otn for beginners

57

Click here to load reader

Upload: sanmap

Post on 23-Aug-2014

337 views

Category:

Presentations & Public Speaking


16 download

DESCRIPTION

Optical Transport Network Slide for Optics Begineers

TRANSCRIPT

Page 1: OTN for Beginners

1

OTN NEWBIES

Page 2: OTN for Beginners

FOREWORD According to the ITU-T Recommendation G.709, an Optical

Transport Network (OTN) is composed of a set of optical network elements connected by optical fiber links. The network provides functionality of transport, multiplexing, routing, management, supervision, and survivability of optical channels carrying client signals.

This architecture can be seen as a combination of the advantages of SDH/SONET technology with the flexibility of DWDM. Using OTN, the OAM&P functionality of SDH/SONET is applied to DWDM optical networks.

Compared to SDH/SONET, OTN has the following advantages: • Stronger error correction mechanisms • More levels of tandem connection monitoring • Transparent transport of client signals • Switching scalabilityIntroduction

Page2

Page 3: OTN for Beginners

ABOUT THIS COURSE This course is based on the following ITU-T

recommendations: ITU-T G.709 ITU-T G.805 ITU-T G.806 ITU-T G.798

Page3

Page 4: OTN for Beginners

4

LEARNING GUIDE

Just little Basics

Page 5: OTN for Beginners

CONTENTS

1.OTN Introduction2.Typical OTN Scenarios

Page5

Page 6: OTN for Beginners

CONTENTS

1. OTN Introduction 1.1 OTH1.2 OTN Port Structure1.3 Multiplexing/Mapping Principles and Bit Rates1.4 Overhead Description1.5 Maintenance Signals and Functions of

Different Layers1.6 Alarms and Performance Events

Page6

Page 7: OTN for Beginners

OTN

Optical transport network (OTN) An OTN network is composed of a set of

optical NEs connected by optical fiber links. These NEs are able to provide functions such as transport, multiplexing, routing, management, supervision, and protection (survivability) of client signals, according to the requirements specified in REC. G.872.

Page7

Page 8: OTN for Beginners

FEATURES OF OTN Compared with SDH and SONET networks, an OTN

network has the following features: Ultra capacity with high accuracy, T-bit/second per fiber

over DWDM lines Service transparency for client signals Asynchronous mapping, powerful FEC function, simplified

network design, and reduced costs Compared with traditional WDM networks, an OTN

network has the following features: Enhanced OAM and networking capabilities for all services Dynamic electrical/optical-layer grooming

Page8

Page 9: OTN for Beginners

9

OTN STANDARD SYSTEM

Structure

OTN

OTN network structureG.872ASON network structureG.8080

Structure andmapping

Generic frame protocol (GFP)G.7041Link capacity adjustment

scheme (LCAS) for virtual concatenation signalsG.7042

Ports on an OTN networkG.709

Equipmentfunctions

and features

Features of function blocks of equipment on an OTN networkG.798Transport network equipment features: description methods and general functionsG.806

Physical-layerfeatures Optical ports for intra-office systemsG.693

Optical security rule and requirements in an optical transport systemG.664

Physical-layer ports on an OTN network G.959.1

Networkprotection

Linear protection on an OTN networkG.873.1Ring protection on an OTN networkG.873.2

Jitter and performance

Jitter and shift control on an OTN networkG.8251Bit error performance parameters and specifications on

international channels of multiple carriers on an OTN networkG.8201

Equipment management

Management features of NEs on an OTN networkG.874OTN network: Protocol-neutral management information model for the network element G.874.1

Page 10: OTN for Beginners

OTN NETWORK LAYERS AND PORT STRUCTURE OPUk: optical channel payload

unit-k ODUk: optical channel data unit-k OTUk: completely standardized

optical channel transport unit-k OTUkV: functionally standardized

Optical channel transport unit-k OCh: optical channel with full

functionality OChr: optical channel with

reduced functionality OMS: optical multiplex section OTS: optical transmission section OPS: optical physical section OTM: optical transport module

Page10

ODUk (ODUkP and ODUkT)OPUk

OTUk OTUkV OTUk OTUkVOCh OChr

OMSnOTSn OPSn

IP/MPLS ATM EthernetSTM-N

OTM-0.mOTM-nr.m

OTM-n.m

Page 11: OTN for Beginners

OTM-N.M CONTAINMENT RELATIONSHIPS

“n” represents the maximum number of wavelengths that can be supported at the lowest bit rate supported by the wavelengths. “m” equals 1, 2, 3, 12, 23, or 123.

