

Page 12: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐10‐

maywellbegenerallyadverseexpectationsaboutmarketgrowthandaconsequentweakeningofincentivesforR&Dinvestmentinallproductiontechniquesforinthoselinesofbusiness.16Moreover,commitmenttoafuturescheduleofrisingunittaxesonfossilfuelsmightwellhavetheperversefirst‐ordereffectofimmediatelydepressingthefuturevalueoffossilfueldepositsrelativetotheirpresentvalue‐‐ifthescheduledrateofincreaseinthe“carbontax”washigherthantheinterestrate.Underthatcondition,privateownersoftheresourcedepositswouldhaveanimmediateincentivetoraisetheresourceextractionrateinordertobringingforwardintimetheexploitationofthoseresourcedeposits,withtheconsequence(ceterisparibus)thatnear‐termpricesinthemarketsforcarbonfuelswouldbedepressed.17Eventhough,followingthatone‐timedrop,itwouldbeexpectedthatthepresentvalueofcarbondepositsinthegroundandtherelativemarketpriceofcarbonfuelswouldresumerisingattherateofinterest‐‐ascalledforbyHotelling’s(1931)analysis,therelativemarketpriceofcarbonfuelmightnotregainitspre‐taxregimelevelforsomeconsiderableperiodoftime.Duringthatinterval,atleast,theintendedmitigationofCO2emissionswouldbereversed,asalsowouldbethedirectionofsuchimpetusaswouldformerlyhavebeenimpartedtowardsinducedtechnicalinventionandinnovationaimedatsavingcarbon‐energyinputs.

Whetherornotthelong‐termeffectofahighandrisingcarbontaxeventuallywouldbesufficienttohaltthewithdrawaloffossilfuelsbeforefromtheknownreservesweretotallyexhausted(theoutcomethathascometobelabelledasthe“strong”formofGreenParadox,todistinguishitfrom“weak”forminwhichthereisatransientanti‐conservativeeffectonthepaceofresourceextraction),isamorecomplicatedanduncertainmatter,inwhichthedirectionoftheoverallenvironmentaleffectwouldturnonuponstillotherconditions.18Butinaworldinwhichoneshouldnotcountonfiscal

16Thequestioncannotbesettledontheoreticalgrounds,butseeGans(2009)foranalysisoftheconditionsunderwhichcarbon‐taxeswouldhaveaperverseeffectofdiscouragingcarbonemissions‐reducingtechnologyresearchandinnovation.Acemoglu,Aghion,Bursztynx,andHemous(2010/2012)exploretheconditionsforcarbontaxesinagrowthmodelwithenvironmental(carbonemissions)constraintsandendogenousdirectedtechnicalchangedrivenbyprivatesectorR&Dinvestmentsinducedbytheeffectsofanessentiallytransientcarbontax.Theyconcludethatwithasufficientlyhighelasticityofsubstitutionbetweenhighlycarbon‐intensityandlowcarbon‐intensityinputsinproduction,carbontaxescanswitchdirectedR&Dto“clean”(lowcarbonintensity)technologicalresearchandneednotbecontinuedindefinitely;thereisasimilarreinforcingrolefor“temporaryR&Dsubsidies”.Hourcade,PottierandEspagne(2011),however,shownthattheelasticityofsubstitutionrequiredtoproducetheseresultsinthe“illustrative”integratedclimatemodelpresentedbyAcemogluetal.(2010/2012)areimplausiblyhigh,bothfromtheengineeringviewpointandfromtheirimplicationsforthepriceelasticityofdemandforcarbonenergysources,whichareinconsistentwiththeavailableempiricalevidencefromthosemarkets.Inadditionthespecificationoftheclimatesysteminthe“illustrative”computationalmodelpresentedinthelatterpartofthispaperdepartsfromthestandardclimatesciencemodelsinawaythatleadstoseriousunderestimationofthecostsoftherequiredCO2mitigationstrategy—somuchsothatthecorrectedcomputationsvitiatetheauthors’policyconclusions.

17DiscussionofthelatterproblemwasbroachedfirstbySinn(2008,2009:pp.10‐13)whoprovidedalabel‐‐“TheGreenParadox”–underwhichatheoreticalliteraturesoondeveloped.See,e.g.,EdenhoferandKalkuhl(2010),Hoel(2010),Withagen(2010),vanderPloegandWithagen(2012).

18Amongconditionsthatwouldruleoutthe“strong”formoftheGreenParadox(see,esp.vanderPloeg(2010)andEdenhoferandKalkuhl(2010))include:(i)ahighleveloftheunittaxoncarbonextraction,(ii)marginalcostsofresourceextractionthatincreasedasaninversefunctionofthesizeofthe(unexhausted)

Page 13: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐11‐

andregulatoryinstrumentsbeingoptimallydesignedandconsistentlyusedbypoliticalauthorities,letalonebyassembliesorsovereignstates,thepossibilitiesofunintended“GreenParadox”outcomesshouldcautionagainstrelianceoncarbon‐pricingschemesasthe“bestpolicyresponse”tothethreatsposedbyglobalwarming.

Itseemspertinentherealsotonoticethatthedistinctiondrawnbetween“weak”and“strong”GreenParadoxesinthetheoreticalliteraturelosespracticalrelevancewhenthereisnoassurancethatglobalwarmingwillaffordhumanitysufficienttimetoevencomeclosetoexhaustingtheEarth’sknowndepositsoffossilfuel,asispre‐supposedbyallthemodelsthathavebeenusedtofindconditionsunderwhichthe“strong”formofGreenParadoxcouldorcouldnotberealized.

Aswillbeseenshortly(fromsection2.1,below),climatescientistsnowregardittobequitepossiblethatwealreadyhavearrivedatastatewhereaquitemodestfurthergainintheplanet’smeansurfacetemperaturecouldpushthegeo‐physicalsystempastacriticalclimate“tippingpoint,”initiatingaself‐reinforcingcascadeoftippingelementsthatwouldirreversiblyusherinanepochofcatastrophicclimateinstability.Thereisthuslittlecomfortintheknowledgethattheunintendedimmediateperverseboostintheratesofextractingandburningfossilfuel–broughtaboutbyresourceowners’wealth‐preservingreactionstotheprospectofhighandrisingfuturecarbontaxes‐‐mightbeonlyatransienteffect.BeforethatinitialimpulseboostingthevolumeofCO2haddissipated,thetrajectoryoftheclimatecouldhavebeenirretrievablyaltered.Itisinthatcontextthattheprecautionaryprincipleparadoxicallyservestoinveighagainstadvicetorelyexclusivelyuponsouncertainandpotentiallydangerousastrategyofcombattinggoalwarmingbypromisingafuture“rampingup”ofthecarbontaxrate.

Beyondthis,theforegoingreviewoftheworrisomepotentialdrawbacksofexclusiverelianceoncarbontaxesto“fixtheGHGemissionsexternality,”thereisstillgreatergroundsfordoubtsabouttheefficacyofthealternativeproposalthatgainedwidespreadpopularityamongenvironmentalandenergyeconomists–namely,downstreamcap‐and‐tradeschemes,whichpricetheemissionsfromburningcarbon,butnotthecarbonmaterialthatistheenergysource.

Itisnotatallobviousthatputtingapriceontheemissionsfromtheburningofhydrocarbonsnecessarilywouldsufficetoraisethecombinedpriceofthematerialanditscombustion,sothepossibilityofaperverserelativepricechangecannotbe

resourcedeposits,(iii)aunittaxthatwasnotscheduledtoincreaseatarateexceedingtheresourceowners’time‐discountrate,and(iv)wasadhocinnotbeingsetinaccordwithanoptimizedinter‐temporalprogramofresourceuse.Further,althoughnotconsideredinthetheoreticaljustcited,thepracticalvalueoftheanalyticaldistinctionbetweenthe“strong”and“weak”formoftheparadoxbecomesdubious,whenonerecognizesthatpositivefeed‐backeffectsfromtheriseinglobaltemperaturecausedby“transiently”acceleratedCO2emissionscouldalterthedynamicsoftheclimatesystemsufficientlytoinitiateaself‐reinforcing(“runaway”)processofwarming.Seesection2.1(below)forfurtherdiscussion.

Page 14: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐12‐

definitivelyruledout.19Bycontrast,theproposalofan“up‐stream”implementationofthecapandtrademechanism(seeRepetto2011)isadministrativelyattractivebecauseeffectiverestrictionofthevolumeoffossilfuelsavailablefrom“firstsellers”itwouldnecessarilyraisethecostofcarbon‐basedenergysources.Furthermonitoringandenforcementofthe“caps”wouldbegreatlysimplifiedbythelimitednumberof“firstsellers”andtheeaseofidentifyingthem–especiallyincomparisonwiththemyriaddownstreamusersthatwouldrequireCO2emissionpermits.Theoreticalanalystsoftheproblematicpossibilityofaperverse“GreenParadox”effectofrisingcarbonareagreedthattheanti‐conservationreactiononthepartofownersoffossilfueldepositswouldnotmaterializewereahighenoughadvaloremtaxratetobeimposedsoonerratherthanpromisedforthefuture.

But,asefficientandadministrativelyfeasibleasitmightbeforcentralgovernmentauthoritiesinthelargesteconomicstoquicklyimposecoordinatedtightregulatorycapsonfirstvendors,suchactionswouldbetantamounttodirectlyrestrictingextractionandimportationoffossilfuels.Thepoliticaleconomyofdomesticlegislationandinternationaltreatynegotiations,however,seemlikelytomilitatestronglyagainstpracticalimplementationofthisapproachtofixingthegreenhousegasexternality–bothpresentlyandforsometimetocome.Thatwouldseemtodepriveproposedup‐streamcap‐and‐trademechanismsofanypracticaladvantagevis‐à‐visthemorefamiliar“downstream”variety.20

Inthesecircumstancesitshouldberemarkedthatthepresentandlikelyfuturesocialandpoliticalresistancestostringentandenforceablecarbon‐pricingpolicies

19Thissourceofambiguityregardingtheeffectsofusingthe“capandtrade”mechanismtosetapositivepriceoncarbonemissions,itshouldbeemphasized,isquitedistinctfromtheconcernsaboutthepossibledisincentiveeffectsofcarbontaxes’negativeimpactsondemandsforcarbon‐intensivegoodsandservices–e.g.,thoserelyingheavilyonproductionprocessesusingenergysourcessuchascoal,oilandnaturalgas.Thetheoryofexhaustiblenaturalresourcepricing,followingtheclassicworkofHotelling(1931)tellsusthattheresourcevaluationmustriseattherateofinterest,andwithmarginalextractioncostsconstant,thepriceoftheflowofmaterialstradedinthemarketmustriseparipassuswiththatoftheresourcedeposit.Subsequenttheoreticalcontributionstoexhaustibleresourceeconomicshavepointedoutthatdownwardpressureexertedbyanticipationsofadvancesin“backstop”technologiespermittingsubstitutionofcarbon‐freeenergysources(and,moregenerally,moreenergy‐efficientproductionprocessinnovations)wouldlowerthelevelsfromwhichthemarketpricesofcoal,oilandnaturalgaswouldbetrendingupwards(seeHeal(1976),Dasgupta,HealandMajumdar(1978),DasguptaandHeal(1980)).Thiseffectwouldworktoslow,ifnottemporarilyhaltthediffusionofthoseinnovations.Whetherthemagnitudeofthefirst‐orderoffsetonpricesincarbonmarketswouldbelargeenoughtoperverselyneutralizetheintendedimpactofaglobalcap‐and‐tradescheme,orsolargeastotemporarilylowertheafter‐taxunitcostofburningcarbonfuels,isanempiricalquestion(obviouslyofpolicy‐relevance)thatdeservesmoreattentionthanithasreceived.Onfirstconsideration,itseemsthattheanswermustturnontheextentoftheanticipateddemanddisplacementinrelationtothesizeoftheresourcereservesthatcouldbeaccessedfromthemarketsinquestion.WearegratefultoLawrenceGoulderobservationthatthelatterconsiderationsmakethemagnitudeoftheoffset‐effectsgreaterinthecaseofhighqualityoilreservesthanitwouldbefortheworld’svastcoaldeposits.20Indeed,itseemmorethanlikelythatgovernmentregulationsbanningunlicensedfirstsalesoffossilcarbonsourcesofenergywouldbecharacterizedastantamounttostateexpropriationandcontrolofthoseformsofnaturalresourcewealth,andmetwithstrongpoliticaloppositionfrompowerfuleconomicinterestsintheWestasnothinglessthan“defactosocialization”oftheirprivatelyownedmineralwealth.

Page 15: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐13‐

mightbeweakenedweretherecrediblegroundsforanticipatingthattheeconomicwelfarecostsentailedinswitchingtoalternativeenergysourceswouldbesignificantreducedbyaconcertedmulti‐nationalprogramofdirectedtechnologicalinnovation.Seenfromthisangle,theattentionthateconomistshavepaidtothepotentialitythatraisingtherelativepriceoffossilfuelswouldinduce(private)investmentstoreducethecarbon‐intensityofproductionprocessesandfinalgoodsandservicesmayhaveputthepolicycartbeforethehorse.21Whilethedynamicsofthistechno‐politiconexuswillneedtobethoughtthroughcarefully,theargumentforsystematiceconomicanalysisofthepotentialroletechnologypoliciesineffectingatimely,climatestabilizingtransitiontoaviable“lowcarbon”globaleconomythereforecanrestinpartonthepossibletemporalasymmetryofcomplementary(orsuper‐modular)relationshipsbetweenthetwomajorpolicyapproaches.

Whenviewedinthatexpandedandexplicitlydynamicperspective,aprogramthatstartswith“techfix”maymakethatpolicyinitiativecomplementaryto(andnotasubstitutefor)fiscalandregulatoryinstrumentsdesignedtogetmarketpricesofcarbonfueltoreflecttheirmarginalsocialcosts.Thisconsiderationprovidesarationaleforaccordinggreaterattentiontotherequirementsofa“technologypush”strategythanithasreceivedinpreviousandcontemporaryeconomicresearchonclimatepolicydesignconceivedprimarilyindeterminingthelevelandtime‐profileofanoptimalglobal“carbontax”‐‐oritsequivalentimplementationbymeansofacrediblefuturescheduleforthestockofgloballyavailabletradablepermitstoemitCO2.

Thelatterconsiderationswarrantcloseattentiontothetechnologicalportfolioproblem,especiallyinviewoftheuncertainnatureofthetechnicalconstraintsonthepotentialperformanceimprovementsofthemultiplefossil‐fuelbasedtechniquesofenergygenerationandutilization.Therelevantconstrainshavetodonotonlywithphysicallimitationsonthescopebothforenhancingtheirrespectiveproductivities(byloweringthoseprocesses’carbon‐intensity),andfordirectlycurtailingtheratesatwhichtheyreleaseCO2andotherGHGsintotheatmosphere.EquallyrelevantaretheconstraintsuponthedistributionsofthemagnitudesandspeedswithwhichimprovementsinspecifictechnologiesorfamiliesofrelatedtechnologiescanbeantcitipatedtoflowfrompriordirectedR&Dexpenditures.Uncertaintiesofthesamesortsurroundthetechnicalconstraintsonraisingtheproductivityof“alternative”(non‐fossilfuelled)technologiesforgeneratingenergy.

21TheforceofthispointisnotvitiatedbypolicyargumentsthatrecognizethatpubliclysubsidizedR&Dmaywellbeneededtosupplementtheinducedresponseofprivateinnovation(see,e.g.,Acemoglu,Aghion,Bursztynx,andHemous,2012),because“free‐riding”ontheanticipatedexternalities(intheformofinformational“spill‐overs”)resultingfromR&Doutlaysislikelytoreducetheaggregatevolumeofthelatterinvestmentstoasociallysub‐optimal,whileracingforpatentprotectionandfirstmoveradvantageswouldtendtoproduceexcessR&Dcommitmenttoinventioninthecaseofsometechnicalareas.

Page 16: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐14‐

Analysisoftherequirementsofanexplicit“tech‐fix”approachtostabilizingtheglobalclimatethereforedemandsmorethanidentifyingasubsetofthearrayofavailabletechnologiesuponwhichCO2‐emissionsmitigatingmeasureshouldbefocused,howeverbroadtheresultingportfolioofselected“coretechniques”mightturnouttobe.Tobeuseful,theportfoliohastobespecifieddynamically.Notonlymustitbeconstructedsoastorenderfeasibleatleastonepathforthetimelytransitiontoaclimate‐stabilizingglobalproductionregime‐‐i.e.,characterizedbyzeronetadditionstotheatmosphericconcentrationlevelofGHGsinCO2‐equivalentppmv.Subjecttothatglobalconstraint,the“tech‐fix”pathshouldbedesignedtobe“socialwelfareoptimizing”,inthesensethatitwillminimizethewelfareburdenofthetransitionprocess,takingintoaccountthedamagesincurredbytheconsequencesoftherisingtemperature(s)ofEarth’slandandoceansurfacesuntilstabilizationhasbeenachieved.Timingdoesmatter:bothinregardtothesequencingofinvestmentsinresearchanddevelopmentactivitiesdirectedtoenhancingtheperformanceofspecifictechniquespriortotheirdeployment,andtothetimedistributionoftangibleinvestmentsthatwillbeneededinordertodeploythosetechnologiesthatmustbeembodiedinfixedcapitalstructuresandequipment,includingthenecessarysupportinginfrastructures.

3.Preliminariesformodellinga“TechFix”strategy’sdynamicrequirements

Allofthepreviouslymentionedsupply‐sideoptions,however,requirepayingexplicitattentiontomajorchangesinproductionsystemsand/orchangesinlife‐styleandconsumptionpatterns.Furthermore,toexplorethedynamicsoftransitionstowardsalesscarbon‐intensiveproductionregimeandtherolethatresearchpolicywouldhavetoplay,itisnecessarytoconsiderthetemporaldurationofR&Dactivitiesdirectedtoalteringtheperformancecharacteristicsofvariousclassesoftechnology,aswellasthedurationoftangiblecapitalformationprocessesrequiredbytechnologiesthatmustbe“embodied”innewphysicalplantandequipment.Suchquestionscanbemostusefullyexploredinthispaperwithintheframeworkofaheuristicmodelofendogenousglobaleconomicgrowth,whichistheresearchapproachpursuedhere..

Itisnolessessentialtobeginbyexplicitlytakingintoaccountthedynamicbehaviorofthegeophysicalsystemwithinwhichtheglobaleconomyisset.Thatlargerphysicalcontextquiteobviouslyimposesbothnaturalresourceandenvironmentalconstraintsupontheproductionregime,aswellasimpingingdirectlyuponhumanwelfare–inthisinstancethroughthecontinuinganthropogenicemissionsofgreenhousegasesandtheirdestabilizingimpactsuponglobalclimateandtheaccompanyingalterationofweatherpatterns.

3.1Climatesciencerealitiesandthegeophysicalsystemconstraints

TherearenowfirmscientificfoundationsforthegrowingconcernsthattoallowGHGemissionstocontinueatanythingclosetotheirpresentratemaysoonsetinmotionirreversiblerunawayglobalwarming,withpotentiallycatastrophicconsequencesfor

Page 17: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐15‐

globalecosystemsandforhumanlifeasweknowit.Thisconclusionhassurvivedthepersistingdoubtsvoicedbyadwindlingfringeofacademic“climatechangesceptics”andoutrightdeniersoftheseriousnessoftheproblemsthatcontinuedglobalwarmingwillpose.22

ThemassofevidenceprovidedbychemicalanalysisofthegasesinthedeepicecoresthathavebeenextractedfromArcticandmountainglaciersduringthepastdecade‐and‐a‐halfhasallowedclimatescientiststodocumentahistoryofabruptalterationsoftheEarth’sclimate(s)duringpre‐Holoceneepoch.TherecordpointstothepossibilitythatevenmodestglobalwarmingdrivenbycontinuedanthropogenicemissionsofGHGcouldtriggertheonsetofirreversibleglobalwarming,butaformofclimateinstabilitythatduringthemostrecenttransitionbetweenglacialandstadialepochsfeaturedaprolongederaof“climateflickering.”23Thislattertermreferstoaclimateregimecharacterizedbyhighfrequencyswitching(withperiodicitiesasshortas3to5years)betweenmarkedlywarmerandcooleraveragetemperatures‐‐thelatterdifferingbyasmuchashalfthe12oC.rangebetweenthelowestandhighestextremesrecordedduringEarth’sglacialandstadialepisodes.ThepossibilityofcatastrophicstatechangeofthatsortunderminesthesanguinesuppositionsthatthecontinuedemissionsofCO2wouldsimplyresultinasmoothtransitiontoawarmerglobalclimatetowhichhumansocietieswouldbeabletosuccessfullyadapt.

