paa-grafted pu effect of reaction temperature on the ... pu † 305-764 220 (2002 10 12 , 2003 1 6 )...

8
224 HWAHAK KONGHAK Vol. 41, No. 2, April, 2003, pp. 224-231 PAA-grafted PU 305-764 220 (2002 10 12 , 2003 1 6 ) Effect of Reaction Temperature on the Synthesis of PAA-grafted PU Films through an Oxygen Plasma Treatment Young-Sun Kim, Oh-Jun Kwon, Eun-Hyung Kim, Sung-Woon Myung and Ho-Suk Choi Department of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-gu, Daejeon 305-764, Korea (Received 12 October 2002; accepted 6 January 2003) Toluene 2,4-diisocyanate(TDI) polyol Polyurethane(PU) , peroxide , peroxide Polyacrylacid(PAA)-grafted PU . 1,1-diphenyl-2-picrylhydrazyl(DPPH) peroxide 2.0 nmol/cm 2 , . PAA-grafted PU ATR-IR ESCA , -COOH . , , Ea=39.5 kJ/mol . . , ESCA SEM PAA-grafted PU , PU PAA . Abstract - Polyurethane (PU) films were synthesized from toluene 2,4-diisocyanate (TDI) and polyol. After introducing peroxides on the PU films through oxygen plasma treatment, PAA-grafted PU films were synthesized through the solution reaction of acrylic acid monomer with peroxides which are used as initiators. The maximum concentration of peroxides obtained by 1,1-diphenyl-2-picrylhydrazyl (DPPH) method was 2.0 nmol/cm 2 and we investigated the effect of reaction tem- perature on the change of grafting degree. The surface properties of the surface-modified PU films were characterized by the Attenuated Total Reflection-Fourier Transformed Infrared (ATR-FTIR) and Electron Spectroscopy for Chemical Analysis (ESCA). We measured the quantity of introduced -COOH groups using back-titration method. As results of this study, the amount of PAA grafted on PU film was increased with increasing reaction temperature and the apparent activation energy of this reac- tion was 39.5 kJ/mol. After comparing this result with other previous results, we could conclude that the activation energy of this reaction strongly depended on the type and the structure of substrate materials. Finally, since the dried PAA-grafted PU film showed locally-agglomerated non-uniform structure as the result of observations through ESCA and SEM, the PAA chain grafted on PU film certainly had locally different lengths due to the complex reaction paths. Key words: Oxygen Plasma, Modification, Polyurethane, Activation Energy 1. [1]. , [2-5]. , , [6-11]. [12-18], [17-19], [20], [21] . 3 , , , To whom correspondence should be addressed. E-mail: [email protected]

Upload: nguyennguyet

Post on 24-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PAA-grafted PU Effect of Reaction Temperature on the ... PU † 305-764 220 (2002 10 12 , 2003 1 6 ) Effect of Reaction Temperature on the Synthesis of PAA-grafted PU

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003, pp. 224-231

�������� � PAA-grafted PU � ��� �� ��� ��

�������������� ��†

����� �����305-764 � �� �� 220

(2002� 10� 12� ��, 2003� 1� 6� ��)

Effect of Reaction Temperature on the Synthesis of PAA-grafted PU Films through an Oxygen Plasma Treatment

Young-Sun Kim, Oh-Jun Kwon, Eun-Hyung Kim, Sung-Woon Myung and Ho-Suk Choi†

Department of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-gu, Daejeon 305-764, Korea(Received 12 October 2002; accepted 6 January 2003)

� �

Toluene 2,4-diisocyanate(TDI)� polyol� ���� Polyurethane(PU) ��� ���, ����� ��� ��� �

����� ��� peroxide� ��� , peroxide� !"#$ � �%&'($ Polyacrylacid(PAA)-grafted PU ���

��). 1,1-diphenyl-2-picrylhydrazyl(DPPH)*($ +,- ����� ./� 01 peroxide2 34 5�6 2.0 nmol/cm2

�7(8, �% &'9�� :; <=>?�2 @A� B���). PAA-grafted PU ��2 ./ CDE ATR-IRF ESCA�

�����, ��1 -COOH2 GHCDE IJG*� ����). K LM2 NF, <=>O1 ����� ��2 PQR6

&' 9�S TSU� :�V TS��(8, �$WX Y 1 Z[R \A�]^6 Ea=39.5 kJ/mol�7). K NF� _ L

MNF� ̀ a CD� NF &'2 \A�]^6 Rb2 cd e MB� fg 2hU� + i j7). k($, ESCA e SEM

� ��� 1 PAA-grafted PU ��2 MB CD NF, PU ./� l1 PAA6 ^IJ($ mno� Cp� [�q7).

Abstract − Polyurethane (PU) films were synthesized from toluene 2,4-diisocyanate (TDI) and polyol. After introducing

peroxides on the PU films through oxygen plasma treatment, PAA-grafted PU films were synthesized through the solution

reaction of acrylic acid monomer with peroxides which are used as initiators. The maximum concentration of peroxides

obtained by 1,1-diphenyl-2-picrylhydrazyl (DPPH) method was 2.0 nmol/cm2 and we investigated the effect of reaction tem-

perature on the change of grafting degree. The surface properties of the surface-modified PU films were characterized by the

Attenuated Total Reflection-Fourier Transformed Infrared (ATR-FTIR) and Electron Spectroscopy for Chemical Analysis

(ESCA). We measured the quantity of introduced -COOH groups using back-titration method. As results of this study, the

amount of PAA grafted on PU film was increased with increasing reaction temperature and the apparent activation energy of this reac-

tion was 39.5 kJ/mol. After comparing this result with other previous results, we could conclude that the activation energy of this

reaction strongly depended on the type and the structure of substrate materials. Finally, since the dried PAA-grafted PU film

showed locally-agglomerated non-uniform structure as the result of observations through ESCA and SEM, the PAA chain

grafted on PU film certainly had locally different lengths due to the complex reaction paths.