OTS_OH, OMS_OH, OCh_OH and COMMS OH information fields are contained in the OOS.

The optical supervisory channel (OSC) is used to transmit OOSs.Page11

OMSn payload

OCCp OCCp OCCp

OCh payload

ODUk FECOH

OPUkOH

Client signal

OPUk payloadOHOPUk

ODUk

OTUk[V]

OCh

OCG-n.m

OTM-n.m OTSn payloadOTSn OH

OMSn OH

OCCo

OChOH

OCCo

OCCo

OMU-n.m

Non-

asso

ciate

d OH OOS

Com

mon

m

anag

emen

t O

H

OTM

-n.m

OTM overhead signal (OOS)

l 2l 1

l n

l OSC

Page 12: OTN for Beginners

OTM-NR.M CONTAINMENT RELATIONSHIPS

Fixed channel spacing, irrelevant to the signal rate 1 < n ≤ 16; m = 1, 2, 3, 12, 23, or 123 Without optical supervisory channels

Page12

OPSn

OCCp OCCp OCCp

OCh payload

ODUk FECOH

OPUkOH

Client signal

OPUk payloadOHOPUk

ODUk

OTUk[V]

OChr

OCG-nr.m

OTM-nr.m

OTM

-16r

.m

l 2l 1

l 16

Page 13: OTN for Beginners

OTM-0.M CONTAINMENT RELATIONSHIPS

The OTM 0.m supports a non-colored optical channel on a single optical span with 3R regeneration at each end.

m = 1, 2, or 3 Without optical supervisory channels

Page13

OCh payload

ODUk FECOH

OPUkOH

Client signal

OPUk payloadOHOPUk

ODUk

OTUk[V]

OChr

OTM-0.m

OPS0

OTM

-0.m

Page 14: OTN for Beginners

OTN PORTS

User to network interface (UNI) Network node interface (NNI)

Inter-domain interface (IrDI) Intra-domain interface (IaDI)

Between equipment provided by different vendors (IrVI) Within subnet of one vendor (IaVI)

The completely standardized OTUk is used at OTM IrDIs and OTM IaDIs. The partly standardized OTUk is used at OTM IaDIs.

Page14

OTMUNI

OTM NNIIaDI-IrVI

OTM NNIIaDI-IaVI

OTM NNIIaDI-IaVI

Network Operator B

Vendors X Vendors Y

OTMNNIIrDI

Network Operator

C

USER A

Page 15: OTN for Beginners

CONTENTS

1. OTN introduction 1.1 Optical transport hierarchy 1.2 OTN interface structure1.3 Multiplexing/mapping principles and bit

rates1.4 Overhead description1.5 Maintenance signals and function for

different layers1.6 Alarm and performance events

Page15

Page 16: OTN for Beginners

OTN MULTIPLEXING AND MAPPING STRUCTURE

Page16

MappingMultiplexing

ODTUG3

ODTUG2

OChr

OChr

OChr

OCh

OCh

OCh

OTU3[V]

OTU2[V]

OTU1[V]

Client signal

Client signalOPU3ODU3

OCCr

OCCr

OCCr

OCC

OCC

OCC

OCG-nr.m

1 ≤ i+j+k ≤ n

OCG-n.m

1 ≤ i+j+k ≤ n

OPU2ODU2

1OPU1ODU1

OTM-nr.m

OTS, OMS, OCh, COMMSOSC OOS

OTM-n.m

4

114

16111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

i

j

k

i

j

1

Client signal

1

OTM-0.m

k

Page 17: OTN for Beginners

17

OTN Multiplexing and Mapping Structure

Page 18: OTN for Beginners

18

OTN Multiplexing and Mapping Structure

Page 19: OTN for Beginners

19

OPUflex

OPU4

OPU3

OPU2

OPU0OPU1

Client service rate

1.238G

2.488G

9.995G

40.149G

104.134G

10.312G OPU2e

LO OPU

OPUflex(GFP)

OPUflexOPUflex

LO ODU New LO ODU signals

1.25G ODU0 10.3G ODU2e 104G ODU4 ODUflex

OTN Service Bearing Capability (LO ODU)