22DespitetheevidencepresentedbySolomonetal.(2007),doubtshavebeenraisedaboutconclusionthatthewarmingtrendobservableduringthesecondhalfofthe20thcenturyresultedfromradiativeforcingduetohumanactivities.ThesedoubtsarerootedincriticismofIPCCmodelsofgeneralclimatecirculationmodels(GCMs)onaccountoftheirpoorperformanceinpredictingthehighfrequencyandhighrelativeamplitudevariationsinglobalclimateduringthepast50‐60years.See,e.g.,Scarfetta(2011)andreferencesthereinforstudiesshowingthatthelattervariationscanbemoreaccuratelypredictedbystatisticallyfittingharmonic(Fourierseries)regressionmodelsthatcombineindicatorsofmultipleastronomicalcycleswithdifferingfrequencies.Suchresearch,however,shedsscantlightonthedynamicsofthephysicalforcingprocessesthatwouldaccountcasuallyfortheobservedstatisticalcorrelation,nordoestheexistenceofunexplainedfluctuationsaroundatrendvitiatethepositivestatisticalsignificanceofthetrenditself.Recenttheoreticalefforts,suchasthatbyStockwell(2011),offergeneralphysicalbasisfortheskeptics’contentionthatperiodicradiativeforcingfromastronomicalsources,notaccountedforintheIPCC’sGCMs,couldberesponsibleforthelatter’sfailuresinpredictingrecenthighfrequencyvariationsobservedintheEarth’stemperature.Thetroublewiththislineofspeculativecriticismseemsobviousenough:variationsinsolarradiationarenotthoughttobeaconcurrentlyemergingfeatureinthehistoryofourplanet’sastronomicalenvironment.Consequentlyitishardtounderstandhowthatphenomenoncouldaccountforthe“hockey‐stick”up‐turnobservedinthelasthalf‐millennium’sworthofdataindicatingthelong‐termtrendintheEarth’stemperature.

23HallandBehl(2006)reviewthefindingsfromrecentadvancesinclimatescience,andpointoutthatitsimplicationsthoroughlyunderminethesuppositionlongmaintainedbymainstreamcontributorstotheliteratureonenergyandenvironmentaleconomics,namely,that“climatechange”drivenbyrisingGHGconcentrationlevelscouldbesatisfactorilymodelledasasmoothtransitiontoahigherequilibriumleveloftheglobalmeansurfacetemperature–ashasbeenassumedbytheintegratedassessmentmodels(IAMs)thathavefiguredprominentlyandremainsalientintheenergyandenvironmentaleconomicsfield.SeeHallandBehl(2006:pp.461‐462)foradetaileddiscussionofthisandrelatedfeaturesofthegeophysicalsub‐systeminNordhausandBoyer’s(2000)updatingoftheoriginal(Nordhaus1994)DICEmodel,TheassumptionthatradiativeforcingduetotheaccumulationofatmosphericCO2woulddriveasmoothtransitiontoahigherequilibriumtemperatureoftheEarth’ssurfaceisretainedbyNordhaus(2010)inthelatestupdateofDICE(2010),aswellasintheannualizedversionofthemodelthatCaiJuddandLontzek(2012)createasabasisforDSICE,astochasticversionofthemodel.

Page 18: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐16‐

ThepositivefeedbacksthatwoulddriverunawayglobalwarmingdynamicsandthemanifoldentaileddamagestohumanwelfarearethosegeneratedbytheamplificationofthelinkagebetweenelevatedGHGconcentrationlevelsofanthropogenicoriginsandstrongerradiativeforcingthatproducesfasterwarmingofEarth’ssurface.Thewarmingatvariouspointstriggersself‐reinforcingalterationsinthebehaviourofthegeophysicalsystem.ThesefeedbackprocesseswouldoperatetoincreasethestrengthoftheradiativeforcingresultingfromagivenatmosphericGHGconcentrationlevel;boostthesurfaceabsorptionofheat,andhencetherateofwarmingproducedbyagivenlevelofradiativeforcing;supplementdirectanthropogenicemissionsofCO2bytriggeringreleasesofmethane(amuchmorepowerfulGHG)–which,atlowertemperatures,wouldhaveremainednaturallysequesteredinthepermafrostbeneathglacialiceandinthemethanehydrateslyingontheshallowseabedatthenorthernedgeofthearcticocean.

Someoftheinterveningstepsofsuchsequences(depictedschematicallyinFigure1)haveacascade‐likesub‐structurethatservetoextendandfurtheracceleratethepositivefeedbackprocess.Thiscreatesapotentialfortherisingconcentrationof

Page 19: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐17‐

“tippingpoint”intheEarth’sclimatesystemthatabruptlytriggerstheonsetofacatastrophicrunawaywarmingprocess.24

24OnabruptclimatechangesseeAlley,Marotzke,Nordhaus,Overpecketal.(2003);Stern(2007),pp.11‐14,forashortoverviewofpositivefeedbacksfromglobalwarming,includingreductionofalbedothroughreducedice‐coverageofthearcticregions,thawingofpermafrostandinducedreleasesofmethane.seeLenton,Held,Kriegleretal.,(2008),forspecificsofidentifiedmajor“tippingelements”intheEarth’sclimatesystem;Barnosky,Hadly,Bascompteetal.(2012)onevidenceindicativeofanapproachingglobalecosystemtippingpoint.O’RiordanandLenton(2011)provideabriefnon‐technicalpresentationoftheconceptsoftippingpointsandtippingelementsandtheirpresentpolicyrelevance.

Page 20: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐18‐

Consider,forexample,thatbyloweringalbedo(thefractionofsunlightreflectedbytheearth’ssurface)glacialretreatleadsimmediatelytogreaterlocalheatabsorptionintheaffectedregions.Thispromotesthawingoftheexposedpermafrostandthecreationthaw‐lakesfromwhichmethanegeneratedbytheanaerobicdecayofunderlyingorganicmaterialwillbubbletothesurface,asitdoesfromcontinuallyfloodedricepaddies.Further,warmingofthelargepeatdepositsinthearcticSiberianshelfwouldaugmentthereleaseofmethanefromthatnaturalsource;andevenamoderateriseintheupperocean’stemperature,particularlyintheshallowerArcticwaterscandestabilizethemethaneclathratecompoundsthathadformedontheseabedthereduringanearlierepoch.Methanematters,becauseitisapowerfulgreenhousegaswhoseliberationfromnaturalsequestrationonthelandandundertheoceans’surfaceisanimportantpotentialsourceofself‐reinforcingdynamics.Asthe(red)positivefeedbackloopsinFigure1depict,inprinciplethoseeffectscanbepowerfulenoughtodrivecontinuingawarmingtrendevenwhenanthropogenicCO2emissionshavebeensuppressedtoratesthatcanbematchedbytheEarth’snaturalabatementcapacities. Methane(CH4)isanunstablemoleculethatissubjecttoimmediatedegradationbyexposureintheatmospheretotheOHradical,whichsetsinmotionachemicalchainreactionthatwithinseveraldayswillhavebegunconvertingthenewlyaddedmethanemoleculestomoleculesofwaterandCO2.25Althoughthelifeofamoleculeofmethaneisaverytransientone,thegashasaglobalwarmingpotential(GWP)‐‐themetricexpressingtheratioofitsabsoluteglobalwarmingpotentialrelativetothatofCO2–averaging72overthe20yearhorizonfollowingitsrelease,anddecliningtoanannualaverageGWPof26overthe100yearhorizon.TheGWPvaluesreflectbothverystrongshort‐liveddirecteffectsofonradiativeforcingofa“shot”ofCH4throughoutthe12yearsofitsperturbation(impulsedecay)lifetime,andthepersistingindirecteffectsoftheCO2moleculesthatthedecaying“methaneshot”addstotheatmosphere.26

25SeeArcher(2011:Ch5)foralucidexpositionofthemethanecycle,drawinglargelyonJacob(1999).TheOHradical(denotedOH●)isproducednaturallybytheeffectofsunlightonwater,whichcausesthelatertoloseahydrogenatom,andtoimmediatelystealonefromanavailablemethanemolecule‐‐yieldingH2Oandthemethylradical(CH3●),whichachainofsimplechemicalreactionsendsupproducing2stablemoleculesofwaterandoneofcarbondioxide.

26TheGWPaveragevaluesformethaneof72,4,26.3,and7.6overthe20‐yr.,100‐yr.and500‐yrhorizonsarecalculatedbyBouceret.al.(2009:Table1).TheseagreecloselywiththevaluespresentedbyIPCC(2007:AR4‐WorkingGroupI,Ch.2,p.212).BecausetheyincludetheindirectglobalwarmingeffectsoftheCO2producedbytheoxidationofCH4,thevaluesinthetext(above)arehigherthanthecorrespondingdirecteffectsreportedbythe2001IPCCThirdAssessmentReport,IPCC2001:Sect.6.12.1,Table6.7)gives(direct)GlobalWarmingPotential(GPW)valuesformethaneof62,23and7overthe20‐yr.,100‐yr.and500yr.timehorizons—alsocalculatedasannualaveragesonthebasisofa12yearimpulsedecaylifetimeforCh4,andaCO2responsefunctionthatassumesmixingratiowithothertracegassesthatisconstantovera500yearperiod.TheGPWcalculationforCH4differsfromthatfortheothertracegases,inthatitusesvalueforthemethane’sperturbationlifetimethattakesintoaccountthefeedbackeffectsofitsdegradationontheatmosphericconcentrationmoisture(H2O)andtheavailability

Page 21: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐19‐

CloudsofCH4bubblinguptothesurfaceofthearcticocean’sshallowsandrapidlydiffusingintoatmosphericcirculation,wouldthuscausetheCO2‐equivalentconcentrationlevelandthestrengthofradiantforcingtospikeupwards.Consequently,thestrongglobalwarmingeffectasuddenjumpinatmosphericmethaneconcentration(unlikethatofgainsinCO2ppmv)willdissipaterapidlyifthehigherrateofemissionsisnotmaintained,leavingbehindonlythepersistingclimateeffectsoftheelevatedmoisturelevelandtheCO2concentrationproducedbythechemicalreactionsthatdegradeit.Asurgeinwarmingresultingfromaprolongedriseintherateofmethaneflux,however,couldbesufficienttoinducefurtherpositivefeedbackeffectsonmeanglobaltemperatureandhaveapotentialtotriggeraself‐reinforcingtrendriseintheatmosphericconcentrationofCO2.27

MethanegascloudscouldbeabruptlyreleasedbythewarmingofshalloweroceanwatersalongtheArticOcean’sedges,sinceitisestimatedthatariseofonly2∘C.inthewater’stemperaturetherewouldbeenoughtodestabilizethemethaneclathratedepositsthatholdCH4trappedintheircage‐likemolecularstructure.This,theso‐called“ClathrateGun”effectnowisthoughttobeaprimarymechanismofthepre‐historicepisodesofpronouncedhighfrequencytemperatefluctuationsthathaveleftarecordinthedeeparticice‐cores.28 Yetanotherperversefeedbackloopinvolvesforestdie‐back.ThisworriesscientistsstudyingtheborealforeststretchingacrossthenorthernlatitudesofthenorthAmericancontinentandRussia‐‐azonewhosetreesrepresentbetween25and30percentoftheworld’sforestcover,andwhichisreportedtohaveexperiencedthemostpronouncedtemperatureincreasesobservedanywhereontheplanetduringthelastquarteroftwentiethcentury.InthenorthernlatitudeofSiberiathepredominantneedle‐sheddinglarchforestsarebeingreplacedbyevergreenconifersthatgrowmorerapidly

ofOHradicals(theprincipalnaturalsinkforCH4).Seethepreviousfootnoteonthechemistryofthemethanecycle.

27Whileitappearsthatthereislittlelikelihoodofthishappeningspontaneouslythroughnaturalevents‐‐suchasdisruptionsofthedeepoceanseabedbyearthquakesthatopenedunderseaventsformethane‐‐thatwouldoccuronalargeenoughscaletohavecatastrophicclimateconsequences,thesizeandinstabilityoftheEarth’smethanehydratereservesandtheuncertaintiessurroundingthepresentstateofscientificknowledgeleadasoberclimatescientistlikeArcher(2011)tocharacterizethosepotentialitiesas“frightening”.

28Evenquitemoderatewarmingoftheoceanwatersalongthecontinentalshelvesisthoughttobesufficienttodestabilizethemethaneclathratecompoundsthathaveformedontheseabedinnorthernlatitudes.Onthe“ClathrateGun”hypothesisandit’srelevanceasanexplanationofabruptclimatechangeandthephenomenonof“climateflickering”attheendofthelasticeage,seeKennettetal(2003),Maslinetal.(2004),HallandBehl(2006),ReaganandMoridis(2007).Thehighfrequencyofthetemperaturefluctuationsrecordedintheice‐coresareheldtomilitateagainsttheearliertheorythatthisabruptandcatastrophicalterationoftheclimatesystemcouldhavebeenproducedbya“thermohalinecollapse”,whichwouldresultclimatecyclesofmuchlowerfrequencies.

Page 22: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐20‐

inthesummerwarmth,buttheevergreentreesabsorbmoresunlightandtheirexpansionisthuscontributingtotheglobalwarmingtrend.29

Thelossofpredictabilityoflocalenvironmentalchangesaccompanyingprofoundecologicaldamageandlossesofhumanlifeandwelfare,andthesocio‐economicrepercussionsthatwouldexacerbatetheprocesstherebysetinmotion,canbelefttotheimaginationatthispoint.Sufficeittosaythatthisprospect,howeveruncertainitstimingandmagnitudeareatpresent,strengthenstheforceofargumentsthattheprecautionaryprincipleshouldbeembracedfirmlyandbecomethetouchstoneofnationalandinternationalclimatestabilizationpolicymeasuresdesignedtoavertthedisasterofcrossingatippingpointintoregimeofrunawaywarmingandthepossibleonsetofcatastropheclimateflickering. 3.2Thewayforward

Obviouslythatismucheasiersaidthandone,onmanycounts.AimingforatimelyattainmentofsomestablelevelofatmosphericCO2‐equiv.concentrationwithanexanteoptimumsetofpolicyinstrumentswouldhavetoallowforthelikelihoodofunforeseeneventsthatcausetheprogramtofallingshortofattainingtheappropriate(moving)CO2emissionsmitigationtargets.Gettingit“backontrack,”however,wouldonlyhavebecometechnicallymoredifficultandentailingstilllargersacrificesofeconomicwelfareandwell‐beingfortheworld’speople(nottomentionotherspecies).Inviewofthepotentiallyinsurmountableadaptationcostsandwelfaredamagesinvolvedinpassingfromaviablequasi‐stableglobalclimatemode(characterizedbytheslowandcontinuouswarmingtrend)tooneofirreversiblyacceleratingandeventuallychaoticregimeofglobalwarmingthemostsensiblecourseofactionistoistofirmlyembracetheimplicationsoftheprecautionaryprinciple.

Thisjudgmentofthepresentsituationcallsforacommitmenttodesignandseek

toimplementclimatestabilizationpoliciesrequiredbyapplicationofthePrecautionaryPrinciplegroundedonregrettheory.Thelatter’saimistominimizethesubjectiveprobabilityoftheworst‐caseoutcomesbeingrealized,i.e.determiningthestepsrequiredtoavertthose(catastrophic)futureoutcomesthatwouldoccasionthemaximumregretweretheyperceivedtobeimmanent.AfeasibleinitialstepinthatdirectionistoinvestigatethenatureandextentofglobalmobilizationandallocationofresourcesrequiredinordertoimplementthetechnicalmeansofmitigatingtheemissionofGHGssoastostabilizeatmosphericconcentrationoftheCO2‐equivppmvatjustbelowaconjecturedlikelylevelofthecatastrophictippingpoint.

29WhetherthisiscompensatedbytheirgreatercapacityforabsorbingCO2isnotclear.Ifsuchisthecase,itisbeingoffsetinthesoutherndrierborealzone,wherewater‐stressedtreesinthesummergrowlessrapidlyandtheforestsarebeingreplacedbygrasslandsandpasture.http://en.wikipedia.org/wiki/Boreal_forest#Climate_change

Page 23: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐21‐

Giventheuncertaintiesthatsurroundboththescientificandtechnologicalconditionswhichwillconstrainanysuchanundertaking,thelatterconjecturenecessarilywillbesubjective.Nevertheless,forthepurposesoftheanalysisitcanbetreatedasanexogenousparameterthatimposesakeyconstraintuponthedesignofawelfareoptimizing“technologicalfix”.Bysettingthelevelofthisparameter,giventhepresentlyexistingatmosphericconcentrationlevelofCO2‐equivppmv,willineffectsetahard“carbon‐budgetconstraint”ontheoptimalmitigationprogram;ineffectitfixesthecumulativenetvolumeofCO2emissionsthatcanbeexpendedduringthejust‐in‐timetransitiontoastabilizedclimatethatwouldavertthecatastropheofovershootingthe(conjectured)tippingpoint.

Parametricvariationofthehypothesizedtippingpointcanrevealthesensitivity

ofthetechnicalandeconomicinvestmentrequirementsofthe(constrained)optimaltransitionpath.{Suchexplorationswillnothavemuchpracticalpurposeifthelowerendoftherangeofvariationsisnottruncatedatatippingpointlevelabovethosethatalreadyhavebeensurpassed,becausewhetherornottheactuallyofthatstateisperceived,exhypothesistheconjecturedcatastrophecannotbeaverted.Ifalowaprioriprobabilityweretobeattachedtothatconjecturedlocationofthetippingpoint,thiswouldhavethesameeffect,insufficingtolowertheamountofattentiondevotedtotherequirementsofretrievingsomethingworthwhilewithinthediscouraginglytightconstraintsoftheconjecturedstateofthesystem.Theonethingthisapproachseekstoavoidisinactionintendedtoavoidtheexpenditureofeconomicresourcesonmitigationeffortsbywaitingtoaccumulateinformationthatcouldincreasetheprecisionoftheapriorisubjectiveprobabilitiesassignedtotherangeoftippingpointlocations.Thisfollowsfromtheplausibilityofthepresentscientificconsensusthattheeconomic‐climatesystempresentsituationandlikelyfuturepathwithoutmajormigitationeffortsmakesitunlikelythatacatastrophictippingpointwillnotbereacheduntilfarinthefuture.

Ourmodellingapproachinthispaperbuildsuponthepioneeringworkof

economistsonclimatepolicyanalysisrepresentedinso‐calledintegratedassessmentmodels(IAMs)thatprovideasimplifiedcharacterizationoftheessentialfeaturesofthegeo‐physicalsystem.30ThesequantitythelinkagebetweentheflowofGHGemissionsfromeconomicactivityandtheaugmentedradiativeforcingthatdriveshighermeanglobaltemperaturesattheEarth’ssurface(the“green‐house”effect).ModellingthecarboncycletakesaccountofthenaturalsequestrationofCO2intheforestsandoceans,andtheconsequentlaggedeffectintheadjustmentoftheaccumulatedatmosphericstockofGHG(equivalentCO2ppmv);the“climatesensitivity”parameterdescribestheequilibriummeansurfacetemperature’sresponsetoadoublingoftheCO2‐e

30ForsurveysandreviewsoftheevolvingfieldofresearchonIAMs,afterNordhaus(1993aand1993b),seeDowlatabadi(1995),KellyandKolstad(1999),Parker,Letcher,Jakemanetal(2003),Ackerman,DeCanio,HowarthandSheeran(2009).

Page 24: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐22‐

concentrationintheatmosphere.31Withinthatcharacterizationofthephysicalframework,ourmodeladdsspecificationsoftheproductionsectorofanendogenousgrowthmodelinwhichdirectedR&Dexpenditurescanraisetheproductivityofnewlyformedcapitalgoodsembodyingnovel“carbon‐free”technologies,andhenceenhancetheeconomicefficiencyofthoseadditionstoaggregate(sustainable)productioncapacity.32Thisisthenexusthroughwhichpublic“researchpolicy”interventionsthatboostinvestmentsinscienceandR&Dcanpositivelyaffectsocialwelfarebyloweringthecostsofswitchingtoproductionsystemscharacterizedbylow,orinthelimit“GHGemissions‐free”technologies. Nevertheless,theresearchapproachpursuedheregivesprioritytounderstandingtheinter‐temporalresourceallocationrequirementsofaprogramoftechnologicalchangesthatcouldhaltglobalwarmingbycompletingthetransitiontoa“green”(zeronetCO2‐emission)productionregimewithinthepossiblybrieffiniteintervalthatremainsbeforeEarth’sclimateisdrivenbeyondacatastrophictippingpoint.Thispaperformulatesadeterministicmulti‐phasemodelofajust‐in‐timetransitionthatpermitanalysisoftherequirementsofthetransitionpathsthatcanavertthatterribleoutcomeinawelfare‐optimalways,eachbeingconditionalontheconjecturedtippingpointconcentrationlevelofCO2andthearrayoftechnologicaloptionsthatcanbeexercisedtostopshortofthatpoint.