Key words: Oxygen Plasma, Modification, Polyurethane, Activation Energy

1. � �

������ �� �� �� ���� �� ������

�� �� �� !" #$ %&� '( )" *+,�- .�

/�0� '�[1]. 123 !" 4� �5�6$ 7, 89: ;<�3

!��% =(3� 7>� �2 >?@ �A�� B�C �����

DE� FGHI DE J�@ ���� �2 KL�@ MN�OP Q

R% .� ST0U�[2-5]. V �� ��� WX�M DE� �L

KL�@ MN�� ��L, !" #, YZ� [\ ]$ ^M_ `

� '�[6-11]. )D * DE 1abc d# efg-P e/h[12-18],

FGHI[17-19], �ih[20], j-3 ek[21] ]$ /��� DE� �

�� d#l mn? o`$ ` � 'P pq/�r ]$ MNnsP e

f� t� /�0� '�. �2 ef� 3%&- �u` � 'Pv, w

x yn z/fg- ���WX{ Y|"@ yn� z/�� ���W

X@ m��P ef��, }xP kz/ efg- S+<~ �P ��

�B��C G�8$ !n� �� Y|"{ ���� 1abc ns

P ���, � �xP +� �P �� �W ��C �:� �P†To whom correspondence should be addressed.E-mail: [email protected]

224

Page 2: PAA-grafted PU Effect of Reaction Temperature on the ... PU † 305-764 220 (2002 10 12 , 2003 1 6 ) Effect of Reaction Temperature on the Synthesis of PAA-grafted PU

������� � �� � 225

opy

hydroperoxide@ !n� ��, �� �� �M�C �:�$ �

�� �� Y|"{ ���� 1ab� nsP ef� '�[22, 23].

��C �� DEJ� ef�$ ���� ���l DE� �L

KL�@ MN�g-� �� ���l �� , Rz * ��$ �&

�- DEl h� � �� �L$ �� %&� 'P ��Wl

m�� %L� ��. � QRl  ¡ * ¢ � ;W n£0� 'P ¤

¥ ¦ �����l DE� �L KL�@ MN�g-� �����

§l Rz * ,¨* ©� ª=� �� �L* ���«L$

¬��� B���. �@ B �­ QR-�, ��® TDI-¬¯ �

����$ #�� °±$ ?z��, 1 DE� �� FGHI@ �

��� G�8$ ²n� ³�, ́ �µ�g- DE 1ab��� ��

���l DE� ¶·¸¹ KL��$ MN�6�, ����� DE�

´�µ� 1ab�� ) �M, º» n¼, ́ �µ� ½Ml ¾¿$ z

/�6�.

2. � �

2-1. �� ��

� ¹À� /�Á FGHI º» ,ÂP �� Fig. 1� Mn�6�. º

»�P rf-plasma º»�-�, ÃÄ�% 13.56 MHz, 4¬ ÅÆ� rotary

pump@ ���� S+ <~@ �&�6�, bell-jar ²g- Ç�Á º»

�(model EPPS 2000, PLASMART Inc.)% /�0U�. º»� 4¬l

ÅÆ� S+È�&(model 801, Varian)- ÉÊ�6�, �N �"l �|�

Mass Flow Controller(MFC, Brooks, Japan, Model 5850E)@ ����

º»� 4¬l ÅÆ$ zË�6�. FGHI �!� º»� 4¬l �

ÌÍg- ÎÈ Ï*�6�.

2-2. �� ��

� QR�C /� ��®, �Ð, ¹�Ñ, ÒÓÔ���n´Õ�c(TDI)

P (Ã)�Ö¦×�Ø2&�C ?+�6�, acrylic acid(AA) Y|"P =

� Junsei Chemical Co., ��®� (Ã)Ù�:Ú, Sodium HydroxideP

Aldrich(99.99%)�C RN�� /��6�.

2-3. ��� � ��

ÛÜ Polyol(100 g) TDI@ º»nÝ ����� °±$ Þ�U�,

+�% ßYÁ �� �B��C º»� �Ó(��. 24n¼ degas@

polyol@ à���, silicon(1.2 g), catalyst(0.39 g)@ á#�� 500 rpmg

- 5�¼ �º�6�. TDI@ â%�� k� 2,000 rpmg- �ºãM@

®��, TDI(46.34 g)@ â%�� ä� n¼� åká# � º»� å

X0M_ �6�. �ºæ$ ���çè °± B� éç��6�, ê 24

n¼ ³, éç�Á ��� °±$ ë$ � 'U�.

2-4. ������ �� � ���� ����

3×3 cm2 ��l ìF$ nX�Ê) B� �Ê��, º»� 4¬@ S

+g- Þ�� B�C -¯� íb@ îy�6�. �|zË�(MFC)@

���� =Ê|l ��@ ÃN�EC, º»� 4¬l ÅÆ$ zË�6

�. ���Cl ÅÆ� 250 mTorr- �Ê ³, 10� %| ��@ ÃN

��, �� FGHI@ 30­¼ �!nÝ ����� °± DE$ J�

�6�. FGHI �!� º»� 4¬l �ÌÍg-¬¯ ïÊM@ Ï*

�6�. J� �³�P ð��P G�8l ?�@ B�C S+$ 10

�¼ ñ(à ³, òó %ç* ´·ô$ 20�¼ ÃN�6�. FGHI

J� ìF$ +� d� 5�¼ õönÝ hydroperoxide% !�M_ º

»n÷�. ø� Ê�S ½Ml ́ �µ� �æ$ ��- purgensù, ì

F$ �æ d� úN�� ´�µ�l DE 1abc d#$ ¹n�6

�. º» ³l nXP û�ü ýu�- 2þ �ÿ��, ethanol$ �Ð-

/��� soxhlet extractor�C 24n¼ %| ð��P homopolymer@

?��6�.

