ou nanolab/nsf nue/bumm & johnson nano-scale structures fabricated using anodic aluminum oxide...

26
OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline I Introduction and Motivation II Porous Alumina Masks III Results IV Conclusions V NanoLab Experiments

Upload: jonathan-simon

Post on 25-Dec-2015

224 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates

Outline

I Introduction and Motivation

II Porous Alumina Masks

III Results

IV Conclusions

V NanoLab Experiments

Page 2: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

IntroductionObjective:Fabricate ordered arrays of structures on the nanometer scale using porous alumina templates.

Page 3: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

http://www.intel.com/research/silicon/mooreslaw.htm

Moores Law: Dr. Gordon E. Moore, founder of Intel, predicted in 1965 that the

number of transistors per IC doubles every 18 months.

Integrated Circuits

Page 4: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Current technology hits a roadblock in about 2012 in terms of fabrication and device operation.

Alternative patterning techniques and computing schemes are needed (e.g. Quantum, Molecular, Optical Computers, Carbon Nanotubes based devices, etc.).

Important characteristics of “The 1999 National Technology Roadmap for Semiconductors” published by the SIA.

Year 1999 2002 2005 2008 2011 2014TechnologyGeneration (nm)

180 130 100 70 50 35

DRAM Half Pitch(nm)

180 130 100 70 50 35

MPU Gate Length(nm)

140 85-90 65 45 30-32 20-22

Gate OxideThickness (nm)

1.9-2.5 1.5-1.9 1-1.5 0.8-1.2 0.6-0.8 0.5-0.6

MPU transistordensity (cm-2)

6.6 M 18 M 44 M 109 M 269 M 664 M

MPU Speed(MHz)

1250 2100 3500 6000 10000 16903

Cost/transistor(microcents)

1735 580 255 110 49 22

Semiconductor Roadmap

Page 5: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Motivation: GeneralWhat is Anodic Porous Alumina?

Aluminum oxide grown on an Al substrate in an electrolytic cell. The resulting structure consists of an array of tunable nanometer-sized pores surrounded by an alumina backbone.

Purpose: To understand the mechanisms involved in the growth and ordering of

anodic porous alumina.

Motivation:

Why do we want to fabricate nanostructures?

Interest in using anodic porous alumina as a nano- template to fabricate nanometer-sized structures (e.g. nanofabrication of quantum dots).

1. Fundamental physical interest in the nanometer size regime. Properties of nano-sized structures are different from their bulk and molecular counterparts.2. Technological applications as electronic and optical devices.

Page 6: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Microfiltration. Optical waveguides and

photonic crystals for optical circuits.

Template for carbon nanotube growth for electronic, mechanical applications.

Ordered arrays of quantum dots for lasers, photodetectors.

ULSI memory devices and ICs.

Porous Alumina used as optical waveguide. H. Masuda, et. al., Jpn. J. Appl. Phys. 38, L1403 (1999).

Commercially available Anopore filter. http://www.2spi.com/catalog/spec_prep/filter2.html

Ordered arrays of carbon nanotubes fabricated using a porous alumina template. J. Li, et al., Appl. Phys. Lett. 75(3), 367 (1999).

1. Physics: Explore optical, electrical, and

magnetic quantum confinement.

2. Engineering:

Motivation: Applications

Page 7: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Overview of Anodic Oxide Films

Two main types of anodic oxide films can be grown depending on the nature of the electrolyte:

1. Barrier-Type Films: Grown Oxide Insoluble in Electrolyte Nearly Neutral Electrolytes (pH 5-7)

2. Porous-Type Films: Grown Oxide Slightly Soluble in Electrolyte Aqueous Sulfuric, Oxalic, and Phosphoric Acid Electrolytes

Fabrication Anodize aluminum in electrolyte(e.g. Oxalic Acid)

Page 8: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Historical Timeline

1920’s Porous alumina starts to be used commercially to protect and finish bulk Al surfaces.

1940’s-1960’s With advent of electron microscopes, first characterization of structure of porous alumina, but growth theories are experimentally unsubstantiated.

1970 Manchester group does first real experimental work showing pore radius dependence on applied voltage,etc.

1992 First “quantitative” theoretical attempt to explain pore growth from first principles by Belorus group.

1995 Japanese group discovers pores will self-order into close packed array under the right anodization conditions.

1996-Present Use of porous alumina for nano-applications abound.