InproceedinginthiswaywearecognizantofthecontroversialpropositionadvancedbyWeitzman(2009b),thatthescientificuncertaintysurroundingthebehaviorofthegeo‐physicalsystem,suchasthedistributionofthe“climatesensitivity”parameter,raisesthepossibilityofcatastrophicallylargeoutcomesthatcannotbeignoredbysupposingtheirmaterializationwouldbegovernedbythevanishinglysmalllikelihoodsfoundattheextremaof‘thin‐tailed”probabilitydistributions.Indeed,itseemsquitesensibletoviewsettinglowtargetsforthepermissibleaccumulationof

31Forpurposesofourmodeldescribedbelow,atmosphericGHG(ppmv)concentrationlevelsaregivenbyaninitialbaselinelevelplusascalarfunctionoftheintegralof(CO2‐e)emissionsfromthebaselinedate,thelatterbeingproportionaltothemeanrateofCO2emittedperunitofoutputproduced(proportionaltoutilizedcapacity)andnotbeingabsorbedbytheforestsandtheupperandlowerocean.ThissimplificationignoresthelageffectsofemissionsonchangesinatmosphericCO2thatresultfromthecarbon‐cyclediffusionofthegasbetweentheatmosphereandtheupperocean,betweentheupperoceanandthelowerocean,andtheupperoceanandtheatmosphere.Inadditionitlinearizestherelationshipbetweentheatmosphericconcentrationofcarbonrelativetoitslevelatabasedate(Et/E0,inournotation)andtheabsolutegaininradiativeforcingfromtheatmosphere,Ft.–F0.WidelyusedIAMs‐‐e.g.,versionsofDICEduetoNordhaus(2002,2007)–typicallyrepresentthechangeinatmosphericradiativeforcingastakingtheformΔFt=η[log(Et/E0)–log(2)]withadjustmentsforthedirectandindirecteffectsofradiativeforcingfromtheupperandloweroceans.Ignoringthelatter,andthelagsintherelationshipbetweenchangesintheradiativeforcingandthoseinEarth’ssurfacetemperature,theparameterηistheapproximate“climatesensitivity”:theexpectedlong‐rungaininTrelativetoitsbaselevelresultingfromdoublingtheatmosphericCO2concentration.Oursimplifieddynamicsofthegeophysicalsubsystemismoreacceptableinmodelingthetransitionpathstoclimatestabilizationthanitwouldbeinsimulatingthecourseofcarbonemissionsandtemperaturechangesoverthe600yearlongtimespanofoptimally”moderated”CO2emissionsenvisagedbyDICE(2007)anditsprecursorIAMs.

32Presently,R&Doutcomesarecompletelydeterministicinourmodel,butweenvisagetheintroductionofstochasticityinseveralrelationships,includingthisone.

Page 25: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐23‐

GHGsintheEarth’satmospheretobeaformof“insuranceagainstcatastrophicclimatedamages”especiallywhentheirexpectedmagnitudecannotbereliablygauged,asDeCanio(2003)andWeitzman(2010)havesuggested.33

Atthesametime,however,wearepersuadedthatheedingthefindingsofclimatescientistsmilitatesstronglyagainstcontinuingtoworkwithintheacceptedframeworkoftheIAMresearchliteratureforreasonsthataredistinctfrom,andfarmorecompellingthantroublesomethoughtsthattherobustnessofinter‐temporalcost‐benefitanalysismaybeimperiledbytheexistenceof“fat‐tailed”probabilitydistributions,orthatinconceivablylargedamagestohumanitymightrenderitsapplicationespeciallymisleadinginthecontextofdesigningclimatepolicy.Theparticularfindingsaboutthephenomenonofapotentialclimatecatastrophearethoseconcerningitsform,whichalsohasimplicationsforthemagnitudeoftheentaileddamages.Abruptclimatechangesintheformof“climateflickering”introducemajordiscontinuities,sothattorepresentthedynamicsoftheclimatesystemproperlyinanintegratedpolicyassessmentmodelwouldvitiatehopesofbeingabletoidentifythesocialwelfareefficientprogramofinterventioninresponsetoglobalwarmingbyconsistentapplicationofoptimalcontrolanalysis.Discontinuitiesintroduceinextricablenon‐convexitiesinoptimizationfunction,andconvexityisnecessarytoassurethatandoptimalsolutionexists.34Ignoringthe

33Asdisturbingasthe“dismaltheorem”advancedbyWeitzman(2009a,2009b)atfirstappearedtobe,especiallyforeconomistsreluctanttodiscardcost‐benefitanalysis‐‐awidelyappliedandgenerallyusefultoolforquantitativepolicyanalysis,the“fat‐tailsproblem”groundedinreality,andnotanartifactofremediabletechnicalfeaturesofWeitzman’smodel,SeeMillner(2012)foralucidandinsightfulreviewofthecontroversyignitedbyWeitzman’s“dismaltheorem,”whichpointsoutthattheemergenceofa“fat‐tailed”distributioninWeitzman’smathematicalmodelresultsfromtheintroductionofBayesianstatistics;notfromtheuncertaintiesthatdoubtlessremaininscientificunderstandingaboutthedeterminantsofsuchkeymattersas“theclimatesensitivity”orthewhereaboutsofcatastrophic“tippingpoints”.Furthermore,asMillnerhasshown,theapparentlydismalconclusionsforeconomicpolicyanalysis(duetothenon‐existenceofsolutionstocost‐benefitcalculationsinvolvingpossiblyenormousdamages)areanartifactoftheconstantrelativeriskaversion(CRRA)propertyimplicitinthetraditionalspecificationoftheformofthesocialutilityfunction.This,too,showntobetechnicallyremediable;the“harmonicabsoluteriskaversion”(HARA)utilityfunction‐‐ageneralizationofthetraditional(CRRA)utilityfunctionthatiswidelyusedinthefinanceliterature‐‐notonlyyieldsfinitewelfaremeasureswhenrisksarefat‐tailed;underplausibleparameterconditionsitalsomakespolicyevaluationsrelativelyinsensitivetothetailsoftheconsumptiondistribution.

34ThisisthecriticalpointmadebyHallandBehl(2006:esp.pp.460‐463).Givenitsimportance,theircleararticulationofthedefectsarisingfromthefailureofthefieldofeconomicresearchtopayadequateattentiontothephenomenarevealedbytheadvancesinpaleoclimatologyremainsinadequatelyrecognized,andalthoughitmeritsrepeatinginextenso,thefollowsummaryextractwillhavetosufficehere:“Abruptclimatechange,bothwarmingandcooling,wouldresultinphysicalandeconomicdestructionofthecapitalstock…andtherateofreturnoninvestmentwouldbefurtheralteredinadiscontinuousmannerwitheachclimateflickerandtheexpectationofadditionalclimateflickering….Thedestructionofcapitalfromclimateflickeringshouldchangetheexpectedreturnoncapitalinvestments.Thecostofadaptingtoclimatechangeshouldincreasewithflickeringtakenintoaccount.Thevalueoftechnologicalchangetoadapttosuddendecreasesintemperature,precipitationandambientCO2,forexample,shouldbelostwithsubsequentsuddenincreasesintemperature,precipitation,andambientCO2.ThereisafundamentalproblemwitheconomicoptimizationmodelslikeDICEforeconomicanalysisofclimateinstability:asolutiondoesnotexist.Economicoptimizationrequiresconvexity,andclimateinstabilityresultsinnon‐convexoptimizationfunctions.”(p.460)

Page 26: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐24‐

non‐convexitiescansavetheresultingmodel’s“solve‐ability.”ButGalileotaughtusthatto“savethephenomena”wouldbebetter–evenwiththetroubleofhavingtodiscardthemisleadingyetconvenientlyfamiliarmodel.

Thetiming,aswellasthemagnitudeofremedialactionsinresponsetothechallengesposedbyglobalwarmingisprioritytopicofconcern.TheIntergovernmentalPanelonClimateChange(IPCC)hasconcurredintheconclusionthatthereisacriticalthresholdat2degreesC.ofglobalwarmingfromtheearth’spreindustrialmeantemperaturebeyondwhichtheprobabilityofbeingabletoavertcatastrophicrunawayglobalwarmingbeginstodropbelow50‐50.DuetothecumulativevolumeofpersistingGHGemissionsupuntilthispointintime,however,theworldalreadyiscommittedtoafutureriseinmeanglobaltemperature(relativetothepresent)ontheorderof0.5to1degreesKelvin–evenifcarbonemissionswerecompletelystopped.Evenifthe”tipping‐point”weresetatatemperaturegainof3degrees,thisleavesrelativelylittleroomforfurtherwarmingwithoutcatastrophicconsequences,astheSternReportpointedout(Stern,2006:p.15).Theimplicationisthatundera“businessasusual”rateofGHGemissionstheremaynotbeverymuchtimeleftbeforethecriticalthresholdwillbecrossedandtheproblemfacingtheworld’spopulationwillbetransformedtooneoflearningtoadaptasbestwecantothealmostunimaginablemountingdamageandsocietaldisruptionsentailedincopingwithadestabilizedclimatesystem.

Againstthisworrisomebackground,itisaparticularlyharshfactofpresenteconomiclifethattomakemajorchangesinproductionsystemsalsotakesconsiderabletime(andresources).Thisisbecausethetransitionfromcarbon‐basedproductiontocarbon‐freeproductioninvolvesfirstthe(further)developmentofcarbon‐freealternativesandsecondlythesubsequentimplementationofthesealternativesthroughinvestmentintangiblecapitalformationprojects,includinginfrastructuremodificationsthatwillhavelonggestationperiods.Furthermore,thedevelopmentofthenewtechnologiesrequiredwillentailthecommitmentofresourcestoR&Dprojectsofuncertainandpossibleextendeddurations.TheclaimsoftheseprogramsoftangibleandintangibleinvestmentthereforewillpressuponconsumptionlevelsforsomeperiodwithoutyieldingresourcesavingsorsignificantlyloweringtherateofGHGemissions.

Thus,therealityoftransitioningtowardsacarbon‐freeeconomyintimetoavoidcrossingthecriticaltemperaturethresholdintoclimateinstabilitywillbe,atbest,anuncomfortable,unremittingandperilousjourneyforhumanity.TheparticularanalyticalchallengethatistakenupinthispaperishowbesttoscheduleR&Dexpendituresandrelatedtangiblecapitalformationatthemacro‐levelsoastomaximisethesocietalwelfare(ormorerealisticallyminimizethedamagetosocialwelfare)associatedwiththeentiretransitionpathtowardsacarbon‐freeproductionregimeinaGHG‐stabilizedenvironment,takingintoaccountthediversionofresourcesawayfromconsumptionthatthoseinvestmentsentail.Towardsthisendwehaveconstructedamulti‐phase,multi‐technologyendogenousgrowthmodelthatallowsfortheexpenditureofR&Dresourcesonthecreationandimprovementof“carbon‐freetechnology”andacknowledgesthatthisformofinvestmentdivertsrealresourcesfromconsumptionand

Page 27: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐25‐

henceadverselyaffectssocietalwelfareintheshortrun(doing‘nothing’wouldhavenegativewelfareeffectsinthelongrun,however).

Takentogether,theeconomicandgeo‐physicalsub‐systemsposeatimingproblem,sinceoldcarbon‐basedtechnologiesgenerateCO2emissions,andpostponingtheimplementationofnew,carbon‐freetechnologiesreducesthetimeavailableforbuildingupnewcapacitywhilecumulativeemissionsofCO2(andotherGHG)remainbelowtheassociatedcriticalthresholdconcentration(andassociatedmeanglobalsurfacetemperature)thatcantriggertheonsetofclimateinstability.StartingsoonenoughtoundertaketheR&D(whichtakesbothtimeandresources)canmakeavailableabetterperformingfamilyoflow‐carbonandcarbon‐freetechnologiesintimetoembodythatknowledgeinnewproductionfacilitiesandavoidcrossingthat“tippingpoint”,buthowsoonissoonenoughwilldependupontherateofR&Dinvestmentsandtheirimpactontheproductivityofcarbon‐freeproductionfacilities,aswellastheeconomy’scapacitytoreplace“dirty”carbon‐usingcapacitywithacarbon‐freecapitalstock.

Thefollowingsectionofthepaperdemonstrateshowthisandrelatedquestionscanbeansweredbyformulatingandsolvingasequenceofoptimalcontrolsub‐problemsforeachdistinctivephaseinthetransitionfroma“business‐as‐usual”carbonbasedeconomytoasustainablecarbonfreeeconomy,andthentyingoptimizedphasestogetherin“stackedHamiltonians”bytheuseoftransversalityconditionsthatguaranteetheoptimalityofthetransitionpathasawhole.Thesub‐sectionsof2applythisapproachindevelopingincreasinglymorecomplicatedmodels,allconstructedonthebasisofthemostelementarygrowthmodel.Section3commentsonanumberofinsightsthatthethreepartialmodelsprovideaboutquestionsoftiminginexercisingvarioustechnology‐fixoptions.Italsoreportspreliminaryresultsfromtheuseofsensitivityanalysistoassesstheeffectsonoptimalinvestmentpathsofvariationsintheassumedlocationofclimate“tippingpoints”.ThepaperconcludesinSection4withabriefreviewofwhathasbeenlearned,whatremainstobestudied,andtheproximatenextstepsinpursuingthislineofresearchintothedesignandimplementationrequirementforasuccessfultechnologyfixforglobalclimateinstability.

Page 28: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐26‐

4.Modelingthephasesofatimelytransitiontoanessentially“carbon‐free”productionsystem

4.0Anincrementalmodel‐buildingagenda

Ratherthanundertakingfromtheoutsettospecifythestructureofanequivalentdeterministicdynamicalsystemthatincorporatesnumerousfeaturesofeachofthevariouspossibletechnologicalstrategiescouldbedeployedtostabilizeglobalclimate,weproceedtowardsthatgoalinastep‐by‐stepmanner,takingthreediscretepartialmodel‐buildingsteps,andinvestigatingwhatcanbelearnedaboutthedynamicsofanoptimaltransitionpathfromeachofthem,consideredseparately.

We start from a basic model in which there are two available technologicaloptions, a mature carbon‐intensive technology that is embodied in existing fixedproduction facilities and a carbon‐free technology that has yet to be deployed byappropriate capital formation. The tableau in Figure 1 (below) provides a summaryoverviewofactivitiesthatdistinguishthethreephasesofthetransitionthattransformsthe economyof ourBasicModel froma carbon‐burning “business asusual” regime toone inwhichtheswitch toproducingexclusivelywithcarbon‐freecapital facilitieshasstabilizedtheglobalclimate.Thetableau’shorizontalcolumnsindicatethetwodifferentproductiontechnologiesthatcanbeusedbythegenericeconomy,whereasthedifferentkindoftangible(andintangiblearecompatiblewithefficientresourceallocationineachphase of the transition path investments) that may be undertaken are shown in therows.Theshading(inred, for theBasicModel)showsthecombinationsofconcurrentinvestmentandproductionactivitiesthat.

Figure1:BasicModel(Red)

Investment  Production (Capacity in Operation) 

 Old Carbon High emission rate 

Greened Carbon Lower emission rate

Carbon Free Zero emission rate 

Carbon‐using capital KA 

production business as usual 

   

Carbon‐free capital KB 

joint production    joint production 

   carbon free production 

R&D on carbon‐‐free technologies       

R&D on geo‐engineering 

     

Page 29: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐27‐

Next,weintroduceintotheBasicModelset‐upthepossibilityofundertakingR&Dexpendituresduringthe“businessasusualphase”.Theseinvestmentsin“directedtechnologicalchange”areaimedtoreducetheunitcapitalcostsofproductionfacilitiesembodyingthecarbon‐freetechnology,raisingtheaverageproductivityofKBenoughtomatchthatofcapacitybasedonthecarbon‐usingtechnology.Inthiselementarymodelofathree‐phase“endogenousR&D‐driventransition”,onlywhenthattechnologicalgoalisattaineddoesR&Dexpenditures(andfurthertangibleinvestmentincarbon‐intensiveproductioncapacity)cometoahalt,andtangiblecapitalformationbeginsdeployingthecarbon‐freetechnology.ThisisindicatedinFigure2bythetableau’sblueshadedareas.

Figure2:BasicModelwithR&D(Blue)

Thethirdofthepartialmodelstobeexaminedextendsthestructureofthebasicmodelbyallowingfortheexploitationofathirdclassoftechnologicalopportunities.ThesedonotrequiresignificantR&Dinvestments,sincetheymakeuseofknown“core”engineeringtechniquestoprovidean“intermediate”,lesscarbon‐intensivesetofproductiontechnologiesthatineffectserveto“green”existingcarbon‐usingdirectproductionfacilitiesandinfrastructure.BecausetheyarecharacterizedbylowerratesofCO2emissionsperunitofcapitalthantheoldcarbon‐basedtechnologies(evenifahighercapitalcostperunitofoutput),theyprovideareducedemissions‐outputratio.Thustheycan“buytime”tomakethetangibleinvestmentsneededtoswitchtoacarbon‐freeproductionregime.Figures3.1and3.2displayintableauformthepairofalternative5‐phasetrajectoriesthatariseinthecaseofthebuy‐timemodel.Eachversioncanbesolveforanoptimaltransitionpath,buttofindtheoptimumoptimorumitisnecessarytoevaluateandcomparetheimpliedpresentvalueofthesocialwelfareindexassociatedwitheachofthem.35

35Notethattheproductionconstraintsinthemodel,includingthosederivedfromthetechnologicalparametervalues,maydeterminewhich,betweenalternativetrajectoriescansatisfytheoptimality

Investment  Production (Capacity in Operation)

 Old Carbon High emission rate

Greened Carbon Lower emission rate 

Carbon Free Zero emission rate 

Carbon‐using capital KA 

production  business as usual 

   

Carbon‐free capital KB 

joint production   joint production 

   carbon free production 

R&D on carbon‐free technology 

production  business as usual 

   

R&D on geo‐ engineering 

     

Page 30: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐28‐

Figure3.1:BuyTimeModelTrajectory1(DarkGreen)

Investment  Production (Capacity in Operation)

 Old Carbon High emission rate 

Greened Carbon Lower emission rate 

Carbon Free Zero emission rate 

Carbon‐using capital KA 

productionbusiness as usual 

   

Carbon‐economizing KD (retrofitted KA)  

joint old & green carbon production 

joint old & green carbon production 

 

 Greened carbon production 

 

Carbon‐free capital KB 

 Joint greened carbon and carbon‐free production 

Joint greened carbon and carbon‐free production 

    Carbon‐free regime 

Figure3.2:BuytimemodelTrajectory2(LightGreen)

Investment  Production (Capacity in Operation)

 Old Carbon High emission rate 

Greened Carbon Lower emission rate 

Carbon Free Zero emission rate 

Carbon‐using capital KA 

production business as usual 

   

Carbon‐economizing KD (retrofitted KA) 

Joint old and green carbon production 

Joint old and green carbon production 

 

 Carbon‐free capital KB 

Joint old and green carbon, carbon‐free production 

Joint old and green carbon, carbon‐free production 

Joint old and green carbon, carbon‐free production 

 Green carbon and carbon‐free production 

Green carbon and carbon‐free production 

   Carbon‐free production 

Intheoptimalcontrolsolutionseachofthethreeforegoing“partial”modelsofaclimatestabilizingtransition,theinternallyoptimizedphasesofthemodelaretiedtogetherbytransversalityconditions.Thatmakesitpossibletoobtainthe“requirements”oftheentireoptimaltransitionpath,intermsoftheoptimumdurationsofitsphases,andtheoptimizedwithin‐phaselevelsofactivityforproduction,consumption,andinvestmentrates(boththeintangibleR&Dandthealternativetangibleformsoftechnology‐embodyingcapitalformation)–aswellastheimpliedflowsofCO2emissionsuptothepointatwhichtheglobaleconomy’sproductionregime

requirements,sothatanswertothequestionofwhichtochoosebecomeanempiricalmatter.Seesection2.3forfurtherdiscussion.