2-5. Grafting Degree(GD) �

����� °± B� �W�P -COOHl Ê| ��� o Êef$

���6�. NaOH/ethanol �æ(0.01 mol)$ Þ��, °±$ �� <~

�C 80oC�C 1n¼ yï º»$ n÷�. FGç�l �M@ <� <

~- �Q ��n� ³�, phenolphtalein$ &nêg- � e� ÃN�

�, HCl/water(0.01 ml)- d: Ê$ �6�. d: Êl A@ ��

5� ��� YB E � 1ab�Á �$ ���6�.

Grafting Degree(µg/cm2)=[(VNaOHCNaOH−VHClCHCl)103 MAA]/S (1)

��C, SP 1ab�Á °±l E �ù, VP /�Á NaOH{ HCll

¬, MAAP ´�µ�l ��|$ 3���[21].

2-6. !"# PU$ %& '(

2-6-1. Attenuated Total Reflection Fourier-Transform Infrared Spectrosc

(ATR-FTIR)

Digilab FTS-165 FT-IR Spectrometer- DE m�Á °± Bl carboxyl

group$ ���Pv /��6�.

2-6-2. Contact Angle

����� °±l DE� ��* -COOH@ %&� 'g�- �

��C �g-l �:@ ÉÊ�6�. WX DEl � ÿM*

�� ) ���$ Erma contact angle meter(Model G-1)@ ���C

����� °± DE� =Ê ¼�g- =Ê �(10µl)l ­��@

�(û�� 17 °±l DE �e�� �ÓP �M@ ÉÊ�6�.

2-6-3. Electron Spectroscopy for Chemical Analysis(ESCA)

ESCALAB MK �, V.G. Scientific LTD, East Grinstead UK(Mg Ka

1,253 eV, 90o)@ ���� �"DE �El R��3 1l :ÚA

#<~@ Ê�Ê| ���6�.

2-6-4. Scanning Electron Microscope(SEM)

k��$ ��� Ã/` 7 �!�P 2ß k�@ ���� ��l D

E$ K��6�.

3. �� �

3-1. Grafting Degree(GD)$ )*

����� °±$ �� FGHI@ ©�� G�8$ MN�EFig. 1. Reactor for plasma treatment.

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Page 3: PAA-grafted PU Effect of Reaction Temperature on the ... PU † 305-764 220 (2002 10 12 , 2003 1 6 ) Effect of Reaction Temperature on the Synthesis of PAA-grafted PU

226 �������������������

diperoxide(R-O-O-R){ hydroperoxide(R-O-O-H)% ²Á�. =Ê �M �

<l <~�C ´�µ�g- 1abc º»$ �g- hydroperoxide%

��0� Y|"{ ���E 1abc mnº»� =(��. Fig. 2P

º» Êl m�M@ ��Ã� '�.

Fig. 3� 1ab� º» �M� �G ����� DE� MNÁ ��

´�µ�l �l �:@ ��Ã� '�. 20-90oC�C ÉÊ$ �6�,

60 oC �&P GD�� z�� < �&Þ 80oC ¬¯P !� ý%@

3�4P �$ " � '�. 70oC �<�CP ´�µ�l �æ <�C

homopolymer�� K�0UPv, ��� 70oC �<�Cl !� GD

ý%l �** �g- /XÁ�. Soxhlet #ö$ © homopolymer�

$ ?��OP õÆ�M òR�� ���C ²Á homopolymer��

DE 1ab�Á ���� C- $%C & ?�0& '(�. �� Q

R�CP �ædl homo polyacrylic acid!$ e&�� B�C Mohr salt

[14, 21, 24], ):*[22], +:R�[24] ]l �ã +$ /��6�. �

QR�CP �� �ã +$ /��&P '(&Þ 60oC ���CP

homopolymer% �Kg- R�` ÊM- ²0& '(g�- Soxhlet

#ö$ ©�� ²,$ &M -·P homopolymer�� .�/ �ÊÁ

�g- ¼Ã�� � �B�Cl ¹ÀAÞ$ /��� �Ml ¾¿$

º» ãM0 g- Ç1��� �6�. ��´�µ�l DE1ab�

º»� ����� DEl pq/�rl ��{ �-¬¯l 1ab�

mn, kÄ � 2XY�- 33 � 'Pv, GD@ AÊ�P Ã4Y�P

kÄY�- %Ê��, º»l mnP DE� ²Á pq/�r�CÞ

nîÁ�� %Ê�6�. �2 %Êg-¬¯ Arrhenius f5$ �·P

1ß� -6$ ÇÊ�6�. Ghosi[25] ]� dicumyl peroxide@ mn?

- /� ´�µ�l 1abc +d#�C � º»� 1ß º»7$ Ï

*�6�. 8, pq/�r ²$ B FGHI º»z9$ =Ê�È

�&�g-� ����� DE� ²Á pq/�rl ¨:M(θ)P -

; ìF�C y=��� ¼Ã�6�. �kl QR�C DPPH fg- É

Ê A[26], pq/�rl ¨:MP 100 W, 250 mTorr, 30 secl F

GHI º» z9��C 2 nmol/cm27$ < � 'U�.

(2)

� 5$ 0¬¯ º»n¼ tr�& ���, � 5l ��� log@ =�

E ´al 5$ �M` � '�.