Page 20: OTN for Beginners

20

OTN LINE BEARING CAPABILITY (HO ODU)

OPU3e2/21(ODU0, ODU1, ODU2, ODU2e, ODUflex)

OPU3/20(ODU1, ODU2)

OPU2/21(ODU0, ODU1, ODUflex)

OPU2/20(ODU1)

OPU4/21(ODU0, ODU1, ODU2, ODU2e, ODU3, ODU3e2, ODUflex)

OPU3/21(ODU0, ODU1, ODU2, ODU2e, ODUflex)

OPU1(ODU0)

LO ODU rate

ODU0ODU1

ODU2

ODU3

ODU4

ODU2e

HO OPU

ODUflexODUflex

ODUflexODUflex(GFP)

ODU3e2

New HO ODU signals 2.5G ODU1 41.7GG ODU3e2

(G.sup43) 104G ODU4 Signals with extended

capabilities– 10G ODU2– 40G ODU3

Page 21: OTN for Beginners

OTUK FRAME RATE

OTU Type OTU Nominal Bit Rate OTU Bit Rate Tolerance

OTU1 255/238 x 2488320 kbit/s

20 ppm

OTU2 255/237 x 9953280 kbit/s

OTU3 255/236 x 39813120 kbit/s

OTU4 255/227 x 99532800 kbit/s

Note 1: The nominal OTUk rates are approximately 2666057.143 kbit/s (OTU1), 10709225.316 kbit/s (OTU2), 43018413.559 kbit/s (OTU3) and 111809 973.568 kbit/s (OTU4). Note 2: OTU0, OTU2e and OTUflex are not specified in this recommendation. ODU0 signals are transported over ODU1, ODU2, ODU3 or ODU4 signals, ODU2e signals are transported over ODU3 and ODU4 signals, and ODUflex signals are transported over ODU2, ODU3 and ODU4 signals.

OTUk rate = 255/(239 - k) x STM-N frame rate

Page 22: OTN for Beginners

ODUK FRAME RATE

ODU Type ODU Nominal Bit Rate ODU Bit Rate Tolerance

ODU0 1244160 kbit/s

20 ppm

ODU1 239/238 x 2488320 kbit/s

ODU2 239/237 x 9953280 kbit/s

ODU3 239/236 x 39813120 kbit/s

ODU4 239/227 x 99532800 kbit/s

ODU2e 239/237 x 10312500 kbit/s100 ppm

ODUflex for CBR client signals

239/238 x Client signal bit rateClient signal bit rate tolerance, with a

maximum of 100 ppm

ODUflex for GFP-F mapped client signals

Pre-set bit rate 20 ppm

Note: The nominal ODUk rates are approximately 2498775.126 kbit/s (ODU1), 10037273.924 kbit/s (ODU2), 40319218.983 kbit/s (ODU3), 104794445.815 kbit/s (ODU4) and 10399525.316 kbit/s (ODU2e).

ODUk rate = 239/(239 - k) x STM-N frame rate

Page 23: OTN for Beginners

OPUK FRAME RATE

OPU Type OPU Payload Nominal Bit Rate OPU Payload Bit Rate Tolerance

OPU0 238/239 x 1244160 kbit/s

20 ppm

OPU1 2488320 kbit/s

OPU2 238/237 x 9953280 kbit/s

OPU3 238/236 x 39813120 kbit/s

OPU4 238/227 x 99532800 kbit/s

OPU2e 238/237 x 10312500 kbit/s100 ppm

OPUflex for CBR client signals

Client signal bit rate Client signal bit rate tolerance, with a maximum of 100 ppm

OPUflex for GFP-F mapped client signals

238/239 x ODUflex signal rate 20 ppm

OPU1-Xv X x 2 488 320 kbit/s

20 ppmOPU2-Xv X x 238/237 x 9953280 kbit/s

OPU3-Xv X x 238/236 x 39813120 kbit/s

Note: The nominal OPUk payload rates are approximately 1238954.310 kbit/s (OPU0 Payload), 2488320.000 kbit/s (OPU1 payload), 9995276.962 kbit/s (OPU2 payload), 40150519.322 kbit/s (OPU3 payload), 104355975.330 (OPU4 payload) and 10356012.658 kbit/s (OPU2e payload). The nominal OPUk-Xv payload rates are approximately X x 2488320.000 kbit/s (OPU1-Xv payload), X x 9995276.962 kbit/s (OPU2-Xv payload) and X x 40150519.322 kbit/s (OPU3-Xv payload).