Page 31: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐29‐

reachesthegoalofacarbon‐freestatethatavertstheonsetofirreversibleclimateinstability.Eveninthesimplestofpossiblegrowth‐modelsettingthathasbeenspecified,thesolutionsofeachofthesesuccessivelymorecomplicatedmodelstofindtheirrespectiveoveralloptimaltransitionpathsmustbeobtainedbynumericalanalysisoftheresultingsystemsof“stackedHamiltonians”–thedetailsofwhichfollowingsectiondiscussesadseriatim.

ThismodellingframeworkdiffersfromthestandardAKgrowthmodelinitsspecificationofdistinctphasesthatformthetransitionpath,phasesduringwhichproductioncapacityembodyingnew(comparatively“clean”)technologiesisbuiltupcapacityembodyingold(“dirtier’)techniquesisrundownandeventuallydiscarded.Acentraltaskfortheanalysisofeachofthemodels,therefore,mustbetofindtheoptimalconfigurationofspecificinvestmentandproductionactivitiesinconjunctionwiththetheiroptimalsequencingonthetransitionpathtoaviablestabilizedclimate.

Thequestionsaddressedbythismodellingexercisearenotpredictive.Ratherthanventuringtothrowlightonwhatwillhappen,theyaskwhathastobedone,andwhenmustitbedoneinordertogetfromacarbon‐basedproductionsystemtoacarbonfreeproductionsystemthatwouldavertrunawayglobalwarming,whilemaintainingthehighestpresentvalueofsocialwelfarethatisconsistentwithattainingthatgoal.

OurstartingpointintheanalysisistosetupaHamiltoniansystemwithastandardCIESinter‐temporalutilityfunctioninwhichconsumption(percapita)isitsargument,sincepopulationisimplicitlyassumedtobeconstantandthereforecanbesuppressed.36Similarly,laborserviceinputsinproductionactivitiesareassumedconstant,whichisconsistentwithourhavingselectedthesimplestpossibleoveralldynamicsetting,namely,theAK‐modelofendogenouseconomicgrowthduetoRebelo(1991),andBarroandSala‐i‐Martin(2004,ch.4)astheplatformonwhichtodeveloptheBasicModeloftechnologyswitching.WehaveextendedclassicAK‐framework,however,byreplacingitsspecificationofasingle,linearcapital‐usingproductiontechnologybytheassumptionthattherearemultiplediscrete(linear)technologiesthatmaybeusedeithersimultaneouslyorsequentially,includingonethatcanbeenhancedbydirectedinvestmentsinR&Dactivities.

Thereducedunitcostofcapitalembodyingthecarbon‐freetechnologyasaresultofdirectedR&Dexpenditures,however,isonlyrealizedthroughthetechnology’ssubsequentdeploymentingrosstangiblecapitalformation.Toputasomewhatsharperpointonthis,itisnotenoughtothinkaboutR&Dpoliciesandprograms.Mechanismsofdiffusionintouse,asdistinctfromthedisseminationofinformationabouttechnological

36Readersinterestedinthedetailsofthestructuralequationsandsolutionsofthemodelsdiscussedheremayconsultthe“TechnicalAnnex:ModelingOptimalMultiphaseTransitionPathstoSustainableGrowth”(July2011),whichisavailableathttp://siepr.stanford.edu/system/files/shared/OptimalMulti.pdf,orcanbedownloadedasasupplementtoanearlierversionofthispaper(presentedon12/14attheSIEPR‐GEEGSocialScienceandTechnologySeminar)at:http://siepr.stanford.edu/programs/SST_Seminars/index.html.

Page 32: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐30‐

innovationsalsomustbefiguredexplicitlyamongtherequirementsofa“technologyfix.”Similarly,inthe“buytimemodel,”theuseofexistingcoreengineeringmethodstoreducetheratioofCO2‐emissionstorealoutputincarbon‐basedproductionfacilitiesentailsincrementaltangibleinvestmentsinretrofittingpartsoftheexisting(KA)capitalstock.

Thisfeatureoftheapproachpursuedhererestsonthepremisethatembodimentinphysicalcapitalgoodsisnecessarytoimplementchangesinthetechnologiesthatwouldlowertheglobalproductionregime’scarbon‐intensity,andinthosethatwouldreducetheCO2emissions‐intensityperunitofoutputfromthecarbon‐fuelledproductionfacilitiesproduction.The“embodiment”assumptionisespeciallyappropriatewhenconsideringtheimpactoftechnicalinnovationsinenergysupplysystems.37Explicitrecognitionofthisconstitutesanotherimportantrespectinwhichthepresentframeworkofanalysis(anditsaccountofthedynamicsoftheoptimalclimate‐stabilizingtransitionpath)departsfromthewaysinwhichtheeffectsofendogenoustechnologicalchangehavebeentreatedinpreviouseconomiccontributionstointegratedmodelingandassessmentofclimatepolicymeasures.38

AlthoughtheAK‐settingisextremelysimple,becauseweallowfordifferentphasesinthetransitionfromcarbonbasedtocarbonfreeproduction,theresultingmodelisabletogenerateasetoftimepathsforthetransitiontoastabilizedclimate(andstationarylevelofatmosphericGHGconcentration)that,inpractice,canbedeterminedonlybytheuseofnumericalmethods.39Afuture,morecomplicated

37Thedevelopmentanduseofenergytechnologiesisviewedasanintegratedsystemcomprisingresearchdiscoveriesandinventions,thecreationofcommercialproductsandprocesses,theirinitialdeploymentandadoptionintocommercialoperations,andsubsequentwiderdiffusion–theviewembracedrecentlybytheReportofthePresident’sCouncilofAdvisorsonScienceandTechnology(PCAST,2012).Accordingly,ErnestMoniz(2012:p.82),formerUndersecretaryoftheU.S.DepartmentofEnergyandaPCASTmember,emphasizestheimportanceoftangiblefixedcapitalformationinconsideringpoliciesdesignedtostimulate“energytechnologyinnovation”:“Adoptionanddiffusionarethestagesatwhichmaterialityof[novel]productsandprocessesarerealized(ornot).Innovation,asIuseithere,referstotheend‐to‐endsystemincludingmarketdiffusion,notfront‐endR&Dalone.”Bycontrast

38Onemaycomparetheimplicitassumption–commontoeachofthefollowingsalientcontributionsonthesubject‐‐thattechnologicalchange(whetherexogenousorendogenous)isdisembodied,andthereforenotaffectedbytherateofinvestmentintangiblecapitalformation:GoulderandSchneider(1999),Nordhaus(2002),Bounanno,CarraroandGaleotti(2003),Edenhofer,CarrirandGaleotti(2004),Popp(2004),Lessman,Kemfertetal.(2006),SueWing(2006).Ratherstrikingly,theusefulsurveyprovidedbyGillingham,NewellandPizer(2008)ofthedifferentapproachesusedinmodelingendogenoustechnologicalchangeinthecontextofclimatepolicyassessmentmodels,doesnotrefertothedistinctionbetweenembodiedanddisembodiedtechnologicalchange,andomitsmentionofadoptionanddiffusionfromitscommentsonthewaysinwhicheconomistsrepresentR&D,andlearning‐by‐doingasdeterminantsofgeneralorenergysector‐specificchangeinproductivityorGHG‐emissionintensity.

39Giventhefactthatwedistinguishexplicitlybetweendifferentsub‐phasesduringthetransition,weendupwitha‘stack’ofHamiltonianproblemsthatarelinkedtogetherthroughasetoftransversalityconditions(TVC’s),SeeLeonardandVanLong(1992:esp.Ch.7).Thefirst‐orderconditions,incombinationwiththeTVC’sandthegiveninitialvaluesofthestatevariables(andthegiventerminalvalueofcumulativeemissions),giverisetoasetofstronglynon‐linearconstraintsontheremaininginitialvaluesofthemodel’simpliedtimepathsforco‐stateandcontrolvariables.Usingtheseinitialvalues,thesimplicityoftheAK‐settingallowsclosedformanalyticalexpressionstobeobtaineddirectintegrationfor

Page 33: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐31‐

extensionofthisset‐upisenvisaged,inwhichthecumulativeincreaseinGHGconcentration,orthemeanglobalsurfacetemperaturegainassociatedwithit,enterstheutilityfunctionnegatively.40

Thetransitionphasesmentionedearlierarelinkedtogetherthroughtransversalityconditionsthatimplicitlydefinethephasechangesintermsofrathergeneraloptimalityconditionsthatoftengiverisetoconditionsontheco‐statevariablesthathaveaclear‐cuteconomicinterpretation.Forexample,itcanbeshownthatitisneveroptimaltosimultaneouslyinvestintwoexistingtechnologiesthataredifferentwithrespecttotheircapitalproductivityandtheiremissioncharacteristics.

Thus,inthecurrentmodelsetting,theexistenceofacumulativeemissiontipping‐pointwillgeneratenotionalemissioncostsassociatedwiththeuseofcarbon‐basedcapital.41Investmentinthelattertypeofcapitalwillstopandthatincarbonfreecapitalwillstartthemomenttheshadowpriceofcarbonbasedcapitalfallsbelowthatofcarbonfreecapital.Asthecostofinvestmentisrepresentedbythewelfarelossassociatedwithconsumptionforegone,andasoneunitofinvestmentgeneratesoneunitofconsumptionforegoneinbothcases,thistransversalityconditionimpliestherequirementthatinvestmentwilltakeplaceinthetechnologythatgeneratesthehighestmarginalnetwelfareperunitofinvestment.Likewise,thediscardingofexistingcapacityistypicallyanactivitythatsignalstheendofaparticularphaseandthebeginningofthenextone.

Theoptimumtimingofsuchaphasechange,andhencethephases’durations,willbegovernedbyageneraltransversalitycondition,namelythattheshadowpriceofanincrementalunitofproductioncapacityembodyingtheparticulartypeoftechnologyshouldbezeroattheexactmomentthatitistakenoutofproduction;otherwise,ifithadapositiveproductiveuse,whydiscardit?Thistransversalityconditionturnsouttobe

thetimepathsofallvariables—exceptforthecumulativestockofGHGemissions.Theresultingpathsthemselvesareinparthighlynon‐linearandlargelyintractable(exceptfortheirunderlyingroots/structuralequations)necessitatingrecoursetonumericalexercisesinordertoinvestigatethepropertiesofthemodel,someofwhicharenotintuitivelytransparentapriori.Moreover,thepathforcumulativeemissionscannotbeobtainedbyanalyticalmeansandrequiresnumericalintegrationstartingfromsomeinitialguessofthelengthoftheBAUphase.TheoptimumdurationoftheBAUphasethenisimpliedbytherequirementthattotalcumulativeemissionsovertheentiretransition(allphases)shouldjustmatchapre‐specified“threshold”value.Evidentlyadifferentapproachwillberequiredbyastochasticformulationofthetransitionprocess–ofwhichthemodeldiscussedhererepresentstheequivalentdeterministicsystem.

40SeeArrow(2009)andWeitzman(2009a,b)onthesignificanceofspecifyinganadditivetemperatureeffectthatisnegative,interpretingthisasadirect“environmental”effectuponsocialwelfare.Analternativeformulationisavailable‐‐inwhichthenegativeterminthesocialutilityfunctionistheinverseofthedifferencethecritical“threshold,”or“tippingpoint”temperature(beyondwhichthewarmingprocessisexpectedtobecomeself‐reinforcing)andEarth’sprevailingglobalmeansurfacetemperature.Thisformulationwouldhaveessentiallythesameconsequencesforinter‐temporalresourceallocation,butitwouldadmittheadversepsychiceffectofapproachingtheexpectedpointatwhichhumanitywill,forallintentsandpurposeshavelostitsabilitytostabilizethewarmingtrendandavertthecatastrophiconsetofclimateinstability.

41Weusetheterm“notional”heretodenotetheexistenceofarealcost,thatis,however,generallynot,oratleastnotfully,paidforinpractice.

Page 34: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐32‐

equivalenttotherequirementthataunitofexistingcarbon‐basedcapitalshouldbediscardedatthemomentthatthemarginalwelfarebenefitsofusingthatunitofcarbon‐basedcapacitydropbelowthecorrespondingmarginalemissioncosts.42

4.1TheBasicModel–TechnologySwitching

Thefirstandfoundationalversionofoursuiteofmulti‐phasetransitionmodelsiscalled(appropriatelyenough)theBasicModel.Inthistherearetwoalreadyavailableproductiontechnologies,onethatiscarbon‐basedandalreadyinuse,andacarbon‐freetechnologythatattheoutsetisyettobedeployed.43Thisset‐upcreatesthepossibilityoftherebeingthreedistinctphases.ThefeaturesofthisBasic(“technologyswitching”)modelthathavebeenalreadydescribedaresummarizedbythesystemofequationspresentedinTable1(below).

Table1Phase‐SpecificEquationsoftheBasic3‐PhaseTransitionModel

______________________________________________________________________________________________ (carbon‐basedproduction,BAU,JPR)

(netinvestment,BAU)

(netinvestment,JPR)

(NetCO2emissionsflow;,BAU,JPR)

(carbon‐freeproductionJPR,CFR)

. (netinvestment,CFR)

. (netinvestment,JPR)

+ (CumulativenetCO23missions)

. / 1 (intertemp.socialwelfare,ALLphases)

⟺ (TVCdefiningTJPR(equality

Hamiltonians))

⟺ (TVCdefiningTCFR:deactivationofKA)

=0 (TVCvalueofdeactivatedcapital=0)

→ . 0 (TVC,standardAKTVCCFRphase)

42Thisconditioncloselyresemblesthenegativequasi‐rentconditionthatgovernstheeconomiclifetimeofclay‐clayvintagesinaperfectcompetitionsetting(seeMalcomson(1975),forexample).

43Forpurposesofthisanalysisitissupposedthattheperiodunderconsiderationcommenceswhenacarbon‐free(B)technologybecomesavailable,althoughwithaverageproductivitylessthanthatofthecapital(KA)embodyingthecarbon‐usingtechnology;equivalently,thecostoftheproductioncapacity(KB)perunitofoutputinitiallyexceedsthatofKA.

Page 35: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐33‐

AsecondphaseopenswiththestartofpositiveinvestmentinfacilitiesembodyingtheCFRtechnology,andthecessationofBAUcapitalformation,thereforemarkstheopeningoftheBasicmodel’ssecondphase.Fromthispointforwardthereisnegativenetinvestmentincarbon‐usingfacilities,sincethephysicaldepreciationoftheexistingstockisnolongerbeingoffsetbypositivegrossinvestmentincapitalofthattype.ThisphaseoftheBasicmodelisreferredtoas‘thejointproduction’(JPR)phase,ascapitalgoodsembodyingbothclassesoftechnologybeingusedtogenerateoutput.Thetransitiontoacarbon‐freeproductionregimeandclimatestabilizationiscompletewiththeshut‐downoftheremainingcarbon‐usingfacilitiesand,hence,stoppageoftheflowofCO2emissionsjustasthecumulativestockofemissions(andthetemperature)approachtheirrespectivecriticalthresholdlevels.Thatmarksthebeginningofthethirdandfinalphaseofsystem’stransitiontosustainable,carbon‐freegrowth.44

Theintensityoftheflowsduringeachphase,aswellasthemomentsintimeatwhichthevariousphasechangesarescheduled,allfollowfromthefirst‐orderconditions(FOCS),thetransversalityconditionsandfromthegiveninitialandterminalvaluesforthestate‐variablesthatarepartoftheoptimumcontrolproblem.Eventsandphase‐changesinthecontextoftheBasicModelaresummarisedinFigure4(below),

44AstheBAUtechnologyhashigherinitialcapitalproductivitythanCFRtechnology,welfarewouldnotbemaximisediftheflowofCO2emissionsceasedbeforethecumulativeemissionlimitwasreached.

Page 36: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐34‐

whichshowsthedevelopmentovertimeofthestockofcarbon‐basedcapitalKA,thestockofcarbon‐freecapitalKBandcumulativeemissions,GCO2

Thepointsmarkedonthetime‐axisoftheFigure(TU,TJ,TF)indicatetheoptimalmomentsatwhichtherespectivephases(BAU,JPR,CFR)begin.ItmaybenotedthatalthoughthecumulativestockofemissionscontinuestoriseduringtheJPRphase,isdoessoatadecreasingrateasthestockofcarbon‐basedcapitalKAisrundownandreplacedbyitscarbon‐freesubstitute.Thefinal,carbon‐freeproductionphasestartswhencumulativeemissionsatmosphericconcentration(GCO2)almostreachestheexpectedthrclimate“tipping‐point,andthecurvemarkedCO2becomesflattotherightofTF.

Evidently,thevariousphasesinthemodelarequalitativelydifferent.Thefirstphase,i.e.theBAUphase,usesahighgrowthtechnologywhichunfortunatelyquicklyraisesthestockofcumulativeCO2emissionsthatisboundedfromabovebythecumulativethreshold.Beforethatlevelisreached,investmentincarbonfreetechnologymusthavetakenplaceduringphaseJPRtobringcarbonfreeproductioncapacityuptoalevelwheretheswitchfromusingcarbon‐basedcapacitytousingcarbonfreecapacitywouldnotforcechangesinconsumptionlevelsthataretoodisruptive,sinceconsumersdislikeconsumptionshocks,asisimpliedbyouruseofasocialwelfarefunctionthatdependsuponthepresent(discounted)discountedlevelsofpercapitaconsumption,andisofthe(CIES)formallowingforrelativeriskaversion.

ort>TFtheworldis“green”,and,giventhemoreexpensivecarbon‐freeproductionfacilitiesthatarerequiredtostabilizetheatmosphericCO2‐equivalentconcentrationlevel,theoutput(percapita)willhavetogrowforsomewhileattherelativelyslowpaceatwhichtheKBisaccumulatingwiththegrosscarbon‐freecapitalformationrateconstrainednottocuttooheavilyintoconsumption.Eventually,however,thebuild‐upofthecarbon‐freecapitalstockissufficienttosupportbothrisingconsumptionandahigherrateofinvestmentinKB,whichthereafteraccumulatesataquickenedpace.45

45ThestructureoftheBasicModelhassomecommonalitieswiththeanalysisinValente(2003)ofatwo‐phaseendogenousgrowthmodelinwhichproductionbasedonessential(energy)inputsobtainedfromexhaustibleresourcesswitchestoa“backstoptechnology”thatprovidesaconstantsupplyofsustained(e.g.,solar)energy.R&Dinvestmentspermitgrowththroughproductivityimprovementsthatoccuratthesameratewitheithertechnologies(althoughthelevelsofproductivitycandiffer),andtheoptimaltimingoftechnologyswitchingisdeterminedbywelfaremaximizationinwhichutilitydependsupondiscountedpercapitaconsumption.Valentesimilarlyobtainsoptimalcontrolsolutionsforeachstageandtiesthesepathstogetherwithtransversalityconditions.But,unlikeinthepresentanalysis,thepointatwhichtherenewabletechnologycanbeefficientlyembodiedintangiblecapitalusedinproductionisnotendogenouslydeterminedbydirectedR&Dexpendituresandthediversionofoutputtobuildingthe“renewables‐base”capitalstock.NorisapositiveshadowpriceexplicitlyattachedtousingtheexhaustibleresourceinValente’sanalysis,becauseitabstractsfromthegeophysicalclimate‐systemconstraintsthataffecttheoptimaltransitionpath.Aswillbeseen,theresearchapproachhereexaminesmuchmorecomplicated,multi‐stagetransitions.

Page 37: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐35‐

4.2ABasicModelwithEndogenous(R&D‐driven)TechnologicalChange

InadditiontotheBasicModel,wehavespecifiedaversioninwhichR&DcanbeundertakentoimprovetheproductivityoftheCFRtechnologybeforeitsactualimplementationthroughgrossinvestmentintheCFRtechnology.46R&DrequiresresourcestobeinvestednowinreturnforafutureintangibleassetintheformofknowledgeofhowtoembodyCFRproductiontechniquesinproductionfacilitieswhosecapitalcostperunitofoutputwillbelowerthanisthecaseatpresent.Surprisingly,thisviewoftheroletobeplayedbyR&DincontrollingfutureGHGemissionsissomethingofanoveltyinthesmalleconomicliteraturethathasemployedintegratedassessmentmodellingofclimatepolicyoptions,becauseinsofarasthecontributionofinvestmentsinR&Dto“directed”technologychangeandinnovationhasbeenconsideredatall,the“direction”hasbeentakentobetheloweringofCO2emissionsperunittotaloutputintheeconomy.47Tosharpenthecontrastwiththelatterapproach,Section2.3(below)examinestheoptionofachievinggreaterefficienciesintheuseofcarbon‐basedenergycanbeachievedwithoutR&Dexpenditures,butbyinvestmentsintheengineeringimplementationofexistingtechnologicalknowledgethatwouldresultinhigherunit(tangible)capitalcostsofcarbon‐basedproductionfacilities.48

46vanZonandDavid(2013b)presentsthecompleteanalysisofacalibratedversionoftheBasicmodelwithendogenousR&D(asdescribedhere).ThelatterpaperextensivelyrevisesvanZonandDavid(2012)andaddsamodelthatincorporatesendogenouslytimedupwardshiftintheaverageannualrateof(unscheduled)lossesofproductioncapacityduetotheaccumulationofCO2intheatmosphere.ThequalitativeresultsdisplaythemainsubstantivefindingsofthesolutionsandsensitivityanalysisobtainedwiththepreliminarycalibrationoftheBasic+R&Dmodel.

