oxy-combustion flame fundamentals for supercritical co2...

19
Oxy-Combustion Flame Fundamentals for Supercritical CO2 Power Cycles Pete Strakey, NETL 6 th International Supercritical CO 2 Power Cycles Symposium, March 2729, 2018, Pittsburgh, PA

Upload: others

Post on 25-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

Oxy-Combustion Flame Fundamentals for Supercritical CO2 Power CyclesPete Strakey, NETL6th International Supercritical CO2 Power Cycles Symposium, March 27‐29, 2018, Pittsburgh, PA

Page 2: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

2

• Effects of pressure and diluents on flames.

• Identification of target conditions.

• Overview of characteristic time and length scales.

• CFD simulations of turbulent time and length scales.

• Chemical kinetic mechanisms.

• LES simulations with varying O2 concentrations.

Outline

Page 3: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

3

Effect of Pressure on Laminar Flame Speed

Laminar Flame SpeedCantera, GRI 3.0Phi=1, T=300K

P (atm)0.1 1 10 100 1000

SL (m

/s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

CH4+Air, Tad=2226KCH4+(.31O2/.69CO2), Tad=2230K

∝ ·RR= Reaction RateD= Molecular Diffusivity∝ 1

• Cantera with GRI 3.0 used to calculate premixed laminar flame speed.

• Flame speed with 31%O2/69%CO2 lower than air mainly due to lower diffusivity.

• Overall reaction order for CH4/O2/CO2 is ~ 1.4

Page 4: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

4

Cantera Non-Premixed Laminar Flame Profiles

Opposed Diffusion CH4+(.31O2 .69CO2)Phi=1 GRI 3.0

Axial Position (m)0.004 0.006 0.008 0.010 0.012 0.014

T (K

)

0

500

1000

1500

2000

2500

1 atm10 atm100 atm300 atm

• Temperature and OH profiles through flame region.

• Flame thins due to decrease in being faster than decrease in SL.

• Peak in OH mole fraction decreases due to three-body recombination reactions.

Opposed Diffusion CH4+(.31O2 .69CO2)Phi=1 GRI 3.0

Axial Position (m)0.004 0.006 0.008 0.010 0.012 0.014

Stra

in R

ate

(1/s

)

0

10

20

30

40

50

60

1 atm10 atm100 atm300 atm

Sep= 2cmVF=VO=27 cm/s

Opposed Diffusion CH4+(.31O2 .69CO2)Phi=1 GRI 3.0

Axial Position (m)0.004 0.006 0.008 0.010 0.012 0.014

OH

(mol

e fr

actio

n)

0.000

0.002

0.004

0.006

0.008

1 atm10 atm100 atm300 atm

= k/CP

Laminar Flame Thickness

Page 5: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

5

• Extinction strain rate increases with pressure due to flame thinning. Higher strain rate equates to higher turbulence at quenching.

• Significant discrepancy between GRI 3.0 and Aramco. GRI predicts faster kinetics.

• Ignition delay time ranges from 1-3 msec at Allam cycle conditions.

Extinction Strain Rate & Ignition Delay Time

Ignition Delay TimeCantera, AramcoMech2.0

Phi=1, T=985K

P (atm)0.1 1 10 100 1000

t ign (

s)

0.0001

0.001

0.01

0.1

1

10

31%O2 / 69%CO29%O2 / 91%CO2

P (atm)0.1 1 10 100 1000

Stra

in R

ate

(1/s

)

0.0

5.0e+4

1.0e+5

1.5e+5

2.0e+5GRI3.0Aramco17

Extinction Strain RateCantera, Phi=1, P=300 barT=985K  31%O2 / 69%CO2

Page 6: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

6R.J. Allam et. al., ASME GT2014-26952, 2014

Allam Cycle• Goal is to estimate some characteristic combustion scales for high pressure oxy-fuel

flames for direct-fired sCO2 cycles.

• Target is the Allam cycle conditions (O2 15% to 30% molar concentration)*.

* Allam, et al., Energy Procedia 37, 2013, 1135-1149

Page 7: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

7

• Borghi Diagram indicates regime of combustion (wrinkled flames, corrugated flames, stirred reactor, etc.

