p10 introduction to coking process

75
Introduction to Coking Process Gary Gianzon Heavy Oil Technologist

Upload: jose-guadarrama

Post on 07-Apr-2015

293 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: P10 Introduction to Coking Process

Introduction to Coking Process

Gary GianzonHeavy Oil Technologist

Page 2: P10 Introduction to Coking Process

2

Crude Oil Cuts

Page 3: P10 Introduction to Coking Process

3

Heavy Oil Characteristics

Characteristics of Atmospheric and Vacuum Resid

Crude Atmospheric

Bottoms

Vacuum

BottomsBoiling Range, F Whole 680 1000+API Gravity 34.0 15.7 6.4Sulfur, wt% 1.8 3.2 4.2Yield, Vol % 100 40.6 16.3Pour Point, F 50 101Carbon Residue, wt% 8.9 20.1Nickel, PPM 10 25Vanadium, PPM 37 89

Page 4: P10 Introduction to Coking Process

4

Process Options for Resid

Sold as Products

Visbreaking

ROSE

Catalytic Cracking – FCC

Hydrotreating / Hydrocracking

Delayed Coker

Page 5: P10 Introduction to Coking Process

5

Sold As Products

Road and Roofing Asphalt

Fuel Oil 

Page 6: P10 Introduction to Coking Process

6

Visbreaking

Milder form of thermal cracking.

Used to reduce viscosity and pour point of vacuum resid to meet specification for heavy fuel oil.  

Reduces Distillate Cutter requirement

Page 7: P10 Introduction to Coking Process

7

ROSE Unit

Residual Oil Supercritical Extraction for production of metal free gasoil, asphaltenes, and resin.

Page 8: P10 Introduction to Coking Process

8

Resid FCCU

Similar to Gas Oil FCC but processes heavier feed.  Feed concarbon limited to 10 wt%.  Catalyst circulation and regeneration section much larger than conventional FCCU.

Page 9: P10 Introduction to Coking Process

9

H-Oil & LC Fining

Resid Hydrotreater/Hydrocracker.  Uses catalyst and hydrogen to convert resid to valuable products.  Significantly better yield than coker but much higher investment cost.

Page 10: P10 Introduction to Coking Process

10

Delayed Coking

Thermal cracking process

Page 11: P10 Introduction to Coking Process

11

History of Delayed Coker

1860 

Petroleum coke was first made by Pioneer Oil Refinery in northwest Pennsylvania. This primitive refinery boiled oil in iron stills to recover kerosene using wood and coal fires.  Coke accumulated at the bottom of the still where workers dug out the coke and tar before the next run.

Page 12: P10 Introduction to Coking Process

12

History of Delayed Coker

1880 

Several Stills were operated in series with the first still producing the coke.

Used chains in the sump to break up coke, formed during run, for removal. 

Page 13: P10 Introduction to Coking Process

13

History of Delayed Coker

1929

Standard Oil of Indiana built the first delayed coker. 

Coke was removed using steel cables on a holding devise in the drum.

Page 14: P10 Introduction to Coking Process

14

Lesson 4: History of Delayed Coker

1930

Shell Oil patented hydraulic decoking.

Page 15: P10 Introduction to Coking Process

15

Delayed Coker

Delayed coking is a thermal cracking process which upgrades / converts petroleum resid into lighter liquid & gas products while accumulating  petroleum coke material in the drum.

Page 16: P10 Introduction to Coking Process

16

Delayed Coker Process

Heavy Oil

Heat

Liquid and Gas Products

Petroleum Coke Product

Delayed 

Coker 

Unit

(DCU)

Page 17: P10 Introduction to Coking Process

17

Delayed Coking Process

A fired heater is used for the process to reach the thermal cracking temperature of 910  F to 940  F.

The short residence time in the heater tubes (around 50 seconds), delays the coking of the resid until it reaches the coke drum.

Page 18: P10 Introduction to Coking Process

18

Delayed Coking Process

Coking Reaction Kinetics

750 F – 16 to 24 hours

800 F – 5 to 6 hours

840 F – 1 ½ to 2 ½ Hours

Reaction rates varies with feed composition 

Page 19: P10 Introduction to Coking Process

19

Process Flow

A delayed coker has four main sections:

Feed, Furnace, and Coke Drum Section

Main Fractionation Section

Gas Recovery Section

Closed Blowdown Section

Feed, Furnace, 

and Coke DrumsMain Fractionation

Gas RecoveryClosed Blowdown

Heavy OilProducts

Page 20: P10 Introduction to Coking Process

20

Process Flow

Coker Feed – Fractionator Bottoms

Feed is Preheated with HCGO product and pumparound

Bottoms of the main fractionator provides feed surge.

