oscillating wind energy conversion system

Upload: kendra-kaiser

Post on 07-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Oscillating Wind Energy Conversion System

    1/24

    SERl/TR 211 1911

    UC Category: 60

    DE84000087

    Oscillating Wind Energy

    Conversion Systems

    Peter South

    Richard Mitchell

    December 1983

    Prepared under Task No. 1067.10

    WPA NO.171 83

    Solar Energy Research lnstitute

    A

    Division of Midwest Research Institute

    1617

    Cole Boulevard

    Golden Colorado 80401

    Prepared

    for

    the

    U S Department of Energy

    Contract No. DE-AC02-83CH10093

  • 8/19/2019 Oscillating Wind Energy Conversion System

    2/24

    Printed in the United States of America

    Available from:

    National Technical Information Service

    U.S. Department of Commerce

    5285 Port Royal Road

    Springfield VA 22161

    Price:

    Microfiche A01

    Printed Copy A02

    NOTI E

    This report was prepared as an account of work sponsored by the United States

    Government. Neither the United States nor the United States Department of Energy

    nor any of their employees nor any of their contractors subcontractors or their

    employees makes any warranty express or implied or assumes any legal liability

    or responsibility for the accuracy completeness or usefulness of any information

    apparatus product or process disclosed or represents that its use would not

    infringe privately owned rights.

  • 8/19/2019 Oscillating Wind Energy Conversion System

    3/24

    PREFACE

    The i n fo rmat i c rn i n t h i s docriment sui:qcst ; t : je C)sci n :.in;: [. iiigJ E~?el-,zyCon-

    v e r s i o n S ys Cm s 6:-I n o t a p p e a r t o have s i ~ r j i f i c n ~ rt lv ;~r . tn re : ;

    o v e r

    ecl~ii\.-

    a l e n t c o n v e n t i o n a l r o t a t i n r - l l e n e n t wind t3nt rgy conver s ion svs t c>ms . I n

    f a c t ,

    n m o s t c a s e s i t a p p e ar s t h a t t h e y h a ve s c v c r a l d i sa c lv a nt a gt 3 s.

    Tnc

    doc~:mi?nt

    a d d re s s es t h e o s c i l l a t i n g c a b le - t y pe w i n d e n e r g y c o n v e r s i o n s v s t c l r l

    i t s

    w e l l

    a s

    t h o s c i l l a t i n g v an e a nd t h e o s c i l l n t i n g wing. I i~dv;lnt ;lgrss and d i s -

    a d v a n t a g e s o f e a c h t y p e of s y s t e m a r e e v a l u a t e d , and i n e a c h

    case

    compar i son

    i s

    made bc t seen i t a n d a c o n v e t l t i or l a l r o t a t i - n g - e l e m e n t w i nd

    c n t t r f y

    c o l l v e r s i o n

    d e v i c e . t a p p e a r s u n l i k e l y t h a t a ny of the: o s c i l l a t i n g e le m e n t c or lc e pt s c a n

    c om pe te w i t h t h e p r e s e n t g e n e r a t i o n o f c o n v e n t i o n al w in d e n e r f y s ys te ms .

    Approved f o r

    S0LP.R

    ENERGY

    RESE RCH I N S T I T U T E

    .

    Donald Ritchie, P lana ger

    Solar FJectr ic Conversion

    Research

    Division

  • 8/19/2019 Oscillating Wind Energy Conversion System

    4/24

    s n TI?-1911

    T BLE

    O

    CONTENTS

    aqe

    .0 In t roduc t i on 1

    .0

    Os ci ll at in g- Ca bl e WECS

    7

    .0

    Oscillating-Vane WECS 11

    Q Osci lla tin g-Wi ng IJECS 15

    5.0 Conclusions 17

    6.0 k f e r e n c e s 1 9

    LIST

    O

    FIGURES

    -1 Cross Se cti on of

    a

    Typical O s c i l l a t i n g - A i r fo i l WECS 2

    -2 Osc il la ti ng -C ab le WECS 2

    -3 Os ci ll at ing- Va ne WECS

    3

    4

    Rigid Wing O sc i l l a t i ng i n a Support ing Track

    4

    -1 Comparable Skipping-Rope Dar r i eus ) and Osc il l at ing -Cab le WECS 10

    -1

    Oscillating-Vane

    WECS

    Rielawa Model)