Borghi Combustion Diagram

Gas TurbinesIC Engines

: ′

C. Sorusbay, “Turbulent Premixed Combustion in Engines”, Istanbul Technical University

P=300 bar50 MW Thermal InputPhi=0.95

combustor

O2 (4.2 kg/s, T=1015K)

CO2 (14.0 kg/s, T=1015K)

CH4 (1 kg/s, T=496 K)

CO2 (43.6 kg/s, T=1015K)

Page 8: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

8

• Included here for completeness…

Characteristic Scales and Dimensionless Numbers

Karlovitz Number (chemical time / Kolmogorov time)

Laminar flame thickness (thermal diffusivity / laminar flame speed)

/

Kolmogorov length scale (kinematic viscosity / turbulent dissipation rate)

0.2/

Integral length scale (turbulent kinetic energy / turbulent dissipation rate)

23

Turbulent fluctuating velocity

K>1 means the smallest eddies can enter and thicken the flame front

D .247 Damkohler Number (turbulent time / chemical time) Da>>1 means the chemistry is fast compared to turbulent mixing

Page 9: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

9

50 MW Conceptual CombustorSSME Preburner type combustor – 21 coaxial injectors, 4M Cells

P=300 bar50 MW Thermal Input

parameter Case 1 Case 2 Case 3

O2 mole fraction 0.31 0.18 0.09

Ubulk (m/s) 30 35 70

lT (m) 1.9e‐3 2.2e‐3 2.0e‐3

U’ (m/s) 7.5 10.7 23.8

SL (m/s) 0.58 0.082 0.05

ign (s) 9.2e‐4 1.6e‐3 2.5e‐3

• Flow split of CO2 between injectors and wall purge was varied to produce cases 1 to 3.

Page 10: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

10

Turbulent Time and Length ScalesTwo Limiting Cases:

Case 1: 25% of CO2 by mass mixed in with O2 (XO2=0.31, =0.95)

Case 3: Fully mixed (100% of CO2 mixed in with O2) (XO2=0.09, =0.95)

Case 125% of CO2 with O2 (XO2=0.31)75% of CO2 through purgelT=1.9 mmU’=7.5 m/s

Case 3100% of CO2 with O2 (XO2=0.09)lT=2.0 mmU’=23.8 m/s

T (K)

Steady RANS k‐eDRM19 reduced CH4 mechanismNo Combustion model

Page 11: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

11

Borghi Diagram for Oxy-Combustion• Three cases shown for 300 bar oxy-combustion define a range of

conditions (O2 from 9-31%) spanning the thickened, corrugated flame regime and stirred reactor.

• Significantly outside the range of gas turbine and IC engine operation.

• Re# and/or Ka# significantly larger than gas turbines or IC engines.

• Requires assessment of appropriate turbulent combustion models.

Gas TurbinesIC EnginessCO2 31%O2sCO2 18%O2sCO2 9%O2

Page 12: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

12

• No detailed mechanisms validated at sCO2 conditions. Best available is likely Aramco Mech (U. Galway). Validated with flame-speed up to 60 bar and ignition delay to 260 bar. Likely better than GRI 3.0.

• Huge mechanism, 103 species, 480 reactions after reduction to C2 and smaller.

• Need for compact skeletal mechanisms amenable to CFD modeling (10-30 species maximum).

Chemical Kinetic Mechanisms

Need flame speed, species profiles and induction time data for direct‐fired conditions!

Page 13: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

13

Mechanism Reduction

Flame Speed SensitivityAramcoMech 2.0 300 barT=985, CH4:.12989, O2: .27351, CO2:.5966

Sensitivity

0.0 0.1 0.2 0.3 0.4 0.5

Rea

ctio

n #

0

1

2

3

4

5

6

7

8

9

10

11

H2O2 + OH = H2O + HO2

CH3OH +M = CH3 + OH + M

CH3 + OH = CH2OH + H

CH4 + HO2 = CH3 + H2O2

CH2O + O2 = HCO + HO2

CH3 + HO2 = CH4 + O2

CH3 + O2 = CH2O + OH

HO2 + OH = H2O + O2

CH3 + HO2 = CH3O + OH

H + O2 = O + OH

• Combination of reaction path analysis, flame-speed sensitivity and ignition delay time sensitivity.

• Optimized for Allam cycle combustor conditions• 300 bar• Tpreheat ~ 1000K• Oxidizer: 25% O2 + 75% CO2

Flame speed sensitivity at 300 bar

• Several skeletal mechanisms developed with 33, 29, 26 and 17 species.