1998 Although mechanism for ordering still not clear, German group proposes one possible mechanism.

Page 9: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Anodize aluminum in electrolyte (e.g. Oxalic Acid). Oxide grows at the metal/oxide and oxide/electrolyte

interfaces, pores initiate at random positions by field-assisted dissolution at the oxide/electrolyte interface.

Ordering requires appropriate potentials and long anodization times.

Ordering results from repulsion between neighboring pores due to mechanical stress at the metal/oxide interface.

Apparatus

H. Masuda and K. Fukuda, Science 268, 1466 (1995).

Resulting Structure

Porous Alumina

Page 10: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Barrier-Type Anodic Oxide Films

Oxide growth proceeds at the Aluminum anode (+).

Hydrogen gas is evolved at the Platinum cathode (-).

The current between the cathode and anode is carried by the electrolyte.

The overall electrochemical reaction occurring is:

Growth Mechanism

Oxidation reactions at the Al anode

Reduction reaction at the cathode:

Electrolysis of water at aluminum oxide/ electrolyte interface

2 3 32 2 3 2Al H O Al O H

}632{ 322 eOAlOAl

222 HeH

})(422{ 22 aqHOOH

eHOAlOHAl 6332 32

)(2 aqHOHOH

Page 11: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Barrier-Type Anodic Oxide Films

Oxide growth proceeds at the metal/oxide and the oxide/electrolyte interface.

Growth proceeds due to the motion of ions under the applied field.

Growth Mechanism

Growth at the metal/oxide interface is due to oxygen containing anions (mainly OH- and O2-) moving through interstitial/vacancy sites.

Growth at the oxide/electrolyte interface is due to Al3+ cations moving through interstitial/place exchange mechanisms.

Page 12: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

V.P. Parkhutik, and V.I. Shershulsky, J. Phys. D:Appl. Phys. 25, 1258 (1992).

Oxide growth proceeds via ionic conduction and reaction of Al cations and oxygen containing anions under the influence of an applied field. (e.g. 2Al+ + 3OH- Al2O3+3H+

+6e-) Pores initiate at random positions

through field-assisted dissolution of the oxide at the oxide/electrolyte interface.

Initially oxide growth dominates. (I)

Dissolution becomes competitive, barrier layer thins, and pores initiate. (II)

Approaches steady state where both mechanisms occur at roughly the same rate. (III and IV)

Overview of Film Anodization

Page 13: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Field-Assisted Dissolution

This polarization effectively lowers the activation energy for dissolution of the oxide.

This promotes solvation of Al3+ ions by water molecules and the removal of O2- ions by H+ ions.

This processes is strongly dependent on the E-field strength.

Application of a field across the oxide polarizes the oxide bonds.

Porous-Type Anodic Oxide Films

Page 14: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Ordered Growth of Porous Alumina

In 1995, Japanese group found that pores will self-order under the right anodization conditions.

The two most important conditions are narrow voltage ranges and long anodization times.

Page 15: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Ordered Oxalic

Ordered Nano-Templates

Near-Ordered Sulfuric

Tunable diameters and spacings from 20 nm to 500 nm.

Polycrystalline structure: ordered micron-sized domains, defects at grain boundaries.

Low temperature growth produces unordered 4-10 nm arrays.

Page 16: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Ordered Growth of Porous Alumina

Ordered pore arrays obtained in three different electrolytes for long anodization times and appropriate voltages (specific for each electrolyte).

Polycrystalline structure with perfectly ordered domains a few microns in size. Defects occur at grain boundaries.

Page 17: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Mask Processing

7. Remove collodion and place alumina on desired substrate.

H. Masuda et al. , Jpn. J. Appl. Phys. 35, L126 (1996).

AFM of Unopened Barrier Layer (1 m x 1 m)

1.

2.

3.

4.

5.

6.

7.

To create an ordered through-hole mask:

1. Anodize for a long time allowing pores to order.

2. Chemically remove the alumina in a mixture of phosphoric and chromic acid.

3. Anodize for a short time (now pores are ordered).

4. Coat top surface of alumina with a polymer (collodion) to protect it from further processing.

5. Remove Al Substrate in a saturated HgCl2 solution.

6. Remove the barrier layer in 5 wt.% Phosphoric Acid.

Page 18: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Fluorine BeamTransfer mask pattern via etching into

substrate for ordered arrays of trenches.