(3)

� ¹À�C 30%́ �µ� �æ 100 ml d�P 0.42 moll ´�µ�

� '�, 60oC�C 100µg/cm2l GD@ %Ê` 7, 9 cm2l ìF� M

N> � 'P ?)l ´�µ� ½MP 12.5µmol -�, xl �� )�

4.5×10−5 ÊM% Á�. �GC, ­� �ædl ́ �µ� ½M(CAA0)� �

�� 1ab�Á ´�µ� ½M(CG)P Ð� î� 7>�, x→0G� `

� '�, �7, ln(1−x)=−x− x2− x3...≈−x- @/` � '�. �, xP

GD� �A��- 5 (3)� ¼Y/ ´a{ B� ln(GD)P Ë)�Ml

o�� �A�P �g- @/` � '�.

ln(GD) ≈ ln(const×k0trθ)− (4)

V, � º»� |l ´�µ� �æ d� DE� pq/�r% M

NÁ ����� °±$ ú��� 1ab� º»$ n� ���-, º

»�l |MN$ %Ê�� 0ß º»g- ¼Ã` �M '�. � C�

5 (2)P �� B� D � '�.

(5)

� 5$ 0¬¯ º»n¼ tr�& ���, � 5l ��� log@ =�E,

(6)

� 0(, AE 5 (4){ B� A@ BÈ Á�. �@ 7ll nß º»

g- =º:�� �E, º» ãM5�

(7)

� 0ù, � 5$ 0¬¯ º»n¼ tr�& ��� Ê��E,

(8)

� 0ù, FVl GH ï$ km�E, [(1−x)1−n−1]=−(1−n)x+O(x2)��

-, x→0 = 7, [(1−x)1−n−1]≈−(1−n)x- @/` � '(, ?2 g-

rdCAA

dt------------– kθCAA k0e

Ea RT⁄– θCAA= = =

1 x–( )ln–[ ]ln 1CG

CAA0

-----------– ln– 1

CAA

CAA0

-----------– ln–ln=ln=

= k0trθ( )ln EaRT-------–

12--- 1

3---

EaRT-------

rdCAA

dt------------ kθCAA0 k0e Ea RT⁄– θCAA0= =–=

xlnCG

CAA0

----------- ln k0trθ( )ln Ea

RT-------–= =

rdCAA

dt---------------– kθCAA

n k0e Ea RT⁄– θCAAn= = =

CAA01 n–

1 n–----------- 1 x–( )1 n– 1–[ ]–

CAA01 n–

1 n–----------- 1

CG

CAA0

-----------– 1 n–

1– k0trθe Ea RT⁄–= =

Fig. 2. Schematic diagram of graft copolymerization on a PU surface.

Fig. 3. Effect of reaction temperature on the grafting of AA onto PU film(plasma treatment; 100w, 250 mTorr, 30 s, grafting; 30%, 1.5 h).

���� �41� �2� 2003� 4�

Page 4: PAA-grafted PU Effect of Reaction Temperature on the ... PU † 305-764 220 (2002 10 12 , 2003 1 6 ) Effect of Reaction Temperature on the Synthesis of PAA-grafted PU

������� � �� � 227

5 (4){ B� @/5$ �M` � '�. 12�-, � ¹À B�

|l AA�æ d� î� mn? °±$ ú� C��P º»ß��

<KI� 5 (4)P J�È Á�.

�GC, 5 (4)@ �� Arrhenius plot(Fig. 4)g-¬¯ KG ó:

�L&@ R�6�. �7, �æ dl homopolymerl �ÿ� ò.�

C�@ �O��, /�Á ¹À�XP homopolymer% K�0& '�

60 oC ��l �XÞ$ /��6�. B�C �� KG ó:�L&

P d#º»l mn, kÄ, 2X Y�@ ©#�� ��Á �g- =2l

M�� ó:�L&G� ` � '�. Table 1�CP �k QR���

�/ efg- R M�� ó:�L& ��$ ���� �(�.

��A � %& Nø-ü /¹�$ K�` � 'U�. wx- ´�µ

� d#º»l ó:�L&P �� ���l 2u� �G �� �$

^� 'U�. Polypropylene(PP){ Polyethylene(PE){ B� ��®�Ol

C��P )"- 85-105 kJ/moll �� �$ ��ÃP ºE� Thermoplastic

Elastomer(TE), PU 1�� Ethylene Vinyl Acetate(EVA) d =¬l C��

P 30-40 kJ/mol ÊMl P� �$ ��ÃU�. Ghosi[25] ]� PE@ �

�- AA@ 1abc d#nsEC DSC@ ���� º»� �� ÔQ

l �:@ ÉÊ�� ó:�L&@ R A, RO 170 kJ/moll ó

:�L&@ ëU�. 123, � ó:�L&�P PEDE�Cl 1a

bc d#º» SÞ ´TG �æ d�Cl homo polymerizationM U

��� '�. �GC, ��®�O$ �� ���- /�` C��P º

»� ���& '�� �1��. ºE�, TE{ PUl C��P ó:

�L&@ P#(ÃP +© * �*� '�� VWI�. EVAl C�@

XY�E, VAl �|� 9%�C 18%- ý%` 7, ó:�L&P 81.8

�C 27.5- �È Z��6�. �P VA% AAl 1ab�$ M{ÃP

o`$ �P �g- " � '�. �� � 2u ���l +©¨$ z/

A, ��l +© * �[� -\ ¶·¸¹�@ ^� '�P ��

�. EVA +d#"l C��, EVAdl ´�×�c�P �]^� ��

� �s�� I ä� _/`l o`$ �ù, �GC =º g- VA

l �|� .$�_ ���l AÊ� P´&P �g- ��0U�

[16]. �-¬¯ ´�µ�l DE d# º» n ������ 'P ¶·

¸¹�P k" º»l ó:�L&@ PÈ �ÃP o`, 8, �Ð{ B

� o`$ �P �g- /XÁ�. PP3 PEl C��P �:��l �

��� 7>� pq/�r{ º»�� B�C �@�P ´�µ� -õ

a@ e��P ºE� �Cl � ����l C��P ��� /` d

l COO-�% ´�µ�$ b´�c ´�µ�l º»$ dÈ Á�. \

�x- Mass Flow Index(MFI)l ¾¿g-� Table 1�C �P e{ B

� EVA@ ��- /��6$ C�, B� VA�|$ ^� '&Þ MFI

% C- �� EVA�� e/hz/@ ©�� ´�µ�$ 1abc d

#n� A, MFI% ý%�� �GC ó:�L&M �GC ý%�P

�g- ��0U�. )ml C�, MFIl ý%P ���l mobilityl ý

%@ lø��- <5 g- " 7, º»l ý%, 8, ó:�L&l

Z�@ fÉ` � '�. 123, Ringrose{ Kronfli[16]% & �J

g � ���/`�l mobilityl ý%��P ¤/O P� MFIl EVA

% ^È0P Rz * ,¨(bulkiness)g- *�� º»l ó:�L&

% P´&P �g- /XÁ�.