OPUk payload rate = 238/(239 - k) x STM-N frame rate

Page 24: OTN for Beginners

ODUK (TDM)

Low-rate ODUk signals are multiplexed into high-rate ODUk signals using time‑division multiplexing: A maximum of four ODU1 signals are multiplexed

into one ODU2 signal using time‑division multiplexing.

Hybrid j (j 4) ODU2 and 16-4j ODU1 signals are multiplexed into one ODU3 signal using time‑division multiplexing.

Multiple LO ODUi[j] signals at different levels are multiplexed into one HO ODUk signal.

Page24

Page 25: OTN for Beginners

ODU1 MULTIPLEXED INTO ODU2 ODTU12: optical channel data tributary unit 1 into 2 ODTUG2: optical channel data tributary unit group 2 JOH: justification overhead

Page25

ODU1OH ODU1ODU1 payload

ODTU12JOH ODU1 ODTU12

ODU2OH

OPU2OH

ODU2 payload

OPU2

ODU2

ODTU12JOH ODU1ODTU12

JOH ODU1 ODTUG2

ODTUG2

OPU2 payload

Page 26: OTN for Beginners

ODU1 MULTIPLEXED INTO ODU2 ODU1 floats in one quarter of the OPU2 payload area. An ODU1 frame travels cross multiple ODU2 frame

boundaries.

Page26

OTU2 OTU2FEC

Client-layer signal(STM-16, ATM, or GFP)ODU1

ODU1OH

Alignment

ODU2

x4

Client Layer Signal(for example, STM-16)ODU1 OH OP

U1 O

H

Client Layer Signal(for example, STM-16)ODU1 OH OP

U1 O

H

Client Layer Signal(for example, STM-16)ODU1 OH OP

U1 O

H

Client-layer signal(STM-16, ATM, or GFP)ODU1 OHODU2 OH

OPU2

OH

OPU2 PayloadODU2 OH

Alignment

OPU2

OH

OTU2 OH

Client Layer Signal(for example, STM-16)ODU1 OH OP

U1 O

H

Client Layer Signal(for example, STM-16)ODU1 OH OP

U1 O

H

Client Layer Signal(for example, STM-16)ODU1 OH OP

U1 O

H

Client-layer signal(STM-16, ATM, or GFP)ODU1 OH

OPU1

OH

Alignment

Alignment

OPU1

OH

OPU1

OH

Page 27: OTN for Beginners

ODU1 AND ODU2 MULTIPLEXED INTO ODU3

ODTU23: optical channel data tributary unit 2 into 3 ODTU13: optical channel data tributary unit 1 into 3

Page27

ODU1OH ODU1ODU1 payload

ODTU13JOH ODU1 ODTU13

ODU3OH

OPU3OH

ODU3 payload

OPU3

ODU3

ODTU23JOH

ODTU23JOH ODU1 ODTUG3

ODTUG3

OPU3 payload

ODU2OH ODU2ODU2 payload

ODTU23JOH ODU2 ODTU23

ODTU13JOH ODU2ODTU13

JOH ODU2 ODU1

Page 28: OTN for Beginners

28

OH

Payload Area

client data

stuff

server frame or multi-frame

0

memory

Pserver?

Pserver

client data

indication =

read/write enable

payload area frame start clock

Cm(t)

enable

GMP can automatically adapt CBR services to an OTN container. It is the key technology for an OTN network to bear multiple services.

Service rate information transmitted in overheads Sigma-delta algorithm M byte bit width Separation of data and clocks

GMP Mapping

Page 29: OTN for Beginners

29

ODUflex

OH

OHServices with a fixed bit rate

Client signals

Packet services

Client services

OHGMP

TSi TSjODUflex

OHBMP

TSi TSjGMP

GFP

Map CBR services to ODUflex services using synchronized packet encapsulation.

Map packet services to ODUflex services using GFP. Map ODUflex services to HO OPUk services using GMP.