Ion BeamTransfer mask pattern via ion etching

into substrate for ordered arrays of trenches or pillars.

Sputtering and Thermal Deposition

Transfer mask pattern via deposition onto substrate for ordered arrays of

dots.

1. Etching Processes

2. Growth Processes

Pattern Transfer Techniques: Results

Page 19: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

50 nm

X-SECT. VIEWTOP DOWN VIEW

SAMPLE: ~500nm thick Free-Standing AAO/Si(001)F-ETCH: 1 min. 20 sec.

TSUB = 250oCPORES: Width 70 nm, Depth 100-120 nm

200 nm Walls are ~30 nm thick (near top).

F-Etched Array of Si(001) Nano-Holes

Page 20: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

SAMPLE: ~500nm thick Free-Standing AAO/GaAs(100)

ION BEAM: 500 eV Ar+, 0.05 mA/cm2

Time = 2hrs. 12min.PORES: Width 50 nm, Depth 50-60 nm

X-SECT. VIEW~TOP DOWN VIEWOBLIQUE VIEW

Ion Etched Array of GaAs Nano-Holes

Page 21: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

3-D Rendered

SEM Top Views

Line Scan

0 100 200 300 400 5000

2

4

6

8

10

12

14

16

18

~60 nm

Hei

ght (

nm)

Distance (nm)

AFM Views

Height: 12 nm 11%Diameter: 60 nm 9% Spacing: 110 nm 5%

200 nm

MgF2 dots/Si Au dots/SiO2

Thermally Evaporated Nano-Dots: MgF2

Page 22: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

H. Masuda et al. , Jpn. J. Appl. Phys. 35, L126 (1996).

Porous alumina used as an evaporation mask to grow quantum dots.

Thermally Evaporated Nano-Dots: Gold

Page 23: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

SAMPLE: ~20nm thick Fe dots on GaAs(100).

ION BEAM: 500 eV Ar+, 0.05 mA/cm2

Time = 17 min.

PILLARS: Width 50 nm, Height 50 nm

X-SECT. VIEWTOP DOWN VIEWOBLIQUE VIEW

Note: No Fe remaining.

Ion Etched Array of GaAs Nano-Pillars

Page 24: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Collaboration with Dr. Shen Zhu of Marshall Space Flight Center.

SAMPLE: ~20nm thick Fe catalyst dots on 100nm Ti/Si

GROWTH: CVD using Methane gas at 500 Torr, 800oC

NANOTUBES: Multi-walled tubes, ~10s of microns long

TOP DOWN VIEW

Evaporated Catalyst Dots For Carbon Nanotube Growth

Page 25: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

Conclusions

Arrays of 50 nm wide trenches in Si and GaAs by atom-beam and sputter etching.

Arrays of 50 nm dots of various materials onto substrates by evaporation and sputtering.

Arrays of nano-pillars in Si and GaAs by etching nano-dot arrays.

Future Make pores smaller (to 5 nm) using sulfuric acid electrolytes and low temp.

anodization. Seed for carbon nanotube growth. Explore optical, electrical, and magnetic properties of nanostructures. Explore ways to transfer single or arbitrary dot/trench patterns. Fabricate such nanostructures in situ in multichamber MBE system.

Fabricated ordered, arrays of nanostructures using porous alumina templates as masks:

Page 26: OU NanoLab/NSF NUE/Bumm & Johnson Nano-Scale Structures Fabricated using Anodic Aluminum Oxide Templates Outline IIntroduction and Motivation IIPorous

OU NanoLab/NSF NUE/Bumm & Johnson

NanoLab Class: AAO Templated Structures

• Fabricate AAO Masks:– Ordered and Disordered Oxalic Masks (50 nm/100 nm). – Ordered film: 15 hr first anodization.– Disordered film: 1 hr first anodization.

• Lift-Off onto Silicon and Quartz substrates.– Silicon substrates for SEM characterization.– Quartz substrates for UV-Vis characterization.

• Thermally Evaporate Gold onto all Samples– Must be done one sample at a time, because alignment is critical.

• Characterize Samples– AFM -both samples– SEM of Au dots on Silicon.– UV-Vis of Au dots on Quartz.