Fig. 5P Arrhenius plotl A R�S ó:�L& Ea=39.5 kJ/mol

Fig. 4. Arrhenius plot of the grafting reaction of AA onto polymer sur-face.

Table 1. The apparent activation energy of grafting reaction in AA solution

Materials Treatment method AA-Reaction condition Activation energy(kJ/mol) Ref.

PP Fabricγ-ray irradiation

(40 kGy)

in N2 30%AA, no additive 95.6

22in Air 30%AA, no additive 104.8in N2 30%AA, 0.2M-H2SO4/2.5 mM-FeSO4 54.3in Air 30%AA, 0.2M-H2SO4/2.5 mM-FeSO4 57.2

TE γ-ray irradiation(25-100 kGy) 20%AA, 0.11 mM-Mohr’s salt 30.1 14

EVA

9/3

γ-ray irradiation(0-50 kGy) 25%AA, 5.6 d/dm3 FeSO4

81.8

1618/2 27.518/35 38.418/150 59.3

Polyethylene corona discharge 20%AA, 0.03 mM-Mohr’s salt 85.9 21Polyurethane O2-plasma 30%AA, no additive 39.5 This study

Fig. 5. Comparison of the value predicted from model with experimen-tal data.

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Page 5: PAA-grafted PU Effect of Reaction Temperature on the ... PU † 305-764 220 (2002 10 12 , 2003 1 6 ) Effect of Reaction Temperature on the Synthesis of PAA-grafted PU

228 �������������������

$ /��� fÉ -6 ¹ÀA@ �� 1W��. 1W�C �

P e{ B� 70oC���CP ¹ÀA{ -6� & =Â�6&Þ,

70 oC �<�CP h ß�@ ��ÃU�. �P 1ab� º»�C ²

Á ��´�µ�l i /` homopolymerl jklg- *��

Soxhlet #ö�M òR�� ø�ÿÁ homopolymer% m�S �g- /

XÁ�. �k QR�C ë(S pq/�r :M 2 nmol/cm2$ DEl

ó¨l :M- %Ê��, � ó¨�C -\ + g- mnº»�

ST0U�� %Ê�E, �� 5g-¬¯ 1abcÁ ��´�µ�l

n�(LPAA)@ #Ê` � '�. �7, ��´�µ�l C-C A#n�@

0.154 nm- ¼Ã�6�.

(9)

5 (9)�C ��S �Jg �Q/M PAAl C��P LPAAP 3õÂ

��C GD� �l B� �$ 3�4U�. �GC, 60oCl C��P

ê 78 nml oª/`n�@ ��à�� ` � '�. �P DE ó¨

� -\ º»p�P %Êg- ��Á ���- ¹?-P ��� mq

i /`� DE� ²0U$ �g- /XÁ�. Table 2�CP º» �

M �:� �� 1abc PAA /`n�l �:@ ¹À � -6 fÉ

Â@ �� A��. �� A 70oC{ 80oC /��C homopolymer

l !� ²$ fÉ` � 'Pv �M ý%� �G �æ d homopolymer

l !� ý%0( ø�ÿ homopolymer% r´'( ¹ÀÂ{ �0Â

l ß�@ ��ÃP �g- /XÁ�. 1ab� º» n� �����

DE� MNÁ -O-O-H�C -O-O- A#� ��� 0(C -O· G�8

·O-H% ²� Á�. 1ab�$ ³� º»� 4¬ �æl ̈ M@ �E

ÎÈ < � 's� 80oC �<l º» z9��CP homopolymer% �

| !0P �$ Ï*�6�. ��� Á -O· G�8� 1ab�l m

n? o`$ �� ����� DE� -COOH KL�l MN� ���

�, ·O-HP ́ �µ� º»�� homo polymerization$ =g��� <

Ot '�[16].

3-2. ATR-FTIR '(

����� °±� MNÁ AAl ¶·¸¹�l IR çucg� ��

��l [�{ 1,700 cm−1 ¬@�C vÂ( 3�3�- R��� w�

�. �GC ¶·¸n�l MN$ Ï*�� B� ´�µ�� 1abc

Á ����� °±$ NaOH ��æ� n( -COOH@ -COONa-

ex( ÃU�. øJ�, �� FGHI J�, PU-COONa °±l ATR-

FTIR çucg$ Fig. 6� 3�4U�. ¶·¸¹ 1y$ %&� 'P �

���� °±� ¶·¸¹ 1y� IP ìF ;Ü ß�@ ��&

P '&Þ 1,680 cm−1�C � �:-¬¯ ¶·¸¹1yl ¶·�z1

y�C �* �- KL� MN$ Ï*` � '�.

3-3. +,- '(

����� °± DE� �$ ÉÊ�6�. nX) B� ����

� ìF$ ®O {� =Ê |(10µl)l ­��@ �(û�� |DE

�e�� �ÓP ���$ Erma contact angle meter(Model G-1)@

���C ÉÊ�6�. � nXI� 5��< BÂ@ ex(C ÉÊ��

1 oª�$ �l ���g- /��6�, Fig. 7� Mn�6�.