Recycle is added to the feed

Page 21: P10 Introduction to Coking Process

21

Process Flow

Furnace

Charge pump boost pressure to 300 to 400 psig

Velocity steam is added to the furnace charge (500 to 1000 lbs/hr)

Heater outlet temperature to 915 to 930 F

Page 22: P10 Introduction to Coking Process

22

Process Flow

Coke Drum

Coke drum inlet above 900 F

Endothermic Reaction

Drum Outlet around 825 to 840 F

Antifoam Injection at the end of the drum cycle

Coke level Detection, Nuclear or Continuous

Page 23: P10 Introduction to Coking Process

23

Process Flow

FZGO Section

Feed preheated by the HGO product and pumparound before entering the bottom of the main fractionator.

Coke drum vapors enters the flash zone section.  HGO sprays contact the coke drum vapor.  This controls the C7 insoluble in the HGO product.

Flash Zone Liquid is filtered and mix in with the feed.

Page 24: P10 Introduction to Coking Process

24

Process Flow

Heavy Coker Gas Oil Section

Wash sprays to control C7 insoluble.

Heavy gasoil pumparound remove heat from the column.

Heavy gasoil product is routed to the hydrocracker or gasoil hydrotreater for further processing.

Page 25: P10 Introduction to Coking Process

25

Process Flow

Distillate Section

Distillate pump‐back controls endpoint of distillate.

Distillate pumparound for heat removal.

Distillate product process further in the distillate hydrotreater.

Page 26: P10 Introduction to Coking Process

26

Process Flow

Main Fractionator Overhead

Reflux to control endpoint.

Fractionator Overhead is cooled using fin fans and water cooler.

Continuous water wash to remove salts.

Overhead liquid and vapor is further process in the coker gas plant.

Page 27: P10 Introduction to Coking Process

27

Coker Process Variables

Furnace Outlet Temperature/Coke Drum Inlet Temperature

Higher Temperature increases gas and naphtha yields while decreasing the gasoil and coke yields.

Higher Temperature reduces the volatile material that gets trapped in the coke (VCM), resulting in harder coke.

Increasing the temperature towards the end of the coking cycle reduces upsets caused by drum switches.

Temperature Affect on Coker Yield

0

10

20

30

40

50

60

70

% Coke % Liquid % Gas

Yield (wt%

)

900 F930 F

Page 28: P10 Introduction to Coking Process

28

Coker Process Variables

Coke Drum Pressure

At a higher pressure, more of the material in the drum remains in the liquid phase and can therefore be involved in the reactions that lead to coke formation.

Low pressure can affect drum velocity and increase the tendency of coke carryover.

Coker Yield @ 930 F

0

10

20

30

40

50

60

70

80

% Coke % Liquid % Gas

Yield (w

t%)

6 psig15 psig40 psig

Page 29: P10 Introduction to Coking Process

29

Coker Process Variables

Natural Recycle

Higher increases the quality of HCGO.

Higher increases coke yield/decrease LV yield.

Higher can increase furnace runlength.

Higher natural recycle improves the quality of coke.

Page 30: P10 Introduction to Coking Process

30

Coke Drum

Coke drum operation

Beginning of drum cycle

Drum is cold

Volatiles condense on the walls

Condensate trapped in coke

Pools forming at the bottom

Low boiling VCM

Page 31: P10 Introduction to Coking Process

31

Coke Drum

Coke drum operation

Middle of the cycle

Drum temperature steady

No volatile condensation

Lowest VCM coke

Pool level at steady state

Page 32: P10 Introduction to Coking Process

32

Coke Drum

Coke Drum Operation

End of cycle

Some volatile left

Pool liquid soaks into coke

Suspended coke particle remain on top

High boiling VCM

Page 33: P10 Introduction to Coking Process

33

Coke Drum and Structure

Coke Drum Level Detector

Design consideration

Level indication–Neutron backscatter 

– Point source level detection.

•Detector penetrates around 1 ft from the source.

Page 34: P10 Introduction to Coking Process

34

Coke Drum and Structure

Coke Drum Level Detector

Gamma Detection

Continuous Level Detection

Source and Detector on Opposite sides of the drum.

Optimizes Antifoam Usage

Charge Rate Advance Controls

Coke Drum Outage Management

Page 35: P10 Introduction to Coking Process

35

Petroleum Coke

Three physical structure of petroleum coke:  Shot

Sponge

Needle coke

Page 36: P10 Introduction to Coking Process

36

Petroleum Coke

Shot Coke 

Feeds with high level of asphaltene, nitrogen, sulfur, and oxygen predominately make shot coke.

Small, tight, non attached clusters that look like pellets, marbles or BB’s

Usually very hard (i.e., low HGI)

Less desirable to end users –Difficult to handle and grind–During Calcining process Shot Coke tends to “pop” in the kiln reducing the thermal stability. 