ODUflex

Page 30: OTN for Beginners

CONTENTS

1. OTN introduction 1.1 Optical transport hierarchy 1.2 OTN interface structure1.3 Multiplexing/mapping principles and bit rates1.4 Overhead description1.5 Maintenance signals and function for

different layers1.6 Alarm and performance events

Page30

Page 31: OTN for Beginners

OOS

TTI: trail trace identifier PMI: payload missing indication OCI: open connection indication BDI-O: backward defect indication - overhead BDI-P: backward defect indication - payload FDI-O: forward defect indication - overhead FDI-P: forward defect indication - payload

Page31

Non-

asso

ciate

d

ov

erhe

adOT

Snn

32

OCh

1

General management communication

OMSn

FDI-O

FDI-P

OCI

BDI-O

BDI-P

PMI

FDI-P

FDI-O

BDI-O

BDI-P

PMI

TTI

OOS functions subject to standardization. Bit rate and format are not standardized.

Page 32: OTN for Beginners

OPTICAL-LAYER FUNCTION

Page32

OTSn

BDI-O

BDI-P

PMI

TTI MI_TxTI

aPMI

RI_BDI-P

RI_BDI-O

PayloadOTSn OH

dLOS_P

Payload and OH combined together APR control

OA, DCM

The OTS source function is used as an example.

Page 33: OTN for Beginners

33Page33

OTN FRAME FORMATS (K = 1, 2, OR 3)

3825

40801 7 8 14 15 16 17 3824

1

2

3

4

OPU k payloadOP

Uk O

H

OPUk - optical channel payload unit

ODUk OH

ODUk - Optical Channel Data Unit

Client signal mapped in

OPUk payload

Client signal

OTUKFEC

OTUk OH

OTUk - Optical Channel Transport Unit

Alignment

Alignment

K:1 - 2.5G2 - 10G3 - 40G

Page 34: OTN for Beginners

OTN ELECTRICAL OVERHEAD OVERVIEW

Page34

ODUk OH TCMACT: tandem connection

monitoring activation/deactivation control channel

TCMi: tandem connection monitoring i FTFL: fault type and fault location

reporting channel PM: path monitoring EXP: experimental GCC1/2: general communication

channel 1/2 APS/PCC: automatic protection

switching coordination channel/protection communication control channel

Alignment OHFAS: frame alignment signalMFAS: multiframe alignment signal

OTUk OH SM: section monitoring GCC0: general communication

channel 0 RES: reserved for future international

standardization

OPUk OH PSI: payload structure identifierJC: justification control NJO: negative justification opportunity

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2 TCM1

TCM4PM

TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS MFAS SM GCC0 RES JCRES17

Page 35: OTN for Beginners

FRAME ALIGNMENT SIGNAL

Page35

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 61 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

OA1 OA1 OA1 OA2 OA2 OA2

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2 TCM1

TCM4PM

TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS MFAS SM GCC0 RES JCRES17

Frame alignment signal (FAS) A six-byte OTUk-FAS signal is defined in row 1 and columns 1

to 6 of the OTUk overhead. OA1 is 0xF6 (1111 0110) and OA2 is 0x28 (0010 1000).

Page 36: OTN for Beginners

MULTIFRAME ALIGNMENT SIGNAL

Page36

MFAS OH byte

MFAS sequence

1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 00 0 0 0 0 0 1 10 0 0 0 0 1 0 0....

..

1 1 1 1 1 1 1 01 1 1 1 1 1 1 10 0 0 0 0 0 0 00 0 0 0 0 0 0 1..

Multiframe alignment signal (MFAS) It is defined in row 1 and column 7. The value of the MFAS byte is increased by

OTUk/ODUk frame and the MFAS byte provides a maximum of 256 multiframes.

Individual OTUk/ODUk overhead signals may use this central multiframe to lock their 2, 4, 8, 16, or 32 multiframes to the main frame.

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2 TCM1

TCM4PM

TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS SM GCC0 RES JCRES17

MFAS

Page 37: OTN for Beginners

OTUK SECTION MONITORING OVERHEAD

Page37

Trail trace identifier (TTI) A one-byte overhead is defined to transport 64-

byte TTI signals. The 64-byte TTI signal should be aligned with the

OTUk multiframe and transmitted four times per multiframe.