20oC�C 1ab�Á °±l ���� 57o$ 3�4� '�, º»�

M� �G ���� Z��P �$ �}�6�. 90oC�CP 30o� %

�ü ���$ 3�4� 'Pv, �P DE� graftÁ PAAl \�% ý

%�� �GC 9zÁ PAA% �$ [��g-� P� ���$ ��

ÃP �g- /XÁ�.

3-4. ESCA '(

øJ�Á °± FGHI J�, ´�µ� 1ab�Á ìFl ESCA

carbon 1C core level scan spectra@ 3�4� '�. 284.4, 286, 287.6,

288.7 eVP �� C-C, C-O, C=O, COOl C1s A#�L&@ 3���.

C1sl � E $ ����, ��l %@ Table 3� 3�4U�.

øJ�Á °±�CP PU-COOH�C 286 eVl COOl �E �

3.7%@ 3�4� 'P ºE� FGHI J�{ 1ab�Á ìF�

288.7 eV�C 3.9{ 10.9l COO% )| MNÁ �$ < � 'U�.

LPAAGD µg cm2⁄[ ]

M.WAA µg µmol⁄[ ]----------------------------------------------

1000 nmolµmol⁄[ ]2.0 nmol cm2⁄[ ]

----------------------------------------------×=

0.154× nm GD nm≈

Table 2. Change of the average length of PAA grafted with respect to temperature

Temperature, oC 20 30 40 50 60 70 80 90

(experiment), nm 12.6 19.4 38.9 56.2 77.8 141 572 739(model), nm 11.8 20.1 33.2 53.1 82.6 125.3 185.5 268.8

Fig. 6. ATR-FTIR spectra of (a) PU-AA, (b) Plasma-treated PU, (c)Untreated PU.

Fig. 7. Effect of reaction temperature on the contact angle to water(plasma treatment; 100 W, 250 mTorr, 30 s, grafting; 30%, 1.5 h).

���� �41� �2� 2003� 4�

Page 6: PAA-grafted PU Effect of Reaction Temperature on the ... PU † 305-764 220 (2002 10 12 , 2003 1 6 ) Effect of Reaction Temperature on the Synthesis of PAA-grafted PU

������� � �� � 229

V, º» �M� �� 1ab�l ¾¿$ <´�� B�C :Ú ��

��$ A Table 4@ ë$ � 'U�.

º» �Ml < � �GC GD� ~�l ¿<$ Ï*�6�,

ESCA@ �� ���$ ©�C ����l ��� ¨ß ý%�P

�$ <´4U�. 50 60oC� M��6$ 7P ý% �� �& '(

�, �³-P ���� ��� !�/ ý%�P �$ < � '�. �{

P º)- Nl �|� 60oC�³ ¬¯P !�/ Z��È Á�. �P

grafted-PAAl \�% ý%�� �G PU DEl Nl �|� �(rP

�$ º¾ ���. V � �X d N peakl ��@ ���E, PU

°± Bl 9zÁ grafted-PAAl \�@ ��` � '�. �� ËßP

¹�Ñ DE� graftÁ PEOl 9z \�@ �� Sofia ]l �>[27]

$ ���6�. 8,

d =λ�ln(I0/I) (10)

��C, IP ìF °±l graftÁ �g-¬¯ ë� N peakl ���ù, I0P øJ� PU °±l N peakl ���ù, dP 9zÁ PAA�l \�

@ � �. ��C, λP attenuation length@ ��ù �� 5g- ��Á�.

λ(Å)=9.0+0.02�KE(eV) (11)

��C, KEP Ík�l üy�L&�ù, � QR�CP X-ray �g-

Mg@ /��6g�- �� 5g- ��Á�.

KE(eV)=1253.6−BE (12)

BEP A#�L&-� Nl C��P 399.9 eV% Á�. ��l AP

Fig. 8� Mn�6Pv, �C o Êfg- �� GD�g-¬¯ �ö

Á /`l n�{ �� Mn�6�. 1W�C �P e{ B� ESCA É

Êg- ��Á 9zÁ PAA�l \�P )� g- GD- �öÁ /`

l n�{ h² * K�% '�$ < � '�. ESCA ÉÊl BÂ�

�GC �P ìFl Rz� �GC Al ÊÏ� �(&&Þ ¹?

/`l n�{ ��� 9z0U$ C��l )� * \�@ Ê| g

- �ö�g-� PU °± B� grafted-PAAl Rz@ fÉ` � 'P

YC- /� %L��G� !�Á�. 8, 9zÁ \�% grafted-PAAl

n�� ��� <�/ îÈ �ö0UPv �P 9zÊ�C PU /`

/�- grafted-PAA% �ú0( 3�� A- /XÁ�. ¹? PU °

±� ��l AÊRz- ��Á �ã£P �� �� K¨�C "

7, PU /`- �Ó(S Rʲ òª= DE��- 9zÁ °±l C

��P ����� �t3%ù �+¼� grafted-PAA/`�� �ú�

È 0�G /XÁ�.

3-5. SEM '(

k��$ �� DEl SEM /S$ Fig. 9� Mn�6�. Fig. 9l

(a)P J��& '� ����� °±l DE$ 3�4�, (b)P Y|"

Table 3. Peak area of ESCA C1s core level spectra of PU and surface-modified PU; (a) Untreated PU, (b) Plasma-treated PU, (c) PU-AA

Sample C-C C-O C=O COO

a 49.8 40.7 5.8 3.7b 42.6 47.0 6.5 3.9c 60.7 25.3 3.1 10.90

Table 4. Chemical composition of surface-modified PU films calculatedfrom ESCA spectra

T(oC)Atomic percent(%)

C O N

20 72.98 22.02 5.0030 71.58 23.41 5.0140 71.49 23.43 5.0850 71.48 23.50 5.0260 70.60 24.70 4.7070 72.13 25.89 1.9880 72.67 25.18 1.1590 70.14 29.05 0.81

Fig. 8. Grafted polymer length vs. dry film thickness.