    2

    3-2 VAWT Comparable t o th e Osc illa ting -Va ne WECS

     

    12

  • 8/19/2019 Oscillating Wind Energy Conversion System

    5/24

    SECTION 1 0

    INTRODU TION

    In te re s t i n os ci l l a t in g- el em en t wind energy convers i on systems (WECS) was

    generated when

    i t

    was s u g g e s t e d t h a t t h e s e s y st e ms c o ul d b e b u i l t w i t h r e l a -

    t i v e l y s imple e lements . Because th e main pa r t of th e s t ru c t u r e would be

    e x t r a c t i n g e ne r gy f ro m t h e wind , t h e c o s t o f t h a t e n er g y would b e r e l a t i v e l y

    low. F igure 1-1 shows a c r os s se c t io n o f a ty p i ca l os c i l l a t in g- a i r f o i l WECS.

    Three b a s i c ty pe s of osci l l a t in g- el em en t WECS have been proposed. In t h e

    f i r s t t y p e , t h e o s c i l l a t i n g - c a b l e WECS, t h e g a l l o pi n g c h a r a c t e r i s t i c o f

    a

    s t r e t c h e d c a b l e i s enhanced by va r i ous aerodynamic shapes . The s t r u c t u r e i s

    mainly made up of a set of ca b l es s t r e t ch ed be tween two anchor po in t s , and

    power

    i s

    e x t r a c t e d from e i t h e r t h e l a t e r a l o r a x i a l m ot io n o f t h e ca b le s . The

    os ci l l a t in g- ca bl e WECS

    i s

    shown sc he ma ti ca l l y i n Figure 1-2.

    The second typ e of osc i l l a t ing -e l eme nt WECS use s an a c t iv e e lement t h a t i s

    c a n t i l e v e r e d f r o n a b as e . The a er od yn am ic p r o p e r t i e s of t h i s a c t i v e e l em e nt

    a r e c o n t r o l l e d t o p ro du ce t h e a p p r o p r i a t e o s c i l l a t o r y f o r c e s . Thi.s t y p e of

    o s c i l l a t i n g WECS, t h e os ci ll at in g- va ne WECS, i s shown schematical ly i n

    Figure 1-3.

    The t h i r d t y p e o f o s c i l l a t i n g - e l em e n t WECS u s e s a w i ng t h a t moves i n a d i r ec -

    t i o n n orma l t o t h e w in d. T h is n o t i o n i s con s t r a in ed by some fo rm of t ra ck ,

    and power i s e x t r a c t e d f ro m t h e m o t io n o f t h i s wing. T h i s t y p e , t h e o s c i l -

    lating-wing WECS,

    i s

    shown i n Fi gu re 1-4.

    The be ne fi t of a WECS, ene rgy prod uct io n, must be compared wi th t h e co st of

    bu i ld ing , in s ta l l i ng , and main t a in ing th e WECS. The e f fe c t iv en es s o f any WECS

    depends on

    i t s

    o v e r a l l b en e f i t - t o -co s t (B/ C) r a t i o . T hu s, t h e m os t i m p o r t an t

    p a ram e t er of i n t e r e s t i n ev a l u a t i n g a WECS

    i s

    t h i s r a t i o .

    t

    i s u s u a l l y p o s -

    s i b l e t o o b t a i n a r e as o na b ly a c c u r a t e power c o e f f i c i e n t (C b a se d o n s we pt

    P

    a r e a ( t h e s p ac e oc cu pi ed by t h e r o t a t i n g o r o s c i l l a t i n g b l a d e ) , b ut t h i s

    p a r a m e t er h a s

    l i t t l e

    meaning un less

    i t

    i s d i v i d ed by t h e c o s t p e r u n i t o f t h e

    swept ar ea of th e WECS. Hence, comparing wid ely d i f f e r e n t WE S s o l e l y o n t h e

    b a s i s o f o b t a i n a b l e power c o e f f i c i e n t s d o e s n o t a c c u r a t e l y compare t h e c o s t o f

    t h e en e rg y t h a t t h ey p ro d u ce .