47Tothebestofourknowledge,theearliestpreviousinvestigationoftheeffectsofallowingforendogenoustechnologicalchangeinacomputationalclimatepolicyassessmentmodelappearsintherelatedpapersbyGoulderandMathai(2000),andGoulderandSchneider(1999),whichspecifytheeffectofR&Dexpendituresonchangesinaneconomy‐widetotalfactorproductivitycoefficient.InthesepioneeringinvestigationsoftheimpactofinducedtechnologicalchangeontheattractivenessofCO2abatementpolicies,absolutechangesinproductivity(orrealmarginalcost)levels,ratherthantheproportionaterateofchangeinproductivitywasspecifiedasapositiveincreasing(decreasing)functionofR&Dexpenditures.InGoulderandSchneider(1999:pp.216,223)thisfunctionalrelationshipnotfurtherrestrictedintheirmathematicalanalysisofa2‐periodmodel;whereasthelinearspecification, B R wasusedintheirdynamicmulti‐periodgeneralequilibriumsimulationstudies.Nordhaus(2002)takesadifferentapproach,ineffectassumingthatinducedresearcheffortfocusessolelyonreducingtheCO2emissionsintensityofproduction.Nordhauspositsaseparateproductionfunctionforcarbon‐basedenergyinputswhichareusedinfixedproportiontothenon‐energyinputsinaneconomy‐wideproductionfunction.Hethenspecifiesthattherateofchangeofthecarbon‐intensitycoefficientinenergyproductionisgivenby(dσ/σ)=‐[ψRβ–Ω],whereΨ>0isaconstantandΩ>0isa(constant)rateofobsolenceofthetechnicalknowledgegainedthroughR&Dandreflectedinσ.TheempiricalfindingsofGriliches(1973),Hall(1995)andothersonthelinkbetweencommercialR&DandindustrialproductivitygrowtharecitedbyNordhausinsupportofthisspecification,althoughingeneralthetime‐spanstowhichthedataonindustry‐levelandfirm‐leveldatarelatearefarshorter,andhardlyoftheglobalsembocopetypicallycontemplatedinIAMmodels.

48Ofcourse,thisdistinctionisnotnecessarybecauseonecanmodelthesituationinwhichR&Dexpendituresareallocatedbetweenthetwo“directions”oftechnologicalchange,loweringraisingtheratioofgrossoutputperunitofCO2emissions,andraisingtheproductivityofcarbon‐freetangiblecapitalusedinproduction.Butbecausethepresentinvestigationisconfinedtomodelingthepathstosuccessfulclimatestabilization,andthetimescaleforthatisfarshorterthanthehundredsofyearscontemplatedintheexistingvariantsoftheNordhaus(1993a,1993b,1999,2002,2007)DICEmodel,itisnot

Page 38: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐36‐

Furthermore,inspecifyingtheimpactofsuchR&DinvestmentsontheunitcostofCFRcapitalgoods(KB)wedeliberatelydepartfromthe“R&Dproductionfunction”formulationthatisfamiliarinendogenousgrowthmodelsfollowingLucas(1988),Romer(1990)andAghionandHowitt(1991).RatherthantakingtheinstantaneousrateofimprovementintheproductivityofCFB‐embodyingcapital, /B B ,tobeproportionaltothecurrentabsoluteflowofR&Dresourceinputs,R,asin

0 1B R B ,

analternativespecificationisproposedhere:

( ), 0 1B R B B ,

whereςisaconstantproductivityparameter,and representsthemaximumvaluethatBcanattain.49

Thereareseveralfeaturesofthisspecificationthatargueforits’useinthepresentapplicationscontext.Firstly,ithastheadvantageofintroducingdecreasingreturnstoR&Dinasettingthat,unliketheconventionalendogenousgrowthmodels,excludesthepossibilityofaspecifictechnologybeingrenderedinfinitelyproductive(andsoresultingininfinitelyrapidgrowth)merelybytheapplicationofmoreandmoremassiveR&Dexpendituresatanyparticularmomentintime.50AllowingdecreasingmarginalreturnsinR&Drecognizesthatatagivenstageintheadvanceofknowledgethestateoffundamentalscientificunderstandingofthephysicalprocessesinvolvedmaystillbeinadequatetopermittheeffectiveapplicationofmoreandmoreresourcestothesolutionofaparticularpracticalproblem‐‐suchasthefurtherimprovementoftheproductivityofaparticularclassoftechnology‐embodyingcapitalfacilities.

Secondly,thisformulationoftheeffectsofinvestmentinR&DactivitiesmaybethoughttoreflectaPlatonicworldinwhichafinitenumberofsolutionpossibilitiesfortechnicaltransformationsarepresentfromthestartoftime,buttheseasarulewillnot

unreasonabletosupposethatthepresentlyexistingstockofimplementabletechniquesforenhancingtheproductivityofcarbon‐energyinputscouldsufficeforaconsiderablenumberofdecadeswithoutrequiring“refreshment”byfocusedinvestmentofR&Defforts.Seefurtherdiscussionofthe“buytime”optioninsection2.3,below.

49With , , asconstantpositiveparameters,BandRthereforebecomeadditionalstate‐andcontrolvariablesinourdynamicsystem.

50Theequilibrium(steady‐state)growthrateinastandardAK‐modelriseslinearlywiththerategrowthintheproductivityofcapital(cf.BarroandSala‐i‐Martin,2004),andthereforewiththeflowrateofR&Dexpenditures.Theexistenceoftechnology‐specificintrinsicproductivitylimitsset–inthelimit‐‐bythephysicalpropertiesofthematerials,chemicalandelectricalprocessesentailedinproductionmakesthissoimplausiblethatevenitsassertionasametaphorisofdubioususefulness.Popp(2002)presentsevidencetheR&Dinvestmentintheenergysectorissubjecttodiminishingreturns,andtheWITCHmodelofBosettietal.(2006)representsthisbysettingtheelasticityofthe“flowofnewideas”tobeb<1‐c,wherecisthatflow’selasticityw.r.t.thestockofideasand(c+b)<1.

Page 39: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐37‐

revealthemselvesspontaneously.Theycanbeuncovered,however,andformulatedforpracticalapplicationthroughcostlyresearchanddevelopmentproceduresbasedupontheexistingstateoffundamentalscientificknowledge,ratherthanbeingcreateddenovoandwithoutlimitbytheexpenditureofresourcesintheperformanceofR&Dactivities.51ThatmorerestrictiveviewofthetransformativepowerofinvestmentinR&Disappropriatenotonlyfortheforegoinggeneralreasons,butalsobecausetheconcerninthiscontextisnotwiththeundirectedglobalexpansionofthetechnologicalopportunitysettypicallyenvisagedintheoreticalgrowthmodels.Rather,theaimofthe“directedR&D”inthepresentmodelistoenhancetheeconomicpropertiesofparticularkindsofprocessinventions,withnewproductinventionsonlyinsofarasalterationsinproductcharacteristicsareconsequentialfortheraisingtheefficiencyofcapitalinputsintocarbon‐freeproductionprocesses.52

Withintheframeworkcreatedbyintroducingthis(oranyother)R&DproductionfunctionintotheBasicmodel,thereareagainthreedistinctphasesofthetransitiontoastabilizedclimate.Table2comparesthephasesintheoriginalbasicmodelwiththeversionintroducingR&D:

Table2.ComparisonoftheBasicandEndogenousR&DModels

Basic model

Phase BAU1 Business as usual 

JPR1 Joint production 

CFR1 

Carbon‐free 

Investment in  Carbon‐based capital Carbon‐free capital Carbon‐free capital

Output using  Carbon‐based capital Both carbon‐based and 

reduced emission capital 

Carbon‐free capital 

only 

Endogenous (R&D‐driven) Technological Change Model 

Phase BAU2 Business as usual 

JPR2 Joint production 

CFR2 

Carbon‐free 

Investment in  Carbon‐based capital Carbon‐free capital Carbon‐free capital

R&D 

investment in Carbon‐free technology  Carbon‐free capital  Carbon‐free capital 

Output using  Carbon‐based capital Both carbon‐based and 

carbon‐free capital 

Carbon‐free capital 

only 

51ItalsohastheadvantageofbeingjointlyconcaveinBandR,whichisanecessaryconditionforthewelfaremaximizationproblemtohaveasolution.

52Followingthisinterpretation,addingendogenoustechnologicalchangetotheBasicModelallowsustocharacterizetheoptimalpathofglobalR&DthatisdirectedtoincreasingtheproductivityofCFRcapital.CorrespondinglytheimpactofR&Dinvestmentoneconomicwelfareismodeledasbeingfeltindirectly,ratherthandirectlyintheformofpureproductqualityenhancements.Inotherwords,thewelfaregainscomethroughreductionofthesacrificeofconsumptionutilityrequiredinthetransition,andforthesubsequentsustainedgrowthof(percapita)consumptionunderstabilizedclimaticconditions.

Page 40: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐38‐

FromTable2itmaybeseenthatwhiletheR&DmodelresemblestheBasicModelinhavingthreephasesandtwooptimumswitchingmoments,itdiffersinhavingthreestatevariablesandtwocontrolvariables.ThisisthecasebecauseitturnsouttobeoptimaltoinitiateR&DdirectedtoimprovingaparticulartechnologyfromtheveryfirstmomentthatinformationbecomesavailableabouttheexistenceofapotentiallyworkableCFR‐technology.OntheassumptionthattheCFRtechnologyisdiscoveredattimezerobutislessproductivethanthematurecarbon‐usingtechnologywhenembodiedinequallycostlyproductionfacilities,R&Dactivitythenshouldbeundertaken(only)duringthephaseinwhichtangiblecapitalformationandproductionadheretothecarbon‐dependentfeaturesoftheBasicmodel’sBAUphase.Followingthat,aJPRphasewillcommencewithgrossinvestmentdirectedtodeployingtheimprovedCFRtechnologyinKB‐typeproductionfacilities.

4.3A“Buy‐TimeModel”–GreeningCarbon‐basedCapitalintheBasicModel

Wenowturntothethirdofthepartialmodels,inwhichthestructureofthebasicmodelisenrichedbyintroducingathirdcategoryoftechnologies,namelyaknown“intermediate”classofcarbon‐usingproductiontechniquesthatarecharacterizedbylowerratesofCO2emissionsperunitofcapitalbutcapitalproductivityperunitofoutputthatislowerthanofthematurecarbon‐basedtechnologies,butnotasmuchlowerthanthatoftheinitial(pre‐R&D)versionsofthecarbon‐freetechniquesofproduction.53

Thisconceptualizationcorrespondsbroadlytothevarietyofwell‐groundedengineeringmethodsmaybeusedtoupgradecarbon‐usingproductionfacilities,whetherbyimprovingtheenergyefficiencyofresidential,businessandgovernmentofficebuildingsbybetterinsulation,heatingandcoolingsystems,andreducingthe

53Onthelatter,seetherecentnoticedexampleoftheannualconsumptionofover$3billionworkofelectricpowerintheU.S.byHDTV“set‐top”boxessuppliedbycablecompanies,duetothechoiceoflowcostdesignsthatthatdonotactuallystopdrainingpowerwhentheyareswitchedoff(see,“AtopTVSets,aPowerDrainthatRunsNonstop,”TheNewYorkTimes,June26,2011:p.1.).TheMcKinseyGlobalInstitutedevotedconsiderableattentionintheyearsbeforethefinancialcrisistostudiesofcurrentandnear‐termoptionsforenergyefficiencyroutestoCO2emissions‐reductionsandprivatecostssavingthroughupgradingofproductionanddistributionsystems.See,e.g.,FarrelandRennes(2008);GroveandR.Burgelman(2008).IntheU.S.,numerousproposalsforthiskindof“retrofitting”havehaddifficultygainingpolicy‐tractionduetotheprevailingpolicybiastowardsresearchsubsidizestosupport“innovation”inrenewableenergytechnologies.”Morerecently,thecaseforexpandedexploitationofnaturalgasandgreaterinvestmentinotheropportunitiestoimprovetheproductivityofcarbon‐basedtechnologiesthat(similarly)offerhigheroutputpervolumeofGHGemittedhasbeencogentlyandvigorouslyadvancedbyBurtonRichter(2010).DuringthecrisisandrecessionyearstheattentionoftheEuropeanCommissionshiftedawayfromtheexpensiveandlonger‐termresearchenvisagedbyitsambitiousStrategicEnergyTechnologiesPlan[SET,COM(2007)723];itfocusedinsteadonavarietyofshorter‐termtacticsaimedatstimulatingaggregatedemandinwaysthatwouldimplementalreadyavailabletechnologiesfor“green”purposes,notably:retro‐fittingbuildingsforgreaterenergyefficiency,supportingtheautomotiveindustrytoincreaseproductionoflow‐CO2vehiclesusingelectricbatteriesandsecondgenerationbio‐fuels(seediscussioninDavid,op.cit.(2009).IntheU.S.,numerousproposalsforthiskindof“retrofitting”havehaddifficultygainingpolicy‐tractionduetotheprevailingpolicybiastowardsresearchsubsidizestosupport“innovation”inrenewableenergytechnologies.

Page 41: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐39‐

passiveconsumptionelectricitybyelectricalandelectronicappliancesbyconfiguringthemtoswitchoffcompletelywhennotinuse,andsoforth.ButitalsosubsumesproposalsfortheexpandedexploitationofnaturalgasasareducedGHG‐emissionssourceofenergy,includingtheacknowledgementthatincrementalcostsperBTUwouldberequiredtocurtailtheenvironmentaldamagecurrentlyassociatedwith“fracking”methods.

Break‐throughresearchandnovelengineeringprinciples,however,arenotrequiredtoexploitthisclassofcarbon‐basedenergysourcesandproductiontechnologieshere,butspecificapplicationsofcoreengineeringknowledgeadaptationofexistingdesignstolocalcontextswillraisetheaverageunitcapitalcostscarbon‐usingplantequipmentthathasundergonethiskindof“green‐upgrading,”aswellasthatofa“lessdirty”energysourcesuchasnaturalgas,andsafernuclearpower‐plantswithprovisionsforlong‐termsequestrationoftheirtoxicwaste.54Thegaintobehadbyseizingthis“low‐hangingfruit”comesinthereducedrateofCO2,whichmeansundertakingtheentailedincrementalcapitalexpendituresconstitutesawayto“buyingtime”earlyinthetransitioninordertobeabletosubsequentlyproceedmoreslowlyinreplacingthewholecarbon‐basedproductionregimewithonebasedonnew,carbon‐freeproductionfacilities.

Notsurprisingly,therefore,theextenttowhichthe“buytimeoption”willbeattractivetoexploitinthecontextofourBasicmodel,bybuildingupproductioncapacity(KD)inthisintermediate“greened”formratherthancapitalthatembodiesthemature,morecarbon‐intensivetechnology,dependsnotonlyontheassociatedcapitalproductivitybutalsoonthereductiongainedinemissionsperunitofoutput.Itturnsoutthatintroducingthepossibilityofutilizingthisthirdclassoftechnologiesgivesrisetoamodelinwhichthereare5distinctphasesthatcanbearrangedineitheroftwoalternativetransitiontrajectories,asindicatedbyFigures3.1and3.2anddetailedinTable2.55

54Itmaybenotedthattheextractionandprocessingoffossilfuels,includingthecatalyticcrackingofpetroleum,andhydraulicfrackingofnaturalgasalsoresultsinemissionsofmethane,ashort‐livedGHGespeciallyhighGWP(vis‐à‐visCO2)duringthe20yearsfollowingitsreleaseintotheatmosphere(seeabove,sect3.1).Inordertoincludetechnologicalmeasuresformethanemitigationinanintegratedanalysisofclimatestabilization,however,itwillbenecessarytoconstructaconsiderablymorecomplexrepresentationoftheclimatesub‐systemthantheonethatisapproximatedhere.InadditiontomodelingthecarboncycleexchangesofCO2betweentheatmosphereandtheupperandlowerocean,thefastdynamicsofmethane’sinteractionwithOHradicalsandconsequentdegradationintoCO2,anditshighGWPmustbemodeledexplicitly.

55Notethattheactof‘buyingtime’involvesusingatechnologywitharelativelyhighoutput/emissionratio.Hence,logicallyspeaking,buyingtimeisassociatedwithproductionusingthattechnologyratherthanwithinvestmentinthattechnology.Therefore,inthiscase,theBTMphaseissubdividedintothreesub‐phases,inwhichwehavepositiveoutputfromtheBTMtechnology(hereindexed‘D’),andtheCFRphasestartswhentheBTM‐technologyisdeactivated.Typically,thej‐thBTMsub‐phaseoftrajectorykislabeledBTM.

Page 42: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐40‐

Moreover,whichtrajectorywillbetheonethatisoptimalforthissimpleeconomytofollowdependsupontheparameterconfigurationthatsetstheBTMtechnology’soutput/emissionratio.Giventhese‘technicaldata’,thechoicebetweenthealternativetrajectoriesthatwillbefollowedinexploitingthe“buytimeoption”isprescribedbycomparingthewelfarevaluationsofthetwosolutionsofthetwooptimalcontrolprograms.56Trajectory1,asdescribedbythefollowingTable,isfoundtobethewelfaredominantmemberofthepairwhenthethatratioishigh,whereaswhentheratioislowitisbettertofollowTrajectory2,whichcallsforashorterperiodofinvestmentinbuildingstocksofKDandanearlierswitch(inthethirdphaseratherthanthefourth)togrosscapitalformationembodyingthecarbon‐freetechnologies.

InTable3(below),theheaderlinescontainthelabelsforthesub‐phasesineachtrajectory.57Theentriesbeloweachphaselabelbelongingtoatrajectorycontaina

Table3.Alternativetrajectoriesinvolvingthebuytime(BTM)technology

Trajectory 1

Phase 

BAU1 Business as 

usual 

BTM11 Buying time 

BTM21 Buying time 

BTM31 Buying time 

CFR1 

Carbon‐free 

Investment in Carbon‐

based capital 

Reduced 

emission 

capital 

Reduced 

emission 

capital 

Carbon‐free 

capital 

Carbon‐free 

capital 

Output using Carbon‐

based capital 

Both carbon‐

based and 

reduced 

emission 

capital 

Reduced 

emission 

capital only 

Carbon‐free 

capital and 

reduced 

emission 

capital 

Carbon‐free 

capital only 

Trajectory 2

Phase 

BAU2 Business as 

usual 

BTM12 Buying time 

BTM22 Buying time 

BTM32 Buying time 

CFR2 

Carbon‐free 

Investment in Carbon‐

based capital 

Low emissions 

capital 

Carbon‐free 

capital 

Carbon‐free 

capital 

Carbon‐free 

capital 

Output using Carbon‐

based capital 

Both carbon‐

based and 

reduced 

emission 

capital 

All three types 

of capital 

Carbon‐free 

capital and 

reduced 

emission 

capital only 

Carbon‐free 

capital only 

56Thatthemodelitselfdirectsattentioninthiswaytotherelevanceofempiricalinformationaboutcertainparametersisworthnotice,becauseitmayhelpinprioritizingareaswarrantingmoreconcreteanddetailedempiricalresearchinengineeringandappliedeconomics.

57Typically,thej‐thBTMsub‐phaseoftrajectorykislabeledBTMj,k.