Fig. 9. Scanning electron microscopy picutres of surface for the PU film;(a) no treatment PU film, (b) oxygen plasma+grafting PU film(30%, 1.5 h, 80oC).

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Page 7: PAA-grafted PU Effect of Reaction Temperature on the ... PU † 305-764 220 (2002 10 12 , 2003 1 6 ) Effect of Reaction Temperature on the Synthesis of PAA-grafted PU

230 �������������������

of

th

nd

re-

,

-

is-

riza-

is-

,

nd

a-

d-

h

er

ane

id

la-

on-

fla-

a

of

ies

c

ural

½M 30%, J�n¼ 1.5 h, º»�M 80oCl z9��C 1ab� ì

Fl DE$ ��� '�. (a)� ��C (b)P �� ñ�� .� �

U�P �$ < � '�. ��� ��3 k�� l�C ��� DE

� � �$ 3�4� (a)�P IP �Ì ¬��� (b)�P �}� 0U

�. �C ESCA ��$ ©�� fÉ�6s� PU DE� graftÁ PAA

P i /`�&Þ 9z�6$ C��P ��0EC ¬� g- ��'

�$ < � '�. Konig ][28]� poly-(tetrafluoroethylene)(PTFE) DE

� 70 nml 1ab�Á ´�µ�$ Ï*�6�.

4. � �

� QR�CP polyol TDI-¬¯ �����$ #�� Þ; °

± DE� ��FGHI@ ���� G�8$ MN��, PAA graft

copolymerization$ ���� ����� °± DE� KL�@ +

g- MN�6�. �� FGHI J�l ? z9� �k ¹À�C

DPPH method- Ï* öÆ 100 watt, ÅÆ 250 mTorr, z/n¼ 30 s

@ /��6�, � z9�C %, .� 2 nmol/cm2l peroxide% !

0U�. B{ B� ? z9�C ! peroxide@ º» mn?- /

��� ´�µ�g- 1abc d# A 70oC, 90oCl GD��

250µg/cm2, 800µg/cm2�$ ëU�. �Ml ý%� �G GD�� ý%

�P �$ ¹À$ ©�C <´4U�, 1 A � º»l M�� ó

:�L&P 39.5 kJ/mol�ù, º»l ó:�L&P �Wl 2u � R

z� �GC ¾¿$ �P �$ < � 'U�. ATR-FTIR �� A Ê

g- ²Á COO-�@ Ï*` � 'Ugù, º»�M� �� ��

�l Z�P GDl < )»K�@ ��ÃU�. ESCA ��l A

Ê g- COO-�l ý%@ Ï*�6�, ́ �2 9zÁ PAAl � \

�@ �ö` � 'U�. � A{ SEM /S �� A@ ���� "

7, grafted-PAAP 9zn PU °± B�C &o g- ��C �U�

$ < � 'U�.

� QRP ����¬ !���QR�l �Ê!���/�l &�g

- �T0U� �� Z/@ rJT�. ́ �2, ESCA N(1s) peak-¬¯

9zÁ PAA� \���$ M{Ã� MITl &; �� Z/l ��

$ k#T�.

���

BE : Binding energy

CAA : Concentration of the acrylic acid

CAA0 : Concentration of the initial acrylic acid

CG : Concentration of the grafted acrylic acid

CHCl : Concentration of HCl

CNaOH : Concentration of NaOH

Ea : Activation energy

GD : Grafting degree [µg/cm2]

k : Rate constant, per unit time

k0 : Pre-exponential factor

KE : Kinetic energy

LPAA : Grafted polymer length of PAA [nm]

M.AA : Molecular weight of acrylic acid [µg/mol]

S : Area of the film

t : Time

tr : Reaction time

VNaOH : Volume of NaOH

VHCl : Volume of HCl

��./ 01

λ : Attenuation length [Å]

θ : Point density

���

1. Lamba, N. M. K., Woodhouse, K. A. and Cooper, S. L., Polyure-

thanes in Biomedical Applications, CRC press, Boca Raton(1998).

2. Kim, E. J., Kang, I.-K., Jang, M. K. and Park, Y. B., “Preparation

Insulin-Immobilized Polyurethanes and Their Interaction wi

Human Fibroblasts,” Biomaterials, 19, 239-249(1998).

3. Kang, I.-K., Baek, D. K., Lee, Y. M. and Sung, Y. K., “Synthesis a

Surface Characterization of Heparin-Immobilized Polyetheru

thanes,” J. of Polymer Science: Part A: Polymer Chemistry, 36,

2331-2338(1998).

4. Kang, I.-K., Kwon, O. H., Kim, M. K., Lee, Y. M. and Sung, Y. K.

“ In vitro Blood Compatibility of Functional Group-Grafted and Hep

arin-Immobilized Polyurethanes Prepared by Plasma Glow D

charge,” Biomaterials, 18, 1099-1107(1997).

5. Bae, J.-S., Seo, E.-J. and Kang, I.-K., “Synthesis and Characte

tion of Heparinized Polyurethanes Using Plasma Glow D

charge,” Biomaterials, 20, 529-537(1999).

6. Huh, M. W., Kang, I.-K., Lee, D.-H., Kim, W. S., Lee, D. H., Park

L. S., Min, K. E. and Seo, K. H., “Surface Characterization a

Antibacterial Activity of Chitosan-Grafted Poly(ethylene terephth

late) Prepared by Plasma Glow Discharge,” J. of Applied Polymer

Science, 81, 2769-2778(2001).

7. Kang, I.-K., Choi, S.-H., Shin, D.-S. and Yoon, S. C., “Surface Mo

ification of Polyhydroxyalkanoate Films and Their Interaction wit

Human Fibrablasts,” International Journal of Biological Macromole-

cules, 28, 205-212(2001).