    T he power co e f f i c i en t b a s ed on s wept a r ea ca n b e p a r t i cu l a r l y m i s l ead i n g when

    i t i s

    app l ie d t o dev ices l i k e th e osc i l l a t ing -e l eme nt WECS, where the swep t

    a r e a i s p r o p o rt i o n a l t o al lo we d mo ti on a s w e l l a s t o t h e s i z e of t h e s t r u c -

    t u re . For ex am pl e, i f i n a g i v en s i t u a t i o n , d o u b l in g t h e amount of t h e e l e -

    men t ' s mot ion p roduces

    1.5

    t i m e s t h e power o b t a i n e d p r e v i o u s l y , t h e p would

    only be 75 of what

    i t

    was befo r e , hu t t he power ou tpu t f rom th e s t ru c t u r e

    w oul d i n c r e a se . S i n c e c o s t s p e r t a i n t o t h e s t r u c t u r e a nd n o t t o t h e amount of

    motion

    i t

    a l l ows , i n our example

    i t

    i s obv ious th a t th e co s t o f energy would

    b e r ed u ced by u s i n g a l o wer po wer co e f f i c i e n t .

    more p r ac t i ca l parameter i s th e power loa d ing parameter , TAP Power o t~ tpu t

    i s d i v i d e d

    by

    t h e power f l o wi n g i n

    a

    s t r eam t u b e h av i n g a c r o s s - s e c t i o n a l a r e a

  • 8/19/2019 Oscillating Wind Energy Conversion System

    6/24

  • 8/19/2019 Oscillating Wind Energy Conversion System

    7/24

  • 8/19/2019 Oscillating Wind Energy Conversion System

    8/24

  • 8/19/2019 Oscillating Wind Energy Conversion System

    9/24

    e q u al t o t h e a r e a of t h e a c t i v e s t r u c t u r a l ~ l c n e n t . : lax imizing the po mr

    l o a d i n g p ar a m et e r, t h e n , m ax im iz es t h e p ow er a v a i l a b l e f r m t h e s t r : l c t u r e .

    The power loa di ng par am et er , however,

    i s

    n o t a u sef t 1 1 t oo l. f o r c o ~ ~~ p a r i . n p

    wide ly d i f f e r e n t WECS.

    rt

    fact

    i t

    could

    h e

    a rg ut ?d t l l i ~ t h e o n l y r e l e v a n t

    p ar am et er of r e a l i n t e r e s t i n e v al . u at i np a

    I E S

    i s t h e c o s t of h u i l d i n g an d

    m a i n t a in i n g o n e f o r a g i v e n e n er gy o u t p ut . % v l o u s l v , i t i s n o t p o s s i b l e t n

    e s t i m a t e c o s t s a c c u r a t e l y a t a v e r y e a r l y s t n a e i n t h e clevelopm ent o f

    c o n ce p t. R e g a r d l e s s o f how go od a n y p a r t i ci l l . n r p a r m e t e r a p p e a r s t o h e , t h e

    concept i s v a l u a b l e o n l y i f : i t produces a B /C r i l t i o b e t t e r t h a n t h a t o f a ny

    comparable dev ice . Probab ly th e be s t method

    i s

    t o co npc ?re t h e d e v i c e w i t h a

    comparably des igned con ven t io nal system and t hen a nal yze the wav i n which

    t h e i r a s s o c ia t e d c o s t s and b e n e f i t s d i f f e r .

    The power c oe f f i c i e n t hased on swept a r ea can be us e fu l a s an in d i ca to r o f

    p e rf o rm a nc e a n d c a n b e u se d t o d e t e r m i n e t i l e l ip p er

    l i m i t

    of th e de v ic e ' s power

    o u t p u t . If t h e c a l c u l a t e d p ower c o e f f i c i e n t b a se d o n swe pt a r e a e x c e e d s , o r

    e v e n c l o s e l y a p p r o a c he s , 0.59,

    i t

    i s

    a g ood i n d i c a t i o n t h a t e i t h e r t h e c a l-

    c u l a t i o n s a r e i d e a l i z e d o r t h e r e h a s b een a n e r r o r .