Page 43: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐41‐

shorthanddescriptionoftheactivitiestakingplaceduringoratthebeginningofthesub‐phases.Noticethatthemaindifferencebetweenbothtrajectoriesisthetimeatwhichthecarbon‐usingA‐technologyisde‐activated.Asaconsequence,outputduringsub‐phaseBTM22oftrajectory2comesfromthreedifferentsources,sotheequationdescribingtheaccumulationofBTMcapitalismorecomplicatedthanthatfortrajectory1.58

Bysolvingthestackedoptimumcontrolproblemsassociatedwiththemodelversionsoutlinedabove,wearriveatacompleteandintertemporallyconsistentdescriptionofthenatureandtimingofthevariousphases,aswellastheshapeofthetime‐pathsoftangibleandintangiblecapitalinvestment,levelsofproductionandconsumption,aswellascumulativeemissionsasafunctionofthestructuralparametersofthemodel.Theseparametersincludetheprobablelocationofthecumulativeemissionsthreshold,theproductivityoftheR&Dprocessaswellastheproductivitydifferencesbetweencarbon‐basedandcarbon‐freetechnologies,andthe‘standard’preferenceparametersfortheconsumptioncomponentofthesocialutilityfunction,i.e.therateoftimediscountandtheintertemporalelasticityofsubstitution.

5.Preliminaryresults,experimentswithphysicalsysteminteractions

Tothispointinthepresentresearchprogram,theseveralmodelsdescribedintheforegoingpageshavenotbeenconsistentlycalibratedondatafortheglobaleconomy.NorhavewecompletedthetheintegrationoftheBTMmodelwiththeendogenousR&Dmodel.59ThelatterremainsamatterofparticularinterestbecausebeingabletoextendthelengthoftimeduringwhichR&Dexpendituresaremaintainedis(asfaraswehavebeenabletosee)islikelytobethemostproductiveuseoftheaddedtime“bought”byCO2emission‐ratereductionseffectedbyexercisingtheBTMoption.Usingknowntechniquestoupgradingcarbon‐usinginfrastructuresanddirectlyproductivecapitalfacilitiescertainlywouldbeasociallymoreproductivepurposethanhasteningtheinevitabledescentintoclimateinstabilityjustforthesakeofprolongingcurrentenjoymentofthehigherconsumptionlevelsassociatedwith“businessasusual.”

58Althoughthismakestheentiremodelconsiderablymoredifficulttosolve,itwassolvableforMathematica.

59TheBasicModel,andtheBasic+R&DModelhavebeensocalibratedandtheresultsoftheoptimalsolutionsobtainedarediscussedandcomparedinvanZonandDavid(2013).SolutionshavebeenobtainedforarevisedspecificationfortheBasic+BTMModeldiscussedhere(seeDavidandvanZon(2013,whichtheworkingpaperreferstoasthe“Greeningupgrade”model).Thestructureofthelatteristcomparabletothatoftheothertwomodelsinthesuite,butithasnotbeencomparablyre‐calibrated.Oncethathasbeendoneandsolutionshavebeenobtained,itwouldbeappropriatetoundertakesolutionofanintegratedmodelbyadding“Greeningupgrade”totheBasic+R&DModel,andtrytofindasolutionforthemultistageoptimaltransitionpath.

Page 44: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐42‐

Comparisonsoftheresultsobtainedwiththedifferentpartialmodels,however,yieldsanumberofusefulinsightsabouttheroleofdirectedR&Dinvestmentinthetransitiontoclimatestabilization.OnestrikingandintuitivelyunderstandablefindingthatemergesfromtheoptimizedsolutionoftheendogenousR&Dmodelishighlightedbyitsjuxtapositionwiththefeaturesofthetransitionpathfoundforthebasicmodel.Inthelattercase,business‐as‐usualinvestmentincarbon‐usingcapital(KA)comestoahaltwhencarbon‐freetechnologycanbeembodiedinproductionfacilities,regardlessoftheirgreaterunitcapitalcost;whereasintheformermodeltheBAUphaseendsonlywhenR&DsucceedsinrenderingtheunitcostsofproductionfacilitiesembodyingCFRtechniquescompetitivewiththatofKA.60

AllowingforthepossibilityofinvestmentinR&Ddirectedtowardsloweringtheunitcapitalcostsofcarbon‐freeproductionprocesseshastheeffectofraisingthetangibleinvestmentincarbon‐usingproductionfacilities,shorteningtheabsoluteandrelativedurationoftheBAUphase‐‐leavingthelengthofthesubsequentjointproductionphaseessentiallythesame.Inotherwords,beingabletoinvestintheresearchrequiredfora“technicalfix”hastheexpectedresultofspeedingthebeginningofCFRproduction,thecessationofinvestmentincarbon‐usingproductionfacilities,andcorrespondingly,theretirementoftheoldcarbon‐basedcapitalstock.

TheunderlyingeconomiclogichereisthattheanticipationofbeingabletobuildmoreproductiveCFRcapacityinthefuturegeneratesaheightenedderiveddemandforBAUcapacity,andhenceahigherrateoftangiblecapitalformationincarbon‐basedfacilities‐‐sincethedesiredstockofCFRcapitalisaproducedmeansofproduction.TheresultinghighervolumeofKAgeneratesalargeroutputflow,providingagreaterpoolofresourcesthatcanbespentonR&DinvestmentduringtheBAUphase,andsubsequentlyforCFR‐embodyingcapitalformationintheJPRphase.Itshouldbenoted,however,thatthiswouldbeadangerousplantohavepursuedwerethetechnicalimprovementsincarbon‐freeproductionsystemsthathadbeenexpectedtoresultfromR&Dexpendituretofallshortofexpectations.Insuchcircumstances–hardlyunrealisticinviewoftheuncertaintiessurroundingtheperformanceofR&D‐‐itwouldbenecessarytoeventuallymaketherequiredswitchtomuchmorecostlyCFRproductioncapacity,attendedbyconsequentlygreaterlossesofconsumptionandwelfare.

60Strictlyspeaking,thelastpartofthisstatementisnotquitetrueinthemodelonwhichthisdiscussionisbased,becausetheupperlimitonthecapitalproductivityoftheCFRtechnology,B‐barissetbelowthethatforthecarbon‐usingtechnology.R&DremovesasmuchaspossibleoftheproductivitydeficitofKBrelativetoKAbeforeimplementingtheCFRtechnologytangiblecapital.B.Butthisisinnowayessential,andtherearenoapriorireasonsfornotentertainingthepossibilitythatCRFtechnologiescan(eventually)havelowerunitcapitalcoststhancarbon‐basedtechnologies,sothatiftheexponentandconstantintheproductivitychange‐R&Dinputfunctionarequitesmall,themodelisthemodelisnotinconsistentwiththeobservationthattheworldweliveinis(still)adependentuponacarbon‐usingregimeofproduction.

Page 45: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐43‐

ThissuggeststhepracticalrelevanceofcombiningtheendogenousR&DmodelandtheBTMmodel,because,byaddingthe“buytimeoption”ofreducingtheCO2emissionsratesonthecarbon‐usingproductioncapacity,therewouldbemoretimelefttobuild‐upthenecessarycarbon‐freecapitalstock.Sincethatcapitalformationprocesswouldweighallthemoreheavilyofconsumptionlevels,exercisingthe“buytimeoption”canserveasapartialinsuranceagainsttheadversewelfareconsequencesofdisappointedexpectationsregardingtheeffectivenessofR&Dinvestmentinenhancingtheproductivityproductionfacilitiesembodyingcarbon‐freetechnologies.Althoughthetwooptionsoftenseemtobediscussedasalternative,substitute“climatepolicies”theyaremoreproperlyseentobecomplementsinanexpanded“technologyfix”portfolio.

Itisafairlystraightforwardmattertoconductsensitivityexperimentswiththesepartialmodels,inordertogetaqualitativeimpressionoftheimpactofparametervariationsthat,giventhedeterministicformthemodelcanbegintosuggesttherangeofdistributionsinthedynamicsthesystemexhibitwerethemodelcomponentreformulatedmorerealisticallyinstochasticterms.Moreover,suchsensitivityexperimentsalsoshedlightonthewayinwhichtherequirementsforasuccessfulclimate‐stabilizingtransitionwillbeaffectedby‐‐andthereforeneedtomakeexanteallowancefor‐‐alterationsintheperceivedandactualdynamicfeedbacksarisingfrominteractionsbetweentheeconomicandthegeo‐physicalsubsystems.61

Sinceatthisstageofourworktheresultsofthesolutionofthemodelconsideringboththebuy‐timeoptionandR&Ddirectedtoinnovationsincarbonfreeproductiontechnologyarestillbeinganalysed,wereporttheresultsofusingsensitivityexperimentswiththe“external”physicalspecificationsofourpartialeconomicmodelsasapreliminarymeansofexploringtheimpactsoftheirinteractions.Amongthevarietyofcomputationalexperimentsthatcanbereadilyexecuted,thefollowingpairhasyieldedresultsthatareofprincipalinterest:(i)loweringthecumulativeGHGemissionstipping‐point,and(ii)increasingtheannualrateofphysicaldepreciationofcarbon‐basedproductioncapacity.

ThefirstoftheseoffersasimplewaytoassessthegrosseffectsofmakingprecautionaryallowancesfortheambiguitysurroundingtheexactleveloftheatmosphericGHGconcentrationlevelthatwillbea“tippingpoint”intothedomainofirreversibleclimateinstability.62Therobustresultwefindforallvariantsoflowering

61Forexample,amorecautionarystancetowardsthedangersofsurpassingthecumulativeemissionsthresholdmayinvolvealoweringofthe‘model’‐thresholdbelowits‘realworld’expectedlevel.

62Theimplicationsofallowingfortheambiguityinthelocationofthe“tippingpoint”beyondwhichwarmingbecomesaself‐reinforcingprocessevenwhereGHGemissionsofimmediateanthropogenicorginshaveceasedcompletelywillneedtobeassessedwithinthecontextofafullyintegratedstochasticversionofourmodel.LemoineandTraeger(2011)introduceprobabilisticfunctionsforcrossingaclimateregimetippingpointintoarecursiveformulationoftheDICEintegratedassessmentmodelforestablishingoptimalclimatepolicies.Thetippingpoint'sprobabilityandtimingthusbecomeendogenouslydeterminedbythechosenemissionpolicy.Recognizingthattheprobabilitydistributionforthe“temperatureThreshold”correspondingtothe“tippingpoint”isnotknownwithconfidence,policy

Page 46: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐44‐

thecriticalthresholdfortemperaturegain(orequivalently,thecumulativeemissionstippingpoint)isthattherequiredlengthofthetransitiontoastabilizedclimatewouldbeshortenedbyabridgementoftheBAUphase,leavingthedurationofthejointproductionphaseessentiallyunaltered.Initially,outputisreducedbutconsumptionisraised,sothatinvestmentintangiblecapitalformationispostponed;althoughconsumptionsubsequentlywillbereduced,therealsoislessinvestmentinthenewCFRtechnology,and,indeedandlowerlevelsofactivityacrosstheboard–comparedtothosefoundforthe(basic)referencemodelwhenthetemperature‐gainthresholdissetatahigher,lessconstraininglevel.

Thegeneralfinding,then,isthatwithlessscopeforCO2emissionsbeforetheexpectedcriticalthresholdwillbereached,productionwithcarbon‐usingcapacitymustbecurtailedandthelengthofthetransitionabridged;withlesstimetobuildupcarbon‐freecapitalgoods,theeventualgrowthofoutputandconsumptionhastobedeferreduntilclimatestabilizationwithacarbon‐freeproductionregimehasbeenachieved.Afurther,consistentresultappliesinthespecificcasesoftheendogenousR&DandBMTmodels:becausealowercriticalthresholdleaveslesstimetodoR&Dorto“buytime”.Ininordertocounterthateffecttosomeextent,thedistributionofR&DactivityovertimemustbeshiftedtoinfavourofR&DnowandagainstR&Dlater.

Thus,theplanningmessagestobetakenfromthisisthatsettingalowerGHGppmvtarget‐‐inkeepingwithgreateraversiontoriskambiguityandconsequentadherencetotheminimizeregretstrategydictatedbythe“precautionaryprinciple,”callsforaninitiallyhighandrapidlyrampeduptherateofR&Dexpenditureswhensufficientresearchadvanceshavemadeitattractivetodevotegreaterresourcestodevelopmentandengineeringimplementations.Similarly,itwarrantsboostingattheoutsettherateofcapitalformationinproductionfacilitieswithupgradedoutput/emissionsperformance,soastosmooththeadverseimpactonpercapitalconsumptionofhavingtoquicklydeploylowandzerocarbon‐burningproductioncapacity.Later,oncethebuild‐upofcarbonfreeproductioncapacityiswellunderwaybothtypesofinvestmentwillhavetodecline,firstrelativetooutputandthenabsolutely,.

Oursecondsetofexperimentsprovideasimplifiedwayofemulatingthehigherfrequencyofdamagesthatcanbeexpectedtoresultfromextremeweathereventsassociatedwithchangingclimate(s),andtoassesstheimpactontheoptimizedtransitionplanofanticipatingtheconsequencesofwarmingthatalreadyis“inthepipeline,”duetothepasthistoryofGHGemissions.Anincreasedrateofunscheduledcapitallosses(damagesfromincreasedclimateinstability)hastheeffectofpostponingthearrivaloftheCFRphase,primarilybecauseproductionusingthecarbonbased

decisionscanbemadethatreflect“ambiguityaversion”byselectingstrategiesthatreducethedownsidevariancearoundtheexpected“thresholdtemperature.LemoineandTraeger’ssimulationsshowthatunderreasonableparameterizationoftheDICEmodel,allowancefortippingpointsinthiswaycanraisethenear‐termsocialcostofcarbonemissionsbyasmuchas50%.

Page 47: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐45‐

technologyisnegativelyaffected,leadingtoalowerflowofCO2emissionsintheprocess.Thisis“thegoodnews”,but,unfortunatelyitisnotthewholestory.

Sinceitseemsreasonableforpurposesofthisanalysistoassumethatthesenegativeclimateeffectswillimpactoldcarbon‐basedfacilitiesmostseverely,ifnotexclusively,63therateofreturnoninvestmentincarbon‐usingfacilitieswillbelowerthanisthecaseintheabsenceofallowanceforthisfeedbackofclimatedestabilization(i.e.,inthebasemodel).The“badnews”isthatthisresultsinlowerinitialratesofcarbon‐usingcapitalformation(grossinvestmentinKAandKD)andhigherratesofconsumptioninanextendedBAUphase.ConsequentlytheconstraintplacedonthegrowthofproductivecapacityduringthisearlyphaseofthetransitioncurtailstherateofR&Dinvestment,andtheglobaleconomy’ssubsequentabilitytorapidlyaccumulatethenecessarystockofcapitalembodyingcarbon‐freetechnologies.

Oneimplicationoftheforegoingfindingswouldseemtobethatexpendituresaimedataverting“unscheduledlosses”inproductioncapacityduetoclimateinstability‐relateddamages,maybequitea“goodinitialinvestment”.Itshouldbenotedthatundertheassumptionofincreaseddamages,thelevelofR&Dactivityalsoisaffectednegatively;butthatinthecontextofafullyendogenousintegratedmodeltheclimate‐relatedcapitallosseswillbedrivenbystrongnon‐convexityintheeffectsofrisingGHGconcentrationlevelsandconsequentlyhighermeansurfacetemperatures.Theyarethuslikelytotakeaheaviertollonexistingproductioncapacityatdatesfartherinthefuture,ratherthanfromtheoutsetofthetransition,andtheinsurancemotivationwillpushtheshadow‐priceofGHGfartherupwards.Herethedetailsofheatexchangedynamicsbetweenatmosphere,theupperoceansandtheloweroceanwillmatter,andaccordingly,climatescienceresearchprogressspecificallydirectedtoreducethepresentuncertaintiesregardingthosequestions,aswellastheendogenousprocessesaffectingtheclimatesensitivity,couldsignificantlyreshapetheoptimalcourseofpolicyimplementations.

Thesesourcesofnon‐stationarityintheclimatefeedbackfromalterationsinthelevelofCO2emissionscanbeemulated(albeitroughly)byafurthersimulationexperimentinwhichthephysicaldepreciationrateoncarbon‐usingcapitalmovestothehigherlevelonlyafterthetangibleinvestmentinthattypeofcapitalhasstopped.Wemaysupposethattheanticipationofthosefuturecapitallosses,asbefore,willexertadepressingeffect(albeitlessheavily)upontheexpectednetrateofreturntoinvestmentinKAduringtheBAUphase.Consequently,althoughtheinducednear‐termreductionintangible(carbon‐technologyusing)capitalfacilities,andtheriseofconsumptionper

63Theconsiderationunderlyingthisassumptionisthealargeportionofthecarbon‐basedinfrastructureanddirectlyproductivitycapitalstockwillbelegaciesfromtheBAUregimeandthehistoricallyantecedentstate,itwillbelocatedintemperatelatitudesandbuiltinfashionsthatwillleaveitmorevulnerabletotheeffectsofcoastalandriverineflooding,andservewind‐damagefromhurricanesandmonsoons,thantherecentlyconstructedcarbon‐freefacilities.Thelatter,ideally,willhavebeendesignedandsitedwiththoserisksinmind.

Page 48: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐46‐

capitawilloccurduringtheBAUphase,thatwouldnothappenfromthephase’soutset.Instead,itwouldbeconcentratedintheperiodjustbeforethecarbon‐usingstockattainsitmaximum,when(undertheassumedtimingoftheincreasedrateofunscheduledcapitallosses)theweather‐createddamagesstarttooccurwithgreaterfrequency.64Theoveralleffectofthesealterationsinthetimingofintangible(R&D)investmentsuponontheterminalvalueoftheproductivityofcapitalembodyingCFRtechnologiesisbounded,however,becausetheBAUphaseduringwhichR&Distakingplacewillhavebeenstretchedout.ThatchangecompensatesforthecumulativeeffectofadecreaseintheflowrateofR&Dinputs,andthesoamelioratethelatter’snegativeimpactupontheextentofproductivityimprovementsinKB.

Amajormessagethatemergesfromtheforegoingmodellingexerciseandparameterizationexercisesisonethatmightwellhavebeenanticipatedatitsoutset.Whatwelearnfromheuristicmodelbuildingofthepresentkindishowtothinkabouttheproblem,andnotnecessarywhattoconcludeaboutthebestcourseofactioninmeetingthechallengeitposes.Eventhehighlysimplifieddynamicalsystemthatwearestudyinghassufficientinterconnectedandmutuallyinterdependent“movingparts”totaxone’sunassistedintuitionsastothewaysthatvariationsintheparametersofthegeophysicalandeconomicsubsystemswillaltertheoptimizedtransitionpathstoastabilizedglobalclimate.

Moreover,whilethesimplicityoftheheuristicgrowthmodelmakesmoretransparentthelogicofchangesinthedirectionsofinvestmentandproductionactivityintheirvariousforms,thesequencedphasestructureofthetransitionisnotsoimmediatelyobvious.Norcantheimpactsofparametricvariationsontheoptimalphases’relativedurationsbeascertainedwithoutundertakingexplicitlyquantitativeanalyses.Thelattercanservetoprioritizeareasforempiricalresearch,byidentifyingtechnicalparameters(andinmodelswithricherspecificationsofagents’behaviors,criticalbehaviouralparameters)‐‐themagnitudesofwhicharefoundtostronglyimpactthewelfarepropertiesandshapetheresourceallocationrequirementsintheearlystagesoftheoptimaltransitionpath.

Buildingsuchmodels,andinvestigatingtheimplicationsofmoresophisticated,integratedsystemsofeconomic‐climateinteractions,shouldnotbeseenasapursuitintendedtoproduceasubstitutefortheexerciseofintuitivejudgementsaboutmattersofeconomicpolicydesign.Intheend,thelatterwillhavetoweighmanyimportantpracticalconsiderationsregardinghumanbehaviors,cultureandpoliticsthatwillresistaccuratecaptureintractablequantitativemodels.Instead,weregardtheexerciseof

64Thisdifferenceintiminghastheeffectofreleasingresourcesthatallowforafasterbuild‐upofcarbon‐freecapital(byassumption,designedsoastobenotsusceptibletotheelevatedseverityoftheweather).Inaddition,duetothespecificationadoptedfortheR&Dproductionfunctioninourmodel,thereleaseofthoseresourcesatalaterpointinthefuture,afterconsiderableR&Dexpenditureshavetakenplace,islesscostly(intermsofCFRproductivitygainsforegone)thanisthecasewhenthevolumeofR&Disloweredfromtheoutset.

Page 49: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐47‐

experience‐basedintuitionsandquantitativeanalysestobecomplementaryingredientsinthepolicydesignprocess;andbelievetheywillworkmoreeffectivelyandreliablywheneachisallowedtoinform,sharpenandqualifytheconclusionstowhichoneisledbytheirjointemployment.

6.Whatwillbelearnedfromthenextstagesofthisresearchprogram?