8. Ito, Y., Inaba, M., Chung, D.-J. and Imanishi, Y., “Control of Wat

Permeation by pH and Ionic Strength through a Porous Membr

Having Poly(carboxylic acid) Surface-Grafted,” Macromolecules, 25,

7313-7316(1992).

9. Lee, Y. M. and Shim, J. K., “Plasma Surface Graft of Acrylic Ac

onto a Porous Poly(vinylidene fluoride) Membrane and Its Ribof

vin Permeation,” J. of Applied Polymer Science, 61, 1245-1250(1996).

10. Lee, Y. M. and Shim, J. K., “Preparation of pH/Temperature Resp

sive Polymer Membrane by Plasma Polymerization and Its Ribo

vin Permeation,” Polymer, 38, 1227-1232(1997).

11. Yasuda, H. and Gazicki, M., “Biomedical Applications of Plasm

Polymerization and Plasma Treatment of Polymer Surfaces,” Bioma-

terials, 3, 68-77(1982).

12. Chen, J., Nho, Y.-C. and Park, J.-S., “Grafting Polymerization

Acrylic Acid onto Preirradiated Polypropylene Fabric,” Radiat. Phys.

Chem., 52, 201-206(1998).

13. Choi, S.-H., Park, S.-Y. and Nho, Y.-C., “Electrochemical Propert

of Polyethylene Membrane Modified with Carboxylic Acid Group,”

Radiat. Phys. Chem., 57, 179-186(2000).

14. Binh, D. and Huy, H. T., “The Effect of Concentration of Acryli

Acid, Dose Rates and Temperature on Preirradiated Graft of Nat

Rubber-based Thermoplastic Elastomer,” Radiat. Phys. Chem., 53,

���� �41� �2� 2003� 4�

Page 8: PAA-grafted PU Effect of Reaction Temperature on the ... PU † 305-764 220 (2002 10 12 , 2003 1 6 ) Effect of Reaction Temperature on the Synthesis of PAA-grafted PU

������� � �� � 231

d-

a-

s

a-

c

w

e

.,

e

e)

rp-

-

ce

-

177-180(1998).

15. Siyam, T. and Youssef, H. A., “Cationic Resins Prepared by Radia-

tion-Induced Graft Copolymerization,” Radiat. Phys. Chem., 55, 447-

450(1999).

16. Ringrose, B. J. and Kronfli, E., “Preirradiation Grafting of Ethylene

Vinyl Acetate Copolymer Resins,” Radiat. Phys. Chem., 55, 451-

460(1999).

17. Dogue, I. L. J., Mermilliod, N., Boiron, G. and Staveris, S.,

“Improvement of Polypropylene Film Adhesion in Multilayers by

Various Chemical Surface Modification,” Int. J. Adhesion and Adhe-

sives, 15, 205-210(1995).

18. Dogue, I. L. J., Mermilliod, N. and Foerch, R., “Grafting of Acrylic

Acid onto Polypropylene-Comparison of Two Pretreatments: γ-irra-

diation and Argon Plasma,” Nuclear Instruments and Methods in

Physics Research B, 105, 164-167(1995).

19. Lee, S. D., Hsiue, G.-H., Chang, P. C. and Kao, C.-Y., “Plasma-

induced Grafted Polymerization of Acrylic Acid and Subsequent

Grafting of Collagen onto Polymer Film as Biomaterials,” Biomate-

rials, 17, 1599-1608(1996).

20. Loh, F. C., Tan, K. L., Kang, E. T., Uyama, Y. and Ikada, Y., “Struc-

tural Studies of Polyethylene, Poly(ethylene terephthalate) and Poly-

styrene Films Modified by near U.V. Light Induced Surface Graft

Copolymerization,” Polymer, 36, 21-27(1995).

21. Lei, J. and Liao, X., “Surface Graft Copolymerization of Acrylic

Acid onto LDPE Film through Corona Discharge,” European Poly-

mer Journal, 37, 771-779(2001).

22. Chen, Y., Kang, E. T., Neoh, K. G. and Tan, K. L., “Chemical Mo

ification of Polyaniline Powders by Surface Graft Copolymeriz

tion,” Polymer, 41, 3279-3287(2000).

23. Xu, Z., Wang, J., Shen, L., Men, D. and Xu, Y., “Microporou

Polypropylene Hollow Fiber Membrane, Part I. Surface Modific

tion by the Graft Polymerization of Acrylic Acid,” J. of Membrane

Science, 196, 221-229(2002).

24. Aliev, R., Garcia, P. and Burillo, G., “Graft Polymerization of Acryli

Acid onto Polycarbonate by the Preirradiation Method,” Radiat.

Phys. Chem., 58, 299-304(2000).

25. Ghosh, P., Chattopadhyay, B. and Sen, A. K., “Modification of Lo

Density Polyethylene(LDPE) by Graft Copolymerization with Som

Acrylic Monomers,” Polymer, 39, 193-201(1998).

26. Zhang, Y., Myung, S. W., Choi, H. S., Kim, I. H. and Choi, J. H

“Optimum Conditions for the Surface Modification of Polyurethan

by Oxygen Plasma Treatment,” Ind. Eng. Chem., 8, 236-240(2002).

27. Sofia, S. J., Premnath, V. and Merrill, E. W., “Poly(ethylene oxid

Grafted to Silicon Surfaces: Grafting Density and Protein Adso

tion,” Macromolecules, 31, 5059-5070(1998).

28. Konig, U., Nitschke, M., Menning, A., Eberth, G., Pilz, M., Arn

hold, C., Simon, F., Adam, G. and Werner, C., “Durable Surfa

Modification of Poly(tetrafluoroethylene) by Low Pressure H2O

Plasma Treatment Followed by Acrylic Acid Graft Polymeriza

tion,” Colloids Surf. B: Biointerf., 24, 63-71(2002).

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003