    Tine prima ry power e x t r a c t i o n mecharlism i n

    a VECS

    c a n h e e i t h e r a e ro dy na ., i

    r

    l i f t o r ae rodynamic d rag . However, ae rodynan ic d ra g i s a s so c i a t e d w i t h r e 1 . a -

    t i v e l y low s p e e d s , l a r g e f o r c e s , a nd l a r g e a c t i v e a r e a s , and i t r e s u l t s i n a

    r e l a t i v e l y h i g h e n e rg y c o s t , e x c ep t i n v e r y s p e c i a l i z e d a p p l i c a t i o n s . Hence,

    t h e f o l l ow i n g d i s c u s s i o n

    i s

    c o n ce r n ed p r i na r i 1 . y w i t h d e v i c e s t h a t ris aero-

    dynamic l i f t a s the p r imary power ex t ra c t io n nechan i sm.

    W it h ae ro d yn a mi c l i f t , p ower i s e x t r a c t e d f r om t h e w in d by m ovinp t h e l i f t i n g

    e le m en t a c r o s s t h e w in d. g e n e r a l c h a r a c t e r i s t i c o f l i f t i n g a c ti . ve -e le m en t

    WECS

    i s

    t h a t f o r a g iv e n Cp t h e r e q ui re d s o l i d i t y ( t h e r a t i o of t h e b la de

    a r e a t o t h e swep t a r e a ) i s r e l a t e d t o spe ed r a t i o . The h i ~ h e r h e r a t i o of

    l i f t i n g e le me nt s p ee d t o wind s p ee d , t h e l o w er t h e r e q u i r e d s o l i d i t y . A t low

    s o l i d i t i e s and h i gh sp eed r a t i o s , t h e r e qu i re d s o l i d i t y n i s a p p ro x i ma t el y

    i n v e r s el y p r o p o r t io n a l t o t h e s q u a r e o f t h e s pe ed r a t j o f o r a n i d e n t i c a l Cp.

    F or a n y . IJECS w i t h l i f t i n p e l e m e n t s , t h e c h o i c e , t h e n , i s b e tw ee n h z vi n g a

    r e l a t i v e l y l a r g e a c t i v e a r e a n ov in g a t a low s pe ed o r r e l a t i v e l y s m a ll

    a c t i v e a r e a m ov ing a t a h i g h s p ee d , o r a n y co m b in a ti o n o f t h e s e b et we en t h e s e

    two extre mes. The ch oi ce i s a f un da me nt al o n e, h c c a ~ ~ s e i g h - s o l i d i t v ,

    lo w- sp eed a i r f o i l s a r e s u b j e c t e d t o f a i r l y low p r e s s u r e s a nd c s n be made r e l a -

    t i v e l y c r u d e l y frorn l ow- gr ad e m a t e r i a l s ; l o w- sol -i d it v, h ig h- sp ee d a i r f o i l s ,

    h ow ev er , r e q u i r e n o r e s o p h i s t i c a t e d d e s i g n , m a n u f a ct t ~ r e , an( m a t e r i a l s u se .

    ( No te t h a t , wh i l e t h e ae r o d y n a n ic p r e s su r e s N / m L )

    a r e

    q u i t e d i f f e r e n t , a er o -

    dynamic loads K ) a r e s i m i la r .

    he c o s t o f c o nv e r si o n t o e l e c t r i c a l power u s u a l l y i n cr e ii s es :>it ? tile naximun

    fo rc e o r to rqu e produced by t he p r imary dev ice . On I .arge nac: >iqes , t l ic power

    conversion mechanism i s a s i g n i f i c a n t f r a c t i o n of t h e o v e r a l l c a s t of t h e

    machine; henc e , power c onver sion co st s tend t c prc?do~nignte and t o ?e na l i ze

    h i g h - s o l i d i t y m a c h in e s.