TTI structure: 16-byte SAPI: source access point identifier 16-byte DAPI: destination access point identifier 32-byte operator specified information

Operatorspecified

TTI BIP-8

BEI/BIAE BDI

RES1 2 3 4 5 6 7 8

1 2 3IA

E

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2 TCM1

TCM4PM

TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS GCC0 RES JCRES17

MFAS SM

Page 38: OTN for Beginners

OTUK SECTION MONITORING OVERHEAD

Bit interleaved parity-8 (BIP-8) For section monitoring and a one-byte error detection code signals are

defined. This byte provides a bit interleaved parity-8 (BIP-8) code. OTUk BIP-8 is computed over bits in the OPUk (columns 15 to 3824) area

of OTUk frame i, and inserted in the OTUk BIP-8 overhead location in OTUk frame i+2.

Page38

BIP8

OPUk

1 14 15 3824

Frame i

Frame i+1

Frame i+2

Page 39: OTN for Beginners

OTUK SECTION MONITORING OVERHEAD

Backward error indication/backward incoming alignment error (BEI/BIAE)

A four-bit BEI and BIAE signal is defined. This signal is used to transmit in the upstream

direction the count of interleaved-bit blocks and incoming alignment error (IAE) conditions.

During an IAE condition the code "1011" is inserted into the BEI/BIAE field and the error count is ignored. Otherwise the error count (0-8) is inserted into the BEI/BIAE field.

Page39

Operatorspecified

TTI BIP-8

BEI/BIAE BDI

RES1 2 3 4 5 6 7 8

1 2 3IA

E

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2 TCM1

TCM4PM

TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS GCC0 RES JCRESMFAS SM

Page 40: OTN for Beginners

OTUK SECTION MONITORING OVERHEAD

Backward defect indication (BDI) A single-bit BDI signal is defined to transmit

the signal failure status detected by the section termination sink function in the upstream direction.

BDI is set to "1" to indicate an OTUk backward defect indication; otherwise, it is set to "0".

Page40

Operatorspecified

TTI BIP-8

BEI/BIAE BDI

RES1 2 3 4 5 6 7 8

1 2 3IA

E

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2 TCM1

TCM4PM

TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS GCC0 RES JCRES17

MFAS SM

Page 41: OTN for Beginners

OTUK SECTION MONITORING OVERHEAD

Incoming alignment error (IAE) A single-bit IAE signal is defined to allow the

S-CMEP ingress point to inform its peer S-CMEP egress point that an alignment error in the incoming signal has been detected.

IAE is set to "1" to indicate a frame alignment error; otherwise it is set to "0".

RES (reserved) Two bits are reserved (RES) for future

international standardization. They are set to "00".

Page41

Operatorspecified

TTI BIP-8

BEI/BIAE BDI

RES1 2 3 4 5 6 7 8

1 2 3IA

E

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2 TCM1

TCM4PM

TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS GCC0 RES JCRES17

MFAS SM

Page 42: OTN for Beginners

OTUK GCC0 AND RES OVERHEAD

General communication channel (GCC0) Two bytes are allocated in the OTUk overhead to support a general

communications channel between OTUk termination points. A clear channel is located in row 1 and columns 11 and 12.

RES (reserved) Two bytes of the OTUk overhead are reserved for future

international standardization. They are located in row 1 and columns 13 and 14. They are set to all “0”s.

Page42

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2 TCM1

TCM4PM

TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS RES JCRES17

MFAS SM GCC0

Page 43: OTN for Beginners

ODUK PATH MONITORING OVERHEAD

Page43

TTI / BIP-8 / BEI / BDI For path monitoring, this overhead’s functions

are the same as those of the OTUk SM signal, except that BEI signals do not support the BIAE function.

They are located in row 3 and columns 10 to 12.

Operatorspecified

TTI BIP-8

BEI BDI

STAT1 2 3 4 5 6 7 8

1 2 3

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2 TCM1

TCM4TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS RES JCRES17

MFAS SM GCC0

PM

Page 44: OTN for Beginners

ODUK PATH MONITORING OVERHEAD

Page44

Operatorspecified

TTI BIP-8

BEI BDI

STAT1 2 3 4 5 6 7 8

1 2 3

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2 TCM1

TCM4TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS RES JCRES17

MFAS SM GCC0

PM

Bit 678 Status

000 Reserved for future international standardization

001 Normal path signal

010 Reserved for future international standardization

011 Reserved for future international standardization

100 Reserved for future international standardization

101 Maintenance signal: ODUk - LCK

110 Maintenance signal: ODUk - OCI

111 Maintenance signal: ODUk - AIS

Status (STAT) For path monitoring, three bits are defined as

status bits. They indicate the presence of a maintenance

signal.