Page 14: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

14

• Performance comparison of various skeletal mechanisms.• Flame speed and ignition delay improve with the inclusion of more species and reactions.

• 33 species mechanism able to predict flame-speed and ignition delay fairly well.• 17 species able to predict flame-speed to within ~30% of detailed mechanism.

Mechanism Reduction

Phi0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

S L (m

/s)

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26 Exp. DataAramcoMech2.0GRI3.0Aramco33Aramco29Aramco26Aramco17

Laminar Flame SpeedP=60 bar, T=298K, CH4 + (.15O2/He)

P (atm)0.1 1 10 100 1000

t ign (

s)

0.0001

0.001

0.01

0.1

1

10AramcoMech2.0GRI3.0Aramco33Aramco29Aramco26Aramco17

Ignition Delay TimePhi=1, T=985K, (.13CH4/.27O2/.60CO2)

Rozenchan, et al. Proc. Comb. Inst., Vol. 29, 2002, pp. 1461‐1469.

Page 15: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

15

Mechanism ReductionLaminar Flame Profiles

P=300 bar, T=995KCH4=.12989, O2=.27351, CO2=.5966

pos (m)2e-5 3e-5 4e-5 5e-5 6e-5

CO

mol

e fr

actio

n

0.00

0.02

0.04

0.06

0.08

AramcoMech2.0Aramco-33GRI 3.0Aramco29Aramco17

• Performance comparison of various skeletal mechanisms.

• All do very well for CO production profiles.

• CO prediction important for accurate cycle efficiency calculations.

Page 16: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

16

LES Modeling: Temperature ContoursLarge Eddy Simulation, Dynamic k‐e transport17‐species skeletal mechanismNo Combustion ModelPhi=0.95

31%O2

18%O2

9%O2

Temperature Snapshots at Quasi‐Steady Conditions

T(K)

• Combustor exit temperature is the same for all three cases (~1520 K).

• Combustion transitions from lifted flame to stirred reactor as O2 is decreased. Consistent with Borghidiagram.

• Peak temperature decreases (2730 K to 1614 K).

• Core velocity increases (30 m/s to 70 m/s).

Page 17: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

17

LES Modeling: CO ContoursLarge Eddy Simulation, Dynamic k‐e transport17‐species skeletal mechanismNo Combustion ModelPhi=0.95

• Combustor exit temperature is the same for all three cases (1520 K).

• For 31% O2 case, peak CO concentration well above equilibrium value (XCO=0.25).

• For all cases, peak CO is significantly higher than equilibrium.

Y_CO

31%O2

18%O2

9%O2

CO Mass Fraction Snapshots at Quasi‐Steady Conditions

Page 18: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

18

• Peak CO concentrations well above equilibrium levels.

• Average CO concentrations at combustor exit also well above equilibrium levels.

• Cycle efficiency calculations indicate roughly a 0.75 % pt. drop in efficiency per mole % CO in working fluid.

LES Modeling: CO Summary

Case Oxidizer flow (kg/s)

Purge flow (kg/s)

O2 mole %

Equilibrium Flame Temp(K)

Equilibrium Flame CO mole %

LES PeakTemp(K)

LES Peak CO Mole %

LES Avg CO mole %

1 16.8 43.6 31.0 2690 2.4 2730 25.0 3.5

2 30.4 30.0 18.0 2100 0.15 2060 5.0 1.0

3 60.4 0.0 9.0 1612 0.0018 1614 3.0 0.013

Equilibrium CalcsComb Exit: T=1612 KXCO = 0.0018 %

pos (m)2e-5 3e-5 4e-5 5e-5 6e-5

CO

mol

e fr

actio

n

0.00

0.02

0.04

0.06

0.08AramcoMech2.0Aramco-33GRI 3.0Aramco29Aramco17

Page 19: Oxy-Combustion Flame Fundamentals for Supercritical CO2 …sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf · Opposed Diffusion CH4+(.31O2 .69CO2) Phi=1 GRI 3.0 Axial Position

19

• Oxy-combustion at 300 bar is somewhat uncharted territory.• Conditions more representative of rocket engines.• Limited data available.

• Need for validated detailed chemical kinetic mechanisms as well as reduced mechanisms.

• Must take care in selecting appropriate combustion models (fast mixing, flamelet, EDC, PDF, etc…).

• CO production highly sensitive to flame temperature and may be well above equilibrium.

Concluding Remarks