  • 8/19/2019 Oscillating Wind Energy Conversion System

    10/24

  • 8/19/2019 Oscillating Wind Energy Conversion System

    11/24

    SECTION

    2 0

    OSC ILL TING C BLE WECS

    The phenomenon of ca hl e os c i l l a t i o n has been

    a ma:jor ? r o \ l e n

    f o r u s e r s

    o f

    t r a ns n i i s s i on l i n e s f o r s om et im e.

    t

    beco~.rles part icu .arly se ve re when th e

    shape of the ca h l e changes because of t he acc re t io n

    of

    i c e . 'iurnerous in ve st i . -

    g a t o r s h av e s t u d i e d t h i s p r o b l e n , h o pi ng t o f i n d some

    vay

    t o a l l . e v i a t e

    t s

    a d ve r se e f f e c t s . Althoug h i n v e s t i g a t o r s u nd er st oo d t h a t t h i s o s c i l l a t i o n

    n e c e s s i t a t e s a n e x t r a c t i o n o f e ne rg y f ro m t h e w in d, n o s e r i o u s p r o p o s a l s

    t c

    us e t h e phenomenon a s a p r a c t i c a l w ind ene r gy e x t r a c t i on d e v i c e w e re pu t f o r t h

    u n t i l Payne d i d s o i n 1 9 7 7 [ I ] . Payne a l s o s u g g es t ed t h a t v e r y l a r g e , o s c i l -

    l a t i n g - c a b l e WECS m ight be f e a s i b l e and a dva nt a geous when na t u r a l t e r r a i n i s

    u s ed f o r s u p p o rt .

    Other

    i n v e s t i g a t o r s may h av e b ee n d e t e r r e d f r om p u r s u i n g c a b l e o s c i l l a t i o n a s

    an energy ex t rac t ion mechani sm because

    i t

    i s

    no t ve r y e f f i c i e n t when c oup le d

    wi th t he geometry and aerodynamic mechanisms th a t op er a t e i n a na t ur a l

    e nv ir on me nt . I n a ny c a s e , t h e i r e f f o r t s w er e aimed a t s u p p r e s s in g t h i s

    phenomenon.

    n

    f a c t , u s in g c a b l e o s c i l l a t i o n a s a n e ne rg y e x t r a c t i o n mech-

    a n i s a r e q u i r e s a l oo k i n t h e o p p o s i te d i r e c t i o n , i . e. , e nh an ci ng th e n a t u r a l

    phenomenon s o t h a t

    i t

    becom es a v i a b l e ( more e f f i c i e n t ) enerCqy e x t r a c t i on

    mechanism. In a s t ud y funded by SER I [ 2 ] Payne analyzed hot11 cable osci l -

    l a t i o n and t h e b i na r y f l u t t e r o f a c a b l e s t r u c t u r e m o di fi ed t o form an

    a i r f o i l .

    T h at a n a l y s i s o f c a b l e o s c i l l a t i o n s u g g e s t s t h a t r ea s o n a b l e power c o e f f i c i e n t s

    b as ed on s wept a r e a a r e o b t a i n ab l e a t r e l a t i v e l y hi g h ca b l e f l u t t e r f r e -

    que nc i e s . To s i m p l i f y t h e a n a l y s i s , t h e ve l o c i t i e s t h a t wou1.d be i nduc ed

    n or ma l t o t h e wind d i r e c t i o n a r e u s u a l l y i g n o re d .

    And

    i n f a c t , t h e d ynamic

    p r e s s u r e v i r t u a l l y i gno r e s t ha t no r ma l componen t be c a us e o f t he ].ow c a b l e

    v e l o c i t y. Hence, t h e a n a l y s i s s t r i c t l y a p p l i e s o n l y when t h e l a t e r a l v e l o c i t v

    o f t h e c a b l e i s s m a l l c om pa re d w i t h w ind v e l oc i t y and when th e cab le ' s

    d iamete r i s s m a l l com pared w i t h t h e l a t e r a l m o ti on. Along w i t h t he s e qu a l i -

    f i c a t i o n s , t h e a n a l y s i s a l s o shows t h a t a s i m pl e c a b l e

    WECS

    presents some

    formidable p r a c t i c a l p robl.er is.