Page 45: OTN for Beginners

ODUK TCM OVERHEAD

Page45

TTIi/BIP-8i/BEIi/BIAEi/BDIi For each tandem connection monitoring

field, this overhead’s functions are the same as those of OTUk SM signals.

Six fields of the ODUk TCM overhead are defined in row 2 and columns 5 to 13, and row 3 and columns 1 to 9 of the ODUk overhead.

TTIi BIP-8i

BEIi/BIAEi BDIi

STATi1 2 3 4 5 6 7 8

1 2 3

63

32

0

1516

31

SAPI

DAPI

Operatorspecific

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4

TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS RES JCRESMFAS SM GCC0

PMTCM1TCM2TCM3TCM6 TCM5 TCM4

Page 46: OTN for Beginners

ODUK TCM OVERHEAD

Page46

TTIi BIP-8i

BEIi/BIAEi BDIi

STATi1 2 3 4 5 6 7 8

1 2 3

63

32

0

1516

31

SAPI

DAPI

Operatorspecified

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4

TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIGCC2 APS/PCC RESEXP

FAS RES JCRES17

MFAS SM GCC0

PMTCM1

Bit 678 Status000 No source TC 001 In use without IAE010 In use without IAE

011 Reserved for future international standardization

100 Reserved for future international standardization

101 Maintenance signal: ODUk -LCK

110 Maintenance signal: ODUk -OCI

111 Maintenance signal: ODUk -AIS

TCM2TCM3TCM6 TCM5 TCM4

STAT (status) For each tandem connection monitoring

field, three bits are defined as status bits. They indicate the presence of a

maintenance signal if there is an incoming alignment error at the source TC-CMEP, or if there is no source TC-CMEP active.

Page 47: OTN for Beginners

NESTED AND CASCADED ODUK MONITORED CONNECTIONS

Page47

A1 B1 C1 C2 B2 B3 B4 A2

A1 - A2

B1 - B2

C1 - C2

B3 - B4

TCM1 TCM1TCM2

TCM1TCM2TCM3

TCM1TCM2

TCM1 TCM1TCM2

TCM1TCM2TCM3TCM4TCM5TCM6

TCMi TCM OH field not in use TCMi TCM OH field in use

TCM2TCM3TCM4TCM5TCM6

TCM2TCM3TCM4TCM5TCM6

TCM3TCM4TCM5TCM6

TCM3TCM4TCM5TCM6

TCM3TCM4TCM5TCM6

TCM4TCM5TCM6

Page 48: OTN for Beginners

OVERLAPPED ODUK MONITORED CONNECTIONS

Page48

A1 B1 C1 C2B2 A2

A1 - A2

B1 - B2

C1 - C2

TCM1 TCM1TCM2

TCM1TCM2TCM3

TCM1TCM2

TCM1

TCMi TCM OH field not in use TCMi TCM OH field in use

TCM2TCM3TCM4TCM5TCM6

TCM2TCM3TCM4TCM5TCM6

TCM3TCM4TCM5TCM6

TCM3TCM4TCM5TCM6

TCM4TCM5TCM6

Page 49: OTN for Beginners

ODUK TCM ACT COORDINATION PROTOCOL

Page49

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2

TCM4TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIAPS/PCC RESEXP

FAS RES JCRES17

MFAS SM GCC0

PMTCM1GCC2

TCM activation/deactivation (TCMACT) A one-byte TCM activation/deactivation field is located in

row 2 and column 4. Its definition is to be defined in future.

Page 50: OTN for Beginners

ODUK GCC1/GCC2

Page50

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2

TCM4TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIAPS/PCC RESEXP

FAS RES JCRES17

MFAS SM GCC0

PMTCM1GCC2

General communication channel (GCC1/GCC2) Two fields of the two bytes are allocated in the ODUk overhead to

support two general communication channels between any two NEs with access to the ODUk frame structure (for example, at 3R regeneration points).

The bytes for GCC1 are located in row 4 and columns 1 and 2, and the bytes for GCC2 are located in row 4 and columns 3 and 4 of the ODUk overhead.