Shot coke is predominately used as fuel

Page 37: P10 Introduction to Coking Process

37

Petroleum Coke

Shot Coke Operational IssuesUnquenched hot spot in the coke bed resulting in blowouts and eruptions

Coke Dumps

Poor Drainage

Page 38: P10 Introduction to Coking Process

38

Petroleum Coke

Sponge Coke

Resembles a sponge– bubbly looking

Sponge Coke Usage– Electrodes for Electric Furnace– Anodes for Electrolytic Cells– Chemical Carbon Source– Graphite Manufacturing– Fuel

Page 39: P10 Introduction to Coking Process

39

Petroleum Coke

Needle Coke 

Special quality coke produced from aromatic feed stocks. 

Has crystalline structure with more unidirectional pores. 

Used for high quality graphite anodes – Steel industry electric arc furnaces.– Electrode Manufacture

Page 40: P10 Introduction to Coking Process

40

Petroleum Coke

Typical Properties of Coke

Page 41: P10 Introduction to Coking Process

41

Coker Drum Cycle

Page 42: P10 Introduction to Coking Process

42

Coke Drum Cycle

Operation Time Ranges Comment

Switch 5 to 20 min. Use slow switch

Steam to Fractionator 0.25 to 1 hr.

Depressure 10 to 30 min. Avoid foamover       

Steam to Blowdown 0 to 1 hr.

Quench & Fill 4 to 7 hrs. Slow = low stress

Vent & Drain 0.5 to 2 hrs.

Unhead 10 to 30 min.

Coke Bore & Cut 1.5 to 6 hrs. Shot coke = short

Rehead; Steam; Test 0.75 to 1.5 hr.

Warm‐up 1.5 to 3.5 hrs.

Page 43: P10 Introduction to Coking Process

43

Switch

Open backwarm butterfly valve

Close backwarm valve to main fractionator

Open inlet isolation valve

Open Spool Steam

Swing 4 way switch valve to halfway

Swing 4 way switch valve to warm‐up drum

Page 44: P10 Introduction to Coking Process

44

Small Steam to the Main Fractionator

Open steam valve

Slowly raise steam rate (10 to 15 mlbs/hr)

Close feed isolation valve

Page 45: P10 Introduction to Coking Process

45

Steam to the Blowdown

Open line to blowdown

Close overhead vapor valve

Raise steam rate 

Page 46: P10 Introduction to Coking Process

46

Water Quench and Fill

Open water isolation valve

Slowly open water control valve

Close steam valve once water flow has been stablish

Set water ramp program

Page 47: P10 Introduction to Coking Process

47

Drum Vent

Depressure the drum to blowdown

Stop water addition and isolate water valve

Isolate the drum to blowdown

Open vent valve

Page 48: P10 Introduction to Coking Process

48

Drum Drain

Open the drain valve

Page 49: P10 Introduction to Coking Process

49

Unhead and Cutting

Open the top head

Open the bottom head

Turn on the eductor

Turn on top water quench

Page 50: P10 Introduction to Coking Process

50

Air Free and Pressure Test

Close vents

Close eductor

Close drain

Close delta valve

Pressure the drum with steam

Page 51: P10 Introduction to Coking Process

51

BackWarm to Quench Tower

Balance pressure of the blowdown tower and the main fractionator

Open overhead vapor valves

Open backwarming valve to blowdown

Pinch in backwarm butterfly valve

Page 52: P10 Introduction to Coking Process

52

Backwarm to Main Fractionator

Temperature above 350 F before backwarm to fractionator

Close backwarm valve to blowdown

Open backwarm valve to main fractionator

Page 53: P10 Introduction to Coking Process

53

Coke Cutting System

Page 54: P10 Introduction to Coking Process

54

Hydraulic Decoking System

Page 55: P10 Introduction to Coking Process

55

Hydraulic Decoking System

Page 56: P10 Introduction to Coking Process

56

Coke Cutting System

Hydraulically Remove Coke Out of the Drum

Coke Cutting Mode

Pilot Mode, Bore 6 ft pilot hole 

Cutting Mode

Cut coke from top down on 10 ft increments

Coke Cutting Time Varies from 2 to 6 Hours

Page 57: P10 Introduction to Coking Process

57

Coke Cutting System

Coke Cutting System Design Consideration

Coke Type and VCM content

Coke Drum Diameter

Cutting time Target

Coke Handling System Design

Page 58: P10 Introduction to Coking Process

58

Coke Cutting Safety System

Limit switches to prevent live drill bit from exiting the drum.

Low pressure shutdown – shutdown the jet pump on low discharge pressure to prevent exposing personnel to high pressure water during cutting hose failure.