    more i n t e r e s t i n g p o s s i b i l i t y t h a t Payne i n v e s t i g a t e d

    i s

    t he b in a ry f l u t t e r

    WECS

    i n w hic h

    a

    d ev ic e t h a t a c t s a s a n a i r f o i l

    i s

    s t re tc he d between two

    c a b l e s . t h a s b e e n s u g ge s te d t h a t a n i n e x p e n si v e m a t e r i a l c o ul d b e s t r e t c h e d

    between the t$ iO c a b l e s t o p r ov i de t h e s u r f a c e of t h e a i r f o i l . T his i s

    a

    q u a s i - st e a d y - st a t e a n a l y s i s i n wh ic h t h e v e l o c i t i e s t h a t a r e i nd uc ed n or ma l t o

    t he wind d i r e c t i o n a r e i gno r e d a nd t he a ng l e of p i t c h

    i s

    assumed t o

    h e

    sm al l . ' h e a s s m p t i o n s a l s o imply t h a t t h e a i r f o i l v e l o c i t y i s small compared

    wi th th e wind ve loc i ty .

    The a n a l y s i s a l s o s u g g e s t s t h a t , i d e a l l y , t h e d e v i c e ca n h av e a

    Cp

    t h n t

    reaches the Zanches ter-Betz

    l i m i t

    However , i n or de r t o ach ieve a h i ,gh pow r

    c o e f f i c i e n t , t h e e f f e c t i v e c ho rd ( t h e d i s t a n c e betw ee n thc two cahles ) nus t

    g r e a t e r t h a n t h e v e r t i c a l m ot io n an d t h e v e r t i , c al v e l o c i t y

    of

    t he a i r f o i l

    mist

    e xc ee d t h e w ind ve l oc i t y . The h i gh vc 1o c i . t ~ nd r e l a t i v e l : , ~ 1 .a rge c ho r d or t h e

    a i r f o i . 1 te nd t o v i o l a t e some o f t h e i n it i t 3 1 a s s u m p t i ~ n s

    of

    t h e a n a l y s i s

    nil i

  • 8/19/2019 Oscillating Wind Energy Conversion System

    12/24

    make th e r e s u l t s somewhat q ~ e s i . onab le ; however, t he r e su l t s i nd i ca t e t ha t

    some g e n er a l t r e n d s e x i s t .

    As

    wi th any o t he r l i f t i ng -e l em en t

    WECS

    we must

    e l t h e r ha ve a h i gh r e l a t i v e s pe ed o r a l a r g e s u r f a c e a r ea .

    Because s t re tch ing

    th e a i r f o i l between two cab l es makes h igh speeds im poss ib le , a l a rge su r fac e

    a r e a

    i s

    requi red .

    Payne s an al ys i s s ugg es t s power outp uts f rom such

    a

    de vi ce based on a power

    coeff ic ien t tha t approaches the Lanches ter -Retz l i m i t . R e a l i s t i c a l l y , t h e

    o b t a i n a b l e power w ould p ro ba bl y b e s i g n i f i c a n t l y l e s s , a f t e r v a r i o u s l o s s e s

    a r e t aken i n to accoun t .

    The power e xt ra ct io n method proposed would emanate from th e re ci pr oc at i ng

    a x ia l motion of the ends of the cable . This a x ia l motion could be used t o

    pump a working f l u i d throu gh some con ve rs ion mechanism t o produce u sa bl e

    power. The i n i t i a l conversion, however, from an enormous fo rc e t r av el in g a

    s h o r t d i s ta n c e a t a

    l o w

    s pe e d p r e s e n t s a s i g n i f i c a n t t e c h n i c a l problem .