The idealized “optimal planning” framework for endogenous macroeconomicgrowth has been found to be well suited to incorporating representations of thetechnical aspectsof thearrayof existingandpotential technologicaloptionsand theirrespectiveresourcerequirements,aswellasthoserequiredtooperationalizeawelfare‐optimal transition path. Application of multi‐phase optimal control analysis providesDIRAM solutions that describe the optimal flows of tangible and intangible capitalformation, along with the production flows using carbon‐based or alternativetechnologiesineachofthephases,aswellasthesequencingandrespectivedurationsofthelatterwhichcompletelydescribethecompletedtransitionpath.

This very concrete way of setting out what has to be accomplishedtechnologically in each of the phases, in our view, provides useful starting point forthinkingabouthowtodesignandcoordinate themultiplicityofdiverse tasks thatwillneed to be undertaken in order to adequately respond to the daunting existentialchallenges posed by global warming and climate instability. Beyond those alreadynoticed in the preceding pages, other, still more intricate and computationallydemandingmodelingandanalysesoftemporallyextendedmulti‐phasetransitionpathswill be necessary to shed fuller light on the complexities entailed inworking out theproper dynamic sequencing for the integrated development and exploitation of thevarietyofcomplementaryandcompetingtechnologypolicyoptions.Amongthemyriad“additionaloptions”,thefollowinghandfuldeserveprioritypositionsontheagendaforcontinuedfutureDIRAMresearch–byvirtueoftheirvariedfunctionalattributes:

(i)Expandedinvestmentsinbothengineeringresearchandphysicalequipmentrequiredtogreatlyextendandintegrateexistingelectricpowergrids,upgradingthesetocreate interoperable “smart grid” platforms that will combine information‐intensiveload‐smoothing pricingmechanismswith thus use of energy storage techniques (e.g.,batteries, flywheels, pumped water reservoirs) to raise the utilization rates ofintermittent renewable sources of electricity generation, thereby lowering the latter’sunit fixed costs and raising both the private and social rate of return to that form ofcapitalformation;65

65Tabors,ParkerandCaramanis(2013)pointtotheimportance(inadditiontotheattentionfocusedontechnicalengineeringaspectsofsmartgriddevelopment),ofdefiningandimplementingtheuseofstandardmetricsforintermittencyasaquality‐dimensionofelectricitysupply,aswellasa“platformofplatforms”approachtointeroperabilityandefficientmarketperformanceinthepricingofdiversegeographicallydistributedsourcesofelectricpower.

Page 50: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐48‐

(ii) R&D expenditures on risky exploratory research programs having longertime horizons than the norm for applied projects because they seek low‐frequency“break‐through”discoveriesand inventionstoenablecommercialexploitationof little‐used alternative renewable energy sources (e.g., thermal pumps), and energy storagetechnologiesbywoulddrasticallyloweringtheirunitcapitalcosts.

(iii)Long‐termresourcesupport forexperimentalgeo‐engineeringprojects thatwork in parallel on the development and field‐testing of safely scalable “back‐stop”technologies for atmospheric carbon capture and sequestration (ACCS), and locallydeployablesolarradiationmanagement(SRM)techniques;66

(iv)Capital formationforreforestationwithfast‐growing leafytrees inordertoefficientlyraisethenaturalcapacityCO2abatementcapacityoftheEarth’spresentforestcover as far as possible. Although it is highly unlikely that this measure couldcompensate for thedegradedabatementcapacityof theoceansthatwouldresult fromcontinuingwarming, pursuing this option should be seen not as “a fix” but as a “buytime”strategyinitseffectsonthenetvolumeofCO2thatisaddedtotheatmospherebyburningcarbon.Policymeasuresaimedatslowingoractuallyhaltingtheclear‐cuttingofforestswouldworkinthesamedirection,andmightalsoinvolvecompensatorycapitalformation to raise agricultural yields and the livestock carrying capacity of alreadycleared lands, thereby tending to reduce the economic pressures that are drivingdeforestationduetohumanagency.

(v) “defensive” expenditures for engineering design research and capitalformationtoimplementphysicalreinforcementsandadditionstoexistinginfrastructurethatwouldreducethelatter’sownvulnerabilitytodamagecausedbyextremeweathereventsandextensiveflooding.Thiswouldservetomitigatedirectandindirectlossesofproductivecapacityaswellasprovidingameasureofprotectionfromlossof livesandlivelihoodsinsomeformsofnaturaldisastersthatarelikelytobecomemoredestructiveduetoregionalclimatechanges.

Quite obviously, it will be no mean task for future research to developinformativeheuristicrepresentationsoftheforegoingdynamicprocesses,andtoexploretheway(s)tosequencetheexerciseoftheenlargedsetofpolicyoptionsinanintegrated

66Undertheassumptionsofourdeterministicoptimalcontrolmodelsoftheclimate‐stablizingtransitionpath, those techniques neverwould need to deployed in a “back‐stop” role, evenwere to some amongthemtobeeconomicallyaswellastechnicallyfeasibleandenvironmentallysafetoimplement.Yet,inthelattercircumstancestheinvestmentinfindingthosemethodcouldneverthelesshaveasubstantialsocialpay‐off,especiallywhenthetransitiontoalowcarbonglobalproductionregimehadtobecompletedinreasonablyshortorder.Inthatcaseitismostlikelythataconsiderablestockofoperationalcarbon‐basedcapital would have to be de‐activated before the start of the sustainable economic growth phase. Bydeploying atmospheric carbon capture (ACC) techniques thatwere (ex hypothesis) technically effectiveand economically practical, the concentration level of CO2 could be gradually lowered far enough toallowingthe“moth‐balled”carbon‐basedproductionfacilitiestobebroughtbackintoproduction,therebyyieldingafiniteflowofsocialquasi‐rents.Afasttransitionalsowouldimplythatthelatter’spresentvaluewouldnothavebeensoseverelyreducedbydiscounting.Ofcourse,inastochasticcontrolsetting,“back‐stop”geo‐engineeringinvestmentwouldhavepositiveinsurancevalueevenweretheresearchresultstoturn out never to be needed, or deemed too risky in their potential environmental side‐effects to bedeployedonlytocapturetheprivatequasi‐rents.

Page 51: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐49‐

multiphasemodel.67 But thattaskwillberenderedmore feasibleby tackling itwithinthesimplifying frameworkofa “socialplanningmodel,”as the latter settingdispenseswithalargenumberofcomplicatedassumptions‐‐concerningthemarketbehaviorsofprivate economic agents, and the ability of political authorities to coordinate andimplementcoherentregulatorymeasuresandinstitutionalenforcementmechanismsonaglobalscale‐‐thatotherwisewouldhavetobespecifiedandempiricallyjustified.

Thepresentpaperfocusesonunderstandingthedeterministicsystemofthemodellingframeworkwehaveconstructed,andhasindicatedthedirectionsinwhichwecanproceedtocompletetheintegrationofthepartialmodelswithinacompleteendogenouseconomicandgeo‐physicalsystem.InthenextmajorstageofthisresearchprogramitwillbeimportanttobeginbyreplacingthesimplisticrepresentationofthecarboncyclelagsintheeffectsofcurrentCO2ontheatmosphericconcentrationlevelofthatGHG,andtoexplicitlyspecifytheresultinggaininradiativeforcingandtheresultingriseinthemeanglobalsurfacetemperature.ItwillthenbepossibletofurtherextendtheBasicModelbyintroducingacontinuousendogenous“damageprocess”–whichimpactswelfareindirectly,throughthelossesofproductivecapacitycausedbythepositivetemperature‐dependenteffectsofthefrequency/severityof“extremeweather”eventsthatdisableafractionofproductivecapacity.Usingtheresulting“Basic”platform,thesolutionofacalibratedmodelthatintegratesthepartialmodelsforthetwo“techfix”optionsdiscussedhere,whileallowingcomputationofthewaythatendogenousR&D(directedtoraiseproductivityofcarbonfreetechnologies)andthe“BuyTime”re‐engineeringofexistingandincrementaladditionstocarbon‐usingproductionfacilitiesjointlyaffectthedurationoftheoptimizedtransition’sphases,andthewelfareindicesassociatedwiththeentirepath.Fromthereitwillbestraightforwardtogoontoexaminetherobustnessofthosefindingstovariationsinparameterspecifications.Ofparticularinterest,indeedconcern,willbethealterationsinthephasestructureandallocationofresourcesvaryingthatresultfromvaryingtheconjecturedlocationoftheclimate‐system’stippingpoint.

Furtherbroadeningofthearrayof‘techfix’optionsthataremodelledcanconsiderthequestionofwhetherandwhentobeginconcertedexploratoryR&Donalternativegeo‐engineeringapproachestocreatingeffectiveandenvironmentallymanageably“backstop”technologies–whetherintheformofsolarradiationmanagement(SRM),oraircaptureofcarbonanditssequestration(ACCS).Inthiscaseitwillbeappropriatetoconsiderwhen,ifever,suchresearchshouldbediscontinuedonthegroundthatthedeploymentofcarbonfreetechnologieshadprogressedfarenough

67 The natural starting point for the incremental expansion of the portfolio of tangible and intangibleinvestmentsistoaddtheoptionofmultiplevintages“ofbuytime”retrofittingofcarbon‐basedproductioncapacitytothecalibrated3‐phasegrowthmodelofanoptimaltransitiontoastabilizedglobalclimate,thesolutionofwhich ispresented invanZonandDavid (2013).The lattermodel featuresdirectedR&D inrenewable(carbon‐free)technologiesthatmustbeembodiedinnewphysicalplant,whichisdesignedandsituatedtobefarlessvulnerablethantheexistingCO2‐basedcapitalstocktounscheduledoutputlossesarisingfromsevereweatherdamagedrivenrisingatmosphericCO2concentrationlevels.

Page 52: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐50‐

tomakeitstimelycompletionfeasibleatawelfaresacrificethatwouldbenogreaterthanthatofcontinuedresearchonanuntriedapproachtostabilizingtheclimatewouldcallforfieldexperimentationatscalesthatcarriedhard‐to‐assessrisksofcausingseriousenvironmentaldisruption.

Totacklethelatterissueproperly,however,wouldcallforabandoningthedeterministicframeworkinwhichourDIRAMresearchprogramhasbeendeveloped.Thereisagoodbittobesaidforshiftingassoontoastochasticcontrolreformulation,retainingthe“planningmodel”approachinordertominimizerelianceonassumptionsaboutthebehavioursprivatemarketactorsunderuncertainly.Thisshiftwouldentailspecifyingtheprobabilitydistributionsgoverningthe“climatesensitivity”ofthephysicalsystem,68aswellasexplicitlyacknowledgingthestochasticnatureoftheoutputofR&Dexpenditureinputs,andtherealizedpayoffsoftechnologicaladvancespermittinghigherproductivityintheavailablestockofcapitalembodyingcarbon‐freetechnologies.

SimpleintuitionsaboutthealteredqualitativeinsightsthatwouldemergefromtheseandotherreformulationsoftheDIRAMframeworksuggestthatthegreaterimportanceof“buyinginsurance”againstfuturedown‐sideriskswouldforcegreaterearlysacrificesofconsumptioninorderraise(risky)investmentR&Doncarbon‐freetechnologiesandconcurrentlyraisingthevolumeandpaceof“buytime”retrofittingexpendituresthatloweredtheratioofCO2emissionsperunitofoutputproducedwiththeexistingcapitalstock.Butthepointoftheexerciseistogaininsightsregardingthequantitativealterationsthatallowanceforuncertaintieswouldrequireinthemagnitudesofresourcecommitmentsanddurationsoftheoptimaltransitionphases.

OncetheDIRAMapproachiscarriedintothedomainofstochasticoptimizationitwouldbefeasibletousethesemodelstoexplorequestionsaboutthemanywaysinwhichanoptimalmulti‐stageplanmayfailtoberealized,andwhatmightbedone–withattendantwelfarecosts–toamelioratetheresultingdamage.

Inthenearer‐termfuture,however,therestillaremanyinterestingthingstolearn,andquestionstoanswerbyexploringtheequivalentdeterministicversionofourmodel.Fordifferentparameterconstellationsweareabletoshowhowthetimingofthephaseswillchange,andhowtheevolutionovertimeofwelfarepercapitawillbeaffected,butalsohowtherequiredR&Dexpendituresandthevolumeofgrosscapitalformationwillchange,bothintermsoftheirdistributionandintensityovertime.Further,weareabletouseparametersensitivityexperimentstocomputehow

68Thenatureofthedistributionofthefeedbackparameterdescribingthephysicalsystem’sresponse(intermsofglobalmeansurfacetemperaturetoadoublingoftheatmosphericGHGconcentrationlevelissurroundedbyverysubstantialuncertaintiesarisingfromthecomplexitiesoftheinteractionsamongthephysicalandchemicalprocessesthatunderliethefeedbacksequencesdiscussedinsection2.1(above).InthepresentcontextthereisanimportantissueastowhetheritisreasonabletoassumethattheeffectsofchangesinthemeanatmosphericGHGconcentrationonthedistributionaroundthemean“climatesensitivity”arevariance‐preserving.

Page 53: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐51‐

uncertaintyregardingthepositionoftheclimatetippingpoint,takenincombinationwithdifferentdegreesofrelativeriskaverse“precautionarybehaviour”–onthepartoftherepresentativeconsumer(orhersocialplanningagent)affectstheoptimumtimingandintensitiesofthevariousactivitiesdistinguishedinthemodel.

Theflipsideofthelattercomputationalanalysisisourabilitytoexplorethewelfaredamageof“policyimplementationfailures”.StartingfromtheoptimalprogramforthetransitiontoaviableandstableGHGconcentrationlevel,itisfeasibletoshowtheeffectsoftimeinconsistenciesintheimplementationofmulti‐periodprivatesectorplans,andofbudgetaryorpoliticalconstraintsthatresultinspecificallytimedpostponementsofpublicinvestmentinR&Dandenergyinfrastructureprograms.Alternatively,thisapproachcouldassesstheimpactsofuncompensatedprivatecutsintheupgradingofcarbon‐basedproductionfacilities,orintheroll‐outofthecarbon‐freetechnologywhen,undernormalbusinessconditionsitwouldbeadvantageoustoundertakeinstallationoftherequiredcapitalinvestments.

Howmuchthetimingofactionmattersinthissystem,andthepenaltiesfordeviationfromtheoptimalpathcanbeinvestigatedundertheassumptionthatnoeffortismadetore‐optimizefromthepositionthathasresultedintheaftermathofsuch“shocks”,andalsoundertheassumptionoftryingto“catchup”afteraparticularrangeofdelaysbymeansofre‐optimizingthetransitionpath.Thus,itispossiblewithinthisheuristicmodellingframeworktocomputationallydescribetherelationshipbetweenthelengthsofimplementationdelaysduringspecificphasesofasuccessfultransitiontoclimatestability,andtheconsequentcostsintermsofnet‐welfareforegone.

7.Centering“TechFix”intheclimatepolicymix:abeginning,nota conclusion: Thisinitialstageinourprojectedexplorationsofthe“requirements”forasociallyoptimaltransitiontosustainableglobaleconomicgrowthinaviablestabilizedclimatehasbeenmotivatedprimarilybytheconvictionthatitisvitallyimportanttogivespecific“technologyfix”optionsacentralplaceinstructuredanalysisofpoliciesthatcanrespondeffectivelytothechallengeofglobalwarming.Environmentalandenergyeconomistshavebeenquicktoemphasizetheallocationalefficiencyofvariousfiscalandregulatorymeansofraisingthemarketpricesofcarbonfuels,andsomehavesuggestedthattheefficacyofthatpolicyapproachwouldbeenhancedbytheireffectsininducing“carbon‐saving”technicalinnovationfromprivatesector.

Ashasbeenpointedout,however,thelatterpropositionpresupposesthatraisingthecostoffossilfuelsourcesofenergywouldnotgeneratenegativeincomeeffectsthatdampenedprivateR&Dexpendituresbyenergy‐intensivesectorsoftheeconomy.Furthermore,theintegratedassessmentmodelsthateconomistshavedevelopedasquantitativetoolstoguidepoliciesaimingtoraisethepriceofcarbon

Page 54: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐52‐

typicallyfailtoshowtheconditionsunderwhichtheycouldbeexpectedtoelicitasufficientflowofinnovationsthatweredirectedspecificallytocurtailingandeventuallydisplacingfossilfuelsasadominantglobalsourceofenergy,or,indeed,tohavethedesiredeffectofmitigatingemissionsofCO2.thefirstorddesire.In

Toaddressthis“policyassessmentgap”wouldentailgivinggreaterattentiontospecifyingtherelevantcharacteristicsofthearrayofenergy‐usingtechnologies,andthecorresponding“endogenoustechnologicalprogress”sub‐system,andtoconnectthemwiththeothercomponentsoftheaggregateeconomicgrowthmodelsthatwillgovernthepaceandextentofdeploymentofimprovedproductiontechniques.

Thedynamicintegratedrequirementsanalysismodeling(DIRAM)approachthathasbeenintroducedheremaybeviewedasapreliminarysteptowardsamoreilluminatingrepresentationwithinthecontextoffamiliarIAMsofthepotentialroleoftechnologicalmeasuresinthetransitionfromthepresentdominanceofcarbon‐basedenergytoalowcarbonglobalregimeofproduction.ItsurelywilloccurtosomereaderstoquestionaccordingprioritytoelaboratingthetechnologicalspecificsofexistingIAMs,onthegroundthatmanyotherfeaturesofthesehighlystylizedmodelsalsowarrantfurtherelaboration.Moreover,greaterpolicyrelevancecallsforaspatiallydisaggregatedapproachthatwouldtakeaccountofgeographicalandecologicalvariationsaffectingboththeglobaleconomyandtheclimatesystem.Indeed,therealreadyhavebeenmanyeffortsalongjustsuchlines,impelledbyapolicyinterestinassessingthedifferentialregionalandnationalincidenceofthecostsofcurtailingglobalGHGemissions.69Othersmightarguefortheimportanceofrecognizingtheendogeneityofchangesinthesize,agestructureandspatialdistributionofglobalpopulation,andmoresophisticatedwelfareframeworktoaccountfordemographicaswellaseconomicchangesinthetransitiontoaviablestabilizedclimate.

Evenwerethelatterqualificationtobewavedaway,thereshouldstillberoomtoconsiderthelikelihoodthatarrivingatdomesticandinternationalagreementstoimposefuturetaxesonfossilfuelswouldbepoliticallylessarduouswheretheregoodprospectsoftheavailabilityofaffordabletechnologicalinnovationsthatcouldsignificantlyreducetheadverseimpactsofsuchcommitmentsonfuturerealprofitratesandconsumptionlevels.Justsuchexpectationscouldbecreatedbypriorcommitmentonthepartofthealreadydevelopedandscientificallyandtechnicallyadvancecountriestomajorcoordinatedtechnologicalprograms‐‐suchasthoseaimedatsignificantlyincreasing

69See,Brock,EngstromandXepapadaes(2012),foranintegratedglobalmodelinwhichthespatialvariationsofmeantemperature(inthenorthernhemisphere)areendogenouslygeneratedalongwiththeevolutionofthecorrespondingregionaleconomies.TheRICEmodel(Nordhaus2007,2010)andotherpreviouscontributionstotheliteratureprovidedspatialdistributionsofestimateddamagesduetorisingMGTforzonesaroundtheequator,showingtheregionalincidenceofwelfarelossesalongthedynamicpathoftheglobaleconomythatimposedaglobalcarbontaxthatreflectedonlytheaggregatemagnitudeofthosedamages..

Page 55: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐53‐

theefficiencyofenergydistributionanduse,andatloweringtherealunitcostsofnon‐fossilfuelsourcesofenergy.

Risingpricesforcarbon‐basedenergywouldencourageanyformcost‐savinginnovationactivitiesand,bythattoken,itwouldraisetheperceivedmarginalsocialpayofffromexpandingpublicsupportforscienceandtechnologyresearch–ifonlytocreateaknowledgeinfrastructurethatwouldlowerthecostsofdirectedinnovationintheaffectedsectorsandlinesofbusiness.Nevertheless,theaugmentedpublicR&Dfundingwouldhavetobeforthcoming,andadditional,differentialsubsidymeasureswouldneedtobeintroducedtodirectprivateR&D(andsubsequentdeploytheresults)towardloweringtheunitcostsofcarbon‐basedandalternativeenergysources.