High pressure shutdown – prevents deadheading the pump

Isolation valve position permissive

Low suction pressure shutdown

Cutting water tank level permissive/shutdown

Page 59: P10 Introduction to Coking Process

59

Delta Valve Top Cutting Containment

Page 60: P10 Introduction to Coking Process

60

Delayed Coker Safety Incident

At least 40 incident reported since 1993 in North America.

At least 16 fatalities in North American cokers.

The list is not all inclusive

Restricted only to US and Canada

Page 61: P10 Introduction to Coking Process

61

Delayed Coker Safety Incident

Primary Cause Category

Training and Procedure–Inadequate procedure, no procedure, failure to follow procedure, inadequate training or lack of understanding of the process

Engineering Error–Improper design–Improper metallurgy

Page 62: P10 Introduction to Coking Process

62

Common Failure Mechanisms Piping Failure Erosion Corrosion Material Selection

Operator Error Opening valve on live drum Improper quenching of Drum Drill Bit Exited the drum during cutting Improper draining resulting in operator exposure to hot water

Equipment Failure Unheading Gasket Leak Flange Leak Pump Seals Valve Leaks

Over-Pressure– Water + Hot Oil

Vapor Release

Lightening

Flare System Failure

Relief System Design

Procedures

Page 63: P10 Introduction to Coking Process

63

Coker Unit Safety Incidents

South Texas Refinery– 1993

Operator open live drum to drain resulting in fire/explosion

1 fatality resulted in this incident

Unit was shutdown for 6 months for repairs

Page 64: P10 Introduction to Coking Process

64

Coker Unit Safety Incidents

Louisiana Refinery

Carbon steel joint installed in alloy pipe at the discharge of the coker charge pump

Fire resulted from line failure, east coker destroyed

3 fatalities resulted in this incident

Unit was shutdown for 6 months for repairs

Page 65: P10 Introduction to Coking Process

65

Coker Unit Safety Incidents

Houston Area Refinery

Opened bottom head on a live drum resulting in fire

Unit was shutdown for 5 months for repairs

Page 66: P10 Introduction to Coking Process

66

Coker Unit Safety Incidents

South Texas Refinery

Drum Blowout + Fallout of hot coke, water, steam, after deheading prior to raising the chute.

2 operators injured during this incident

Unit shutdown for 2 days

Page 67: P10 Introduction to Coking Process

67

Coker Unit Safety Incidents

California Refinery

Hahn and Clay devise was found to be inadequately close after the drum was put online resulting in fire.

2 operators were injured during this incident

This also happened in Marathon’s Garyville,  luckily the oscillating monitor saves the unit!

Page 68: P10 Introduction to Coking Process

68

Coker Unit Safety Incidents

Washington State Refinery

Opened interrupted drum, not properly quench (tar ball) resulting in explosion, fire

6 fatalities resulted form this incident. 2 fatalities at the bottom head and 4 at grade under the deck.

Unit was shutdown for 6 months for repairs

Page 69: P10 Introduction to Coking Process

69

Coker Unit Safety Incidents Louisiana Refinery

Hot work on top of empty drum was not property isolated from the live drum 

1 leaking valve use for isolation 

Weld slag ignite flamable mixture in the drum causing explosion/fire

Two fatalities resulted from this incident

Page 70: P10 Introduction to Coking Process

70

Coker Unit Safety Incidents

Indiana Refinery

Drill Bit existed drum in cutting mode, protective limit switch was bypass/not operable

High pressure water causes severe lacerations

One fatality resulted from this incident

Page 71: P10 Introduction to Coking Process

71

Coker Unit Safety Incidents

Los Angeles California Refinery

Line failure on coke drum vapor line quench piping due to wrong metallurgy resulting in fire

Unit was shutdown for 5 months for repairs

Page 72: P10 Introduction to Coking Process

72

Coker Unit Safety Incidents

Los Angeles California Refinery

2nd degree burn to operator on unheading cart due to hot water release from the bottom of the drum (multiple occurrence)

1 injury resulted from this incident

Louisiana Refinery

Charge pump seal failure resulting in fire

2 injuries resulted from this incident

Unit was shutdown from 3 weeks for repairs

Page 73: P10 Introduction to Coking Process

73

Coker Unit Safety Incidents Kansas Refinery

Drill Bit existed drum in cutting mode

1  fatality resulted from this incident

Canadian Refinery (Fort McMurray, AB Canada)

Incorrect metallurgy installed in fractionator bottoms pump piping resulting in a large fire

The unit was shutdown for 9 months for repairs

Page 74: P10 Introduction to Coking Process

74

SAFETY DESIGN FEATURES

100% PMI on all alloy piping

Water deluge on unheading and cutting deck

Water deluge on coke drum egress routes

Automated unheading system

Remote stair case on top deck

Coke drum safety intelocks

Procedure on dealing with tarball.

Standard operating procedures.

Well trained operators.

Page 75: P10 Introduction to Coking Process

75

Questions?