    For example, i f th e average wind speed normal t o a c a b l e i s 6.7 m / s (15 mph),

    a s t r e t c he d cab l e wing 1524 m (5000 f t ) l ong wi th a 152- (500- f t) cho rd t h a t

    o p er a te s a t a

    p

    of 0.4 would produ ce an av er ag e of abo ut 10

    W

    of power

    (as suning t ha t t he dev i ce opera t es e f f i c i e n t l y over a wide range of wind

    spe eds ). The i n s t a l l e d power would be about 70

    MW

    The a i r f o i l would be

    cycle d through a 46m (150-f t) range a t midpoin t and would produce an a x i a l

    motion of about 3.7 m (12

    f

    ) a t one end of t he cab l e i f t he o the r end were

    fixe d, Ass min g a frequency of 0.07 z and two power s t ro ke s pe r cy cle , an

    8

    average fo rc e of about 13.3 x 10 N would be exerted on the power conversion

    mechanisn. To make t h e change i n ca bl e le ng th cause d by power loa ds rel a-

    t i ve ly smal l compared wi th th e d i sp lacement , a s t r e s s l ev e l of about 6.9 x 10

    7

    N/m2 ( 10 ,0 00 p s i ) would b e i n d i c a t e d f o r a s t e e l c a b l e ( t h e o v e r a l l s t r e s s du e

    t o pre ten s ion would be much gre ate r ) . Hence, a t o t a l cab le cro ss -s ect iona l

    a rea o f

    1.9

    m2

    (3000 in.2) i s i n d i c a t e d f o r a c a b l e m ss of about

    22.7

    x

    lo6 Kg.

    The s k i n s t r e t ch ed be tween t h e two cab l es would c a r ry an ave rage p res su re d i f -

    fe re nc e of a few newtons pe r squa re meter a t maximum power. For a di st a n c e

    between ca bl e s of 152

    m

    ( 50 0 f t ) , a t e n s i l e l o a d o n t h e o r d e r o f 454 kg/m

    (1000 l b / f t ) of l eng th would be expected ; t h i s

    i s

    a cy c l i ca l l oad ing . There

    would a l so be load s caused by r a in and snow, and ma te r i a l would be subj ect ed

    t o u l t r a v i o l e t r a d i a t i o n . T aking a l l t h e s e f a c t o r 3 i n t o a c e u n t , t h e minimum

    5

    weight of th e sk i n would probably be about 96 ~ / m 2 l b / f t

    .

    For a 1524-

    (5000-ft ) by 152-m (500-ft ) ar ea , th e t o t a l weight of th e ski n would be about

    5 mil l ion pounds.

    6If th e wing s t ru ct ur e weighed about 22.7 x 10

    Kg,

    a s t h e s e r o u h c a l c u l a t i o n s

    sug ges t , a dynamic pre ssu re of about 888

    N /m 2 (18.5 l b l f t a t a l i f t

    c o e f f i c i e n t o f 1.3 would b e r e q u i r e d t o s u pp o r t t h e w ei gh t s t a t i c a l l y .

    A

    dynamic pr es su re of 888 ~ / m ~18.5 1b/f t 2 ) corresponds t o a wind speed of

    about 37.7

    m / s

    (843 mph). O sc i l la t i on s can occu r a t wind speed s much lower

    than t ha t , bu t a s ig n i f i ca n t amount of t ime would be requi r ed fo r the ampli -

    t u de t o b u i l d u p t o t h e optimum. I h e g r e a t w e ig ht a l s o i m p l i e s t h a t , u n l e s s

    g r e a t c a r e

    i s

    t ak en t o re du ce i n t e r n a l f r i c t i o n , t h e r e would be l i t t l e n e t

    outp ut a t moderate winds .

  • 8/19/2019 Oscillating Wind Energy Conversion System

    13/24

    T:-

    ~ l e lbo;re c a l . c u f s t ion w s c a r r i e d o u t f o r a l a r g e - s c a l e s ys te m t o i n c l u d e t h e

    a d v an t a ge s t h a t h a ve S e en c la i me d f o r l a r g e s ys t em s .

    t

    d o e s n o t i mp ly t h a t

    a n a i r f o i l s t r e t c he d betwe en two c a b l e s c a n ne ver be e c onom ica l , bu t

    t

    doe s

    sug ges t t h a t t h e well-known squ are cube law becomes burdensome a t a s pan of

    1524 5000 f t ) . I f th e span and chord were reduced by

    a

    fa c t o r of two,

    power o ut pu t would be red uced by

    a

    f a c t o r of f o u r; t h e s t r u c t u r a l w ei gh t,

    however, coul.0 he reduced by a f a c t o r of e i g h t i f t h e s t re s s l e v e l s w ere t h e

    same. Hence , t h e s t r u c t u r a l we igh t p e r u n i t o f power wou ld he ha lve d.