Alternatively,awellthoughtoutsupply‐sideclimatepolicythatstartedwiththegoalofexpandingavarietyofapplications‐orientedR&Dprogramswouldtendtocreatecredibleexpectationsofsubstantialfutureresourcesavingswithcarbon‐freeproductionfacilities,andaconcomitantlysmallersacrificeofmaterialwelfareentailedinrestrictingGHGemissions.ThatcouldcontributetoweakeningeconomicallymotivatedresistancetoascheduleofgraduallyrisingcarbontaxesandthereforeimpartwiderandstrongercommitmentstonationalandinternationalagreementsoncoordinatedandverifiableactionsthatwouldcurtailGHGemissions.Bundlingproposedcommitmentsfromlowerincomedevelopingeconomieswithreciprocalloansubsidiesandcostconcessionsinthetransfertonew“greener”andcarbon‐freetechnologieswouldconstituteacrediblepackagefornegotiationsthatwouldgrowinitsattractivenessastheR&Dprogramsmatured.

Page 56: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐54‐

AcknowledgementsThepresentpaper isthe latestversionofthethorough‐goingreformulationandelaborationoftheworkthatDavidandvanZonpresentedatthe6‐8July2011conferenceoftheInternationalEnergyWorkshop, held at Stanford University. We take this occasion to repeat the gratefulacknowledgementmadeonthatoccasionofthecontributionsofBronwynHallandLucSoetetoearlier drafts on this approach to climate policy research (David et al., 2010) prepared fordiscussion at the workshop on “Grand Challenges for Science and Technology Research”organized by Dominique Foray and Richard Nelson in Lausanne, on 13‐14 May, 2011. ThepresentpaperhasbenefitedfromthediscussionbyparticipantsintheIEWconferencesessionon“R&DInvestment,ClimateandEnergyPolicy,”andfromcomments(onsubsequentversions)by members of the SIEPR‐CEEG Social Science and Technology Seminar at Stanford on 14December2011;and faculty anddoctoral students attending theCEMI seminarspresentedbyDavidattheÉcolePolytechniqueFédéraledeLausanneon17and30May2012.Weunabletoindividually acknowledge all those who on those occasions asked stimulating questions, anddrew our attention to pertinent research that we should consult, but wish to express ourindebtedness to the perceptivecommentsandsuggestionsofferedbyLawrenceGoulderandThomas Weber and also to Ashish Arora, Dominique Foray, Ward Hanson, and WarrenSanderson.Asonpreviousoccasions,thecommentsofEdwardSteinmuelleronthislatestdraftwereespeciallyhelpful.Davidgratefullyacknowledgesthesupportofa“seedgrant”fromtheStanford Institute for Economic Policy Research, and the hospitality extended to him by theDirector and staff of the United National University‐MERIT on the occasions of his workingsojournsinMaastrichtduring2011‐2013.

References:

Acemoglu,D.,P.Aghion,L.Bursztyn,D.Hemous(2010/2012),“TheEnvironmentandDirectedTechnicalChange,”MITWorkingPaper,April28,2010.[Availableat:http://econ‐www.mit.edu/faculty/acemoglu/paper];publishedinAmericanEconomicReview,102.1(2012):pp.131–166,availablealsoat:http://hdl.handle.net/1721.1/61749.

Ackerman,F.,S.J.DeCanio,R.B.Howarth,K.Sheeran(2009),“Limitationsofintegratedassessmentmodelsofclimatechange,”ClimaticChange95:pp.297–315[DOI10.1007/s10584‐009‐9570‐x]

Aldy,J.,A.J.Krupnick,R.G.Newell,I.W.H.Parry,andW.A.Pizer(2010),“DesigningClimateMitigationPolicy,”JournalofEconomicLiterature48(4):pp.903‐934.

Alley, R. B. (2002), The Two Mile Time Machine: Ice Cores, Abrupt Climate Change and Our Future, Princeton, NJ: Princeton University Press.

Alley, R. B., J. Marotzke, W. D. Nordhaus, J. T. Overpeck et al.(2003) , “Abrupt Climate Change,” Science, New Series, Vol. 299, No. 5615 (Mar. 28, 2003): pp. 2005-2010.

Arrow,K.J.(2009).“Anoteonuncertaintyanddiscountinginmodelsofeconomicgrowth,”JournalofRiskandUncertainty38(February):87–94.DOI10.1007/s11166‐009‐9065‐1

Page 57: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐55‐

Arrow,K.J.,L.Cohen,P.A.Davidetal.(2008),“AStatementontheAppropriateRoleforResearchandDevelopmentinClimatePolicy,”TheEconomists’Voice,6(1):Article6,March2008.[Availableat:http://www.bepress.com/ev/vol6/iss1/art6.]

Barnosky,A.D.,E.A.Hadly,J.Bascompteetal.(2012),“ApproachingastateshiftinEarth’sBiosphere,”Nature,vol.486(7June):pp.52‐58.

Barro,R.andX.Sala‐i‐Martin(2004),EconomicGrowth,2ndEd.Cambridge,MA:MITPress.

Bosetti,V.,Carraro,C.,Galeotti,M.,Massetti,E.,andM.Tavoni(2006).“WITCH:Aworldinducedtechnicalchangehybridmodel.”TheEnergyJournal,SpecialIssueonHybridModelingofEnergy‐EnvironmentPolicies:ReconcilingBottom‐upandTop‐down.

Brock,W.A.,G.EngstromandA.Xepapadaes(2012).“Spatial‐ClimateModelsintheDesignofOptimalClimatePoliciesacrossLocations,”FEEMClimateChangeandSustainableDevelopmentSeries,WorkingPaper74.2012(August26).[Availableat:http://www.feem.it.]

Burroughs,W.J.(2005),ClimateChangeinPrehistory:TheEndoftheReignofChaos,Cambridge,UK:CambridgeUniversityPress.

Cai,Y.,K.L.Judd,T.S.Lontzek(2012a),“DSICE:ADynamicStochasticIntegratedModelofClimateandtheEconomy.”CenterforRobustDecision‐MakingonClimatePolicy,WorkingPaperNo.12‐06,January.

Cai,Y.,K.L.Judd,T.S.Lontzek(2012b),“TippingPointsinaDynamicStochasticIAM,”CenterforRobustDecision‐MakingonClimatePolicy,WorkingPaperNo.12‐07,January.

Carraro,C.,B.C.C.vanderZwaanandR.Gerlagh(2003).”Endogenoustechnologicalchangeineconomy–environmentmodeling,anintroduction,”ResourceandEnergyEconomics25:pp.1–10.

Dasgupta,P.S.andG.M.Heal(1980).TheEconomicsofExhaustibleResources,Cambridge,UK.:CambridgeUniversityPress.

Dasgupta,P.S.andG.M.HealandM.K.Majumdar,(1978),“ResourceDepletionandResearchandDevelopment,”FrontiersofQuantitativeEconomics,vol3B,M.Intrilligator,ed.,Amsterdam:North‐Holland.

David,P.A.(2009),“PreparingfortheNext,VeryLongCrisis:Towardsa‘Cool’ScienceandTechnologyPolicyAgendaforaGloballyWarmingEconomy,”R&DPolicyChallengesforEurope:ConceptualandEmpiricalFoundations,Brussels:EuropeanCommission..[Preprintavailableat:http://www.merit.unu.edu/publications/wppdf/2009/wp2009‐031.pdf].

David,P.A.,C.Huang,L.Soete,A.vanZon(2009).”TowardaGlobalScienceandTechnologyPolicyAgendaforSustainableDevelopment.”UNU‐MERITPolicyBriefNo.4,Maastricht,Netherlands[availableat:http://www.merit.unu.edu/publications/pb/unu_pb_2009_4.pdf].

David, P. A., B. H. Hall, L. Soete and A. van Zon (2010), “Developing and Managing a Portfolio of Technologies to Respond to Global Climate Change Risks: A Truly ‘Grand Challenge’ for Science and Research Policy.” Unpublished Working Paper (28 September), prepared for

Page 58: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐56‐

presentation to the Workshop on Grand Challenges for Technology Research, held at CEMI-EPFL, Lausanne, 13-14 May, 2011.

David,P.A.,A.vanZon(2011),“Optimal Transition Paths toward Global Climate Stabilization:

Implications for R&D Investment and Its Timing.” Presented at the International Energy Workshop Conference, held at Stanford University, 6-8 July 2011

Dowlatabadi, H. (1995),”Integrated Assessment Models of Climate Change: An Incomplete Review,” Energy' Policy, VoL 23, No. 4/5, pp. 289-296.

Farrel,D.andJ.K.Rennes(2008),“Howtheworldshouldinvestinenergyefficiency,”McKinseyQuarterly,(June).

Gans,J.S.(2009)."InnovationandClimateChangePolicy."MelbourneEconomicsDepartmentWorkingPaper(27February).[Availableathttp://works.bepress.com/joshuagans/24].

Goulder,L.H.andK.Mathai(1998),“OptimalCO2AbatementinthePresenceofInducedTechnologicalChange.”NBERWorkingPaper6494.Cambridge,MA.(April).

Goulder,L.H.andS.H.Schneider(1999),“InducedTechnologicalChangeandtheAttractivenessofCO2AbatementPolicies,”ResourceandEnergyEconomics,21:pp.211‐253.

Goulder,L.H.andK.Mathai(2000).“OptimalCO2AbatementinthePresenceofInducedTechnologicalChange.”JournalofEnvironmentalEconomicsandManagement,39(1):pp.:1–38.

Grove,A.andR.Burgelman(2008),“Anelectricplanforenergyresilience,”McKinseyQuarterly,December.

Grubler,A.N.NakicenovicandW.D.Nordhaus,eds.(2002),InducedInnovationandClimateChange:CollectedEssays.Washington,D.C.:ResourcesfortheFuturePress.

Hall, D.C. and R. J. Behl (2006), “Integrating economic analysis and the science of climate instability,” Ecological Economics 57: pp. 442– 465.

Heal,G.(1976),“Therelationshipbetweenpriceandextractioncostsforaresourcewithabackstoptechnology,”TheBellJournalofEconomics,7(2):pp.371‐378.

Hendry,D.F.(2010),“ClimateChange:LessonsforourFuturefromtheDistantPast,”UniversityofOxfordDepartmentofEconomicsDiscussionPaper,No.485,(January).

Hoel,M.(2010),“IsthereaGreenParadox?”,CESifoWorkingPaperNo.3169,September,[Availablefromhttp://www.cesifo‐group.or./wp].

Hotelling,H.(1931),“TheEconomicsofExhaustibleResources,”JournalofPoliticalEconomy,39(2),April:pp.137‐175.

Hourcade,J.‐C.,A.PottierandE.Espagne(2011),“TheEnvironmentandDirectedTechnicalChange:Comment,”FEEMWorkingPaper95.2011.Availableat:http://www.feem.it/userfiles/attach/201112231537234NDL2011‐095.pdf

Page 59: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐57‐

IPCC(2001),ClimateChange2001:ThirdAssessmentReportoftheIntergovernmentalPanelonClimateChange,WorkingGroupI:ThePhysicalScienceBasis.[Availableat:http://www.grida.no/publications/other/ipcc_tar/?src=/climate/ipcc_tar/wg1/248.htm.

IPCC(2007),ClimateChange2007:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange,Solomon,S.,D.Qin,M.Manning,Z.Chen,M.Marquis,K.B.Averyt,M.TignorandH.L.Miller,eds.Cambridge,UKandNewYork:CambridgeUniversityPress.[Availableathttp://www.ipcc.ch].

Kahenman,D.andA.Tversky(1979),“ProspectTheory:ananalysisofdecisionunderrisk,”Econometrica,47:263‐291.

Kelly,D.L.andC.D.Kolstad(1999),"IntegratedAssessmentModelsforClimateChangeControl,"Ch.8inH.FolmerandT.Tietenberg(eds.),InternationalYearbookofEnvironmentalandResourceEconomics1999/2000:ASurveyofCurrentIssues.(Cheltenham,UK:EdwardElgar).

Klemperer,P.(2009)“WhatistheTopPriorityonClimateChange?,”PaperPresentedtothe2007UNConferenceonClimateChangeinBali.OxfordEconomicsDepartment,DiscussionPapers(January)[availableathttp://www.paulklemperer.org].

Lemoine,D.M.andC.Traeger,2011,“TippingPointsandAmbiguityintheIntegratedAssessmentofClimateChange,”PresentedattheInternationalEnergyWorkshop,heldatStanfordUniversity,6‐8July2011;alsoatNBEREnvironmentalandEnergyEconomicsSummerInstitute2011,July15,2011.[Availableat:http://www.nber.org/confer//2011/SI2011/EEE/Lemoine_Traeger.pdf.]

Lemoine,D.M.and.C.Traeger,2014,“WatchYourStep:OptimalPolicyinaTippingClimate,”AmericanEconomicJournal:EconomicPolicy,6(1),137‐166.

Leonard,D.andN.VanLong,1992,OptimalControlTheoryandStaticOptimizationinEconomics,Cambridge,Eng.andNewYork:CambridgeUniversityPress.

Lenton,T.M.,H.Held,E.Kriegleretal.,2008,“TippingelementsintheEarth’sclimatesystem”.ProceedingsoftheNationalAcademyofScience(PNAS),105:pp.1786–1793.

Loomes,G.andR.Sugden(1982),“RegretTheory:AnAlternativeTheoryofRationalChoiceUnderUncertainty,”TheEconomicJournal,92(368):pp.805‐824

Lucas,R.E.,1988,“OntheMechanicsofEconomicDevelopment”,JournalofMonetaryEconomics,22,pp.3‐42.

Malcomson,J.M.,1975.“ReplacementandtheRentalValueofCapitalEquipmentSubjecttoObsolescence,”JournalofEconomicTheory,10,pp.24‐41.

Manne,A.S.,andR.G.Richels,(1991),"Buyinggreenhouseinsurance,"EnergyPolicy,July/August):pp.543‐552.

Manne,A.S.andR.G.Richels,1992,BuyingGreenhouseInsurance:TheEconomicCostsofCO2EmissionLimits,Cambridge,MA:TheMITPress.

Page 60: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐58‐

Millner,A.,2012,“OnWelfareFrameworksandCatastrophicClimateRisks,JournalofEnvironmentalEconomicsandManagement(inpress,andforthcoming2013).[Availableat:http://dx.doi.org/10.1016/j.jeem.2012.09.006i].

Nordhaus,W.D.(1993a).“OptimalGreenhouse‐GasReductionsandTaxPolicyinthe‘DICE’Model,”AmericanEconomicReview,May1993,vol.83,pp.313‐317.

Nordhaus,W.D.(1993b).“Rollingthe‘DICE’:Anoptimaltransitionpathforcontrollinggreenhousegasemissions,”ResourceandEnergyEconomics,15:pp27‐50.

Nordhaus,W.D.(2002),“Modelinginducedjnnovationinclimate‐changepolicy,”Ch.9inInducedInnovationandClimateChange:CollectedEssays,eds.A.Gruebler,N.NakicenovicandW.D.Nordhaus,Washington,D.C.:ResourcesfortheFuturePress.[Preprintavailableat:http://nordhaus.econ.yale.edu/induced_innovation_preprint.pdf.]

Nordhaus,W.D.(2007),AQuestionofBalance:EconomicModelsofClimateChange,(YaleUniversityPress,NewHaven,CT).

Nordhaus,W.D.(2010),”Economicaspectsofglobalwarminginapost‐Copenhagenenvironment,”ProceedingsoftheNationalAcademyofSciences,PNASEarlyEdition(6pp.)[availableat:http://www.pnas.org/cgi/doi/10.1073/pnas.1005985107].

O’Riordan,T.andT.M.Lenton(2011),"Tacklingtippingpoints",BritishAcademyReview,18(Summer),21‐7.[Availableat:http://www.britac.ac.uk/review/18/index.cfm].

Parker,P.,R.Letcher,A.Jakeman(2002),“Progressinintegratedassessmentandmodeling,”

EnvironmentalModelling&Software17:pp.209–217.

Popp,D.,2002.Inducedinnovationandenergyprices.TheAmericanEconomicReview92(1):pp.160–180.

Richter,Burton(2010),BeyondSmokeandMirrors:ClimateChangeandEnergyinthe21stCentury,NewYork:CambridgeUniversityPress.

Romer,P.M.,1990,“EndogenousTechnologicalChange,”JournalofPoliticalEconomy,98,pp.71‐102.

Rebelo,S.,1991,“LongRunPolicyAnalysisandLongRunGrowth,”JournalofPoliticalEconomy,99,pp.500‐521.

Sarewitz,D.andR.Nelson(2008)“Threerulesfortechnologicalfixes.”Nature456(18December)2008:pp.15‐18[availableathttp://DOI:10.1038/456871a].

Savage,L.J.(1951),“Thetheoryofstatisticaldecision,”JournaloftheAmericanStatisticalAssociation,46:pp.55‐67.

Scarfetta,N.(2012),”Testinganastronomicallybaseddecadal‐scaleempiricalharmonicclimatemodelversustheIPCC(2007)generalclimatecirculation,”JournalofAtmosphericandSolar‐TerrestrialPhysics,[dx.doi.org/10.1016/j.jastp.2011.12.005]:pp.1‐15.

Sinn,H.W.(2008),“PublicPoliciesagainstGlobalWarming:asupplysideapproach.InternationalTaxandPublicFinance,15:pp.360‐394.

Page 61: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐59‐

Sinn,H.W.(2009),“TheGreenParadox,”CESifoForum,10(3),Autumn:pp.1—13.

Sinn,H.W.(2012),TheGreenParadox:ASupply‐SideApproachtoGlobalWarming.Cambridge,MA:MITPress.

Slovic,P.andA.Tversky(1974).“WhoacceptsSavage’sAxiom?”BehavioralScience,19:pp.368‐373.

Solomon,S.etal.,eds.(2007)ClimateChange2007:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChangeeditedbyS.Solomon.Cambridge,Eng.:CambridgeUniversityPress.

Stern,N.(2006),TheEconomicsofClimateChange,theSternReview,CambridgeUniversityPress.

Stockwell,D.R.B.(2011),“OntheDynamicsofGlobalTemperature,”(August2)[availableathttp://www.rxiv.org/pdf/1108.0004v1.pdf.]

Tol,R.S.J.(2008),“TheSocialCostofCarbon:Trends,OutliersandCatastrophes,”Economics,2(2008‐25),August12[availableathttp://www.economics‐ejournal.org/ej‐search?SearchableText=Tol%2C+R.+J.+S.].

Tversky,A.andD.Kaheneman(1981),“TheFramingofdecisionsandthepsychologyofchoice,”Science,211:pp.453‐458.

Valente,S.(2009),“EndogenousGrowth,BackstopTechnologyAdoptionandOptimalJumps,”CER‐ETH:CenterofEconomicResearchWorkingPaperNo.09/104,(FebruarySwissFederalInstituteofTechnology,Zurich.[Availableat:http://www.cer.ethz.ch/research/wp_09_104.pdf].

vanderPloeg,F.andC.A.Withagen(2010),“IsThereReallyaGreenParadox?”.CESifoWorkingPaperNo.2963[Availablefromhttp://www.cesifo‐group.or./wp].

vanZon,A.andP.A.David,A.vanZonandP.A.David(2012),“OptimalMulti‐PhaseTransitionPathstowardaGlobalGreenEconomy,”(PresentedattheInternationalEnergyWorkshopConferenceheldinCapeTown,S.A.on19‐21June2012).[AvailableasUNU‐MERITWorkingPaperSeriesNo.12‐076(December)at:http://www.merit.unu.edu/publications/wppdf/2012/wp2012‐075.pdf.

vanZon,A.andP.A.David, “Designing an Optimal 'Tech Fix' Path to Global Climate Stability: Directed R&D and Embodiment in a Multi-Phase Climate Policy Framework,” (with A. van Zon), SIEPR Discussion Paper 12-029 (August, 2013.[Available at http://siepr.stanford.edu/publicationsprofile/2601.

vonNeumann,J.andO.Morgenstern(1947),TheoryofGamesandEconomicBehaviour(2ndEdition).Princeton:PrincetonUniversityPress.

Weitzman,M.L.(2009a),“OnModelingandInterpretingtheEconomicsofCatastrophicClimateChange,”TheReviewofEconomicsandStatistics91(1):1–19

Weitzman,M.L.(2009b).“AdditiveDamages,Fat‐TailedClimateDynamics,andUncertainDiscounting.”Economics3,2009‐39:1‐19.[Availableathttp://www.economics‐ejournal.org/economics/journalarticles/2009‐39]

Page 62: PAD&AvZ OptimalPaths-for-Climate-TechFix (SU-iew …...to the same special issue of Energy Journal) to combine detailed “bottom up” representations of engineering realities in

‐60‐

Weitzman,M.L.(2012)."GHGTargetsasInsuranceagainstCatastrophicClimateDamages,"JournalofPublicEconomicTheory,14(2),pp.221‐244.AvailableasNBERWorkingPaper163136(June2010)at:http://www.nber.org/papers/w16136.