Page 51: OTN for Beginners

ODUK APS/PCC CHANNEL

Page51

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2

TCM4TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIRESEXP

FAS RES JCRES17

MFAS SM GCC0

PMTCM1GCC2 APS/PCC

Automatic protection switching/protection communication control (APS/PCC)

A four-byte ODUk-APS/PCC signal is defined in row 4 and columns 5 to 8 of the ODUk overhead.

For linear protection schemes, bit assignments for these bytes and the bit oriented protocol are given in ITU-T G.873.1. Bit assignment and byte oriented protocol for ring protection schemes are to be defined in future.

A maximum of eight levels of nested APS/PCC signals may be present in this field.

Page 52: OTN for Beginners

ODUK FTFL CHANNEL

Fault Type & Fault Location (FTFL) One byte is allocated in the ODUk overhead to transport a 256-byte

FTFL message. The byte is located in row 2 and column 14 of the ODUk overhead. The 256-byte FTFL message consists of two 128-byte fields. The

forward field is allocated in bytes 0 to 127 of the FTFL message. The backward field is allocated in bytes 128 to 255 of the FTFL message.

Page52

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2

TCM4TCMACT

GCC1

RES JCRES JC

NJOPSIAPS/PCC RESEXP

FAS RES JCRES17

MFAS SM GCC0

PMTCM1GCC2

FTFL

Page 53: OTN for Beginners

ODUK EXPERIMENTAL AND RESERVED OVERHEAD

Experimental (EXP) Two bytes are allocated in the ODUk overhead for experimental use. They are located in row 3 and columns 13 and 14 of the ODUk overhead. There is no requirement for forwarding the EXP overhead over different

(sub)networks. RES

9 bytes are reserved in the ODUk overhead for future international standardization. They are located in row 2 and columns 1 to 3, and row 4 and columns 9 to 14 of the

ODUk overhead. They are set to all “0”s.

Page53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2

TCM4TCMACT

GCC1

FTFL RES JCRES JC

NJOPSIAPS/PCC

FAS RES JCRES17

MFAS SM GCC0

PMTCM1GCC2

EXPRES

RES

Page 54: OTN for Beginners

OPUK PAYLOAD STRUCTURE IDENTIFIER

Payload structure identifier (PSI)

One byte is allocated in the OPUk overhead to transport a 256-byte payload structure identifier (PSI) signal.

It is aligned with the ODUk multiframe.

PSI[0] contains a one-byte payload type. PSI[1] to PSI[255] are mapping and concatenation specific.

Page54

255

01

PT

Mapping and concatenation specific

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2

3

4TCM3

TCM6 TCM5TCM2

TCM4TCMACT

GCC1

RES JCRES JC

NJOAPS/PCC RESEXP

FAS RES JCRES17

MFAS SM GCC0

PMTCM1GCC2

FTFL

PSI

Page 55: OTN for Beginners

PAYLOAD TYPE CODE POINTS

MSB 1234 LSB 1234 Hex Code Meaning

0000 0001 01 Experimental mapping

0000 0010 02 Asynchronous CBR mapping

0000 0011 03 Bit synchronous CBR mapping

0000 0100 04 ATM mapping

0000 0101 05 GFP mapping

0000 0110 06 Virtual Concatenated signal

0001 0000 10 Bit stream with octet timing mapping

0001 0001 11 Bit stream without octet timing mapping

0010 0000 20 ODU multiplex structure

0101 0101 55 Not available

0110 0110 66 Not available

1000 xxxx 80-8F Reserved codes for proprietary use

1111 1101 FD NULL test signal mapping

1111 1110 FE PRBS test signal mapping

1111 1111 FF Not availablePage55

Page 56: OTN for Beginners

OPUK MAPPING SPECIFIC OVERHEAD

Justification control/negative justification opportunity/reserved (JC/NJO/RES)

Seven bytes are reserved in the OPUk overhead for the mapping and concatenation specific overhead.

These bytes are located in rows 1 to 3 and columns 15 and 16, and row 4 and column 16.

255 bytes in the PSI are reserved for mapping and concatenation specific purposes.

Page56

RES1

2

3

4TCM3

TCM6 TCM5TCM2

TCM4TCMACT

GCC1

RES JCJC

APS/PCC RESEXP

FAS RES JCRESMFAS SM GCC0

PMTCM1GCC2 PSI

FTFL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

RESNJO

Page 57: OTN for Beginners

57

THANKS FOR BEING PATIENT