    f

    t h e

    o s c i l l a t i n g ca hle WECS

    i s

    t o b e c o m p et i t i v e , t h e n ,

    t

    would h a ve t o b e a t

    s i z e s rnuch sm a l l e r t ha n 100 MW

    h i. gh -m od ul us , l o w -d e ns i ty c a b l e m a t e r i a l w i t h l ow i n t e r n a l l o s s e s c o u ld b e

    a n a l t e r n a t i v e t o t h e s t e e l c u r r e n t l y pro po sed .

    A t

    p r e s e n t , t h o u g h , m a t e r i a l s

    t h a t h av e p r o p e r t ie s s u p e r i o r t o s t e e l t e nd t o b e e xp en si ve.

    The s t r e tc hed -ca ble , o s c i l l a t i n g WECS

    i s

    a na logous t o t he c o nve n t iona l c ur ve d-

    bla de Dar r ieus machine ; a s imple compar ison be tween th es e two n i gh t prove

    i n s t r u c t i v e . A t h igh t ip - spe e d r a t i o s , t h e a e rodyna mic pe rf o rm a nc e o f t he two

    d e v i c e s s h o u ld be v e r y s i m i l a r a t t h e same ti p - sp e e d r a t i o s an d s o l i d i t y .

    A t

    t h e same maximum t i p sp eeds and th e same maximum di me ns io ns , t h e maximum

    a c c e le r a t io n of th e b la de would a l s o be s i m i l a r i n bo th WECS. The m otion o f

    th e Darr ieus- ty pe bECS would be s i m i l a r t o a sk ip pi ng rop e Fig ure 2-1). The

    m a jo r d i f f e r e n c e s be tw ee n t h e two d e v i c e s a r e

    1)

    i n t h e Darr ie us- t ype WECS,

    t h e r e

    i s

    n o need f o r en er gy t o b e s t o r e d t o r e v e r s e t h e d i r e c t i o n of m ot io n o f

    t h e wing, and 2 ) power i n t h e D ar ri eu s WECS is p r ov i de d i n t h e f or m o f r o t a r y

    m ot ion. Thus, f o r sm a l l kXCS, t he s e two a dva n ta ge s in d i c a te th a t t he Da r r i e us

    ty p e WECS would he more t e c h n i c a l l y and econ omic ally v ia bl e. For l a r g e WECS,

    t h e p r e vi o u s a n a l y s i s i n d i c a t e s t h a t o s c i l l a t i n g c a b l es would n o t b e

    p r a c t i c a l . A t n o s i z e , h owever, d oe s t h e o s c i l l a t i n g c a b l e , g a l l o p i n g o r

    bimary f l u t t e r , a p pe ar t o be c o m p e t it i v e w i t h t h e c o n v e nt i o n al h o r i zo n t a l - o r

    v e r t i c a l - a x i s WECS.

  • 8/19/2019 Oscillating Wind Energy Conversion System

    14/24

  • 8/19/2019 Oscillating Wind Energy Conversion System

    15/24

    SECTION 3 0

    OSCILLATINGVANE UE S

    L ik e t h e o s c i l l a t i n g c a b l e , t h e o s c i 1 1- at in g- va ne WE S has

    i t s

    o r i g i n s i n a n

    undesirable phenomenon.

    It

    i s d i r e c t l y r e l a t e d t o t h e f l u t t e r plicnomenon t h a t

    h as cau sed t h e d e s t ru c t i o n o f a number of a i r c r a f t , a l t h o u g h T ~ i o r n y c r o f t ' s

    w ind mo to r p r op o s al h e a r s l i t t l e re se mb la nc e t o t h e f l u t t e r .

    o f

    a wing

    131.

    Again, the wind ene rgy approach has been t o enhance the phenomenon, r a t h e r

    t h a n t o s u p p r e ss i t by m eans o f c o n ce p t s l i k e t h e o s c i l l a t i n g vane.

    The ad van t ag e c l ai m ed f o r t h e o s c i l l a t i n g v an e

    i s

    t h a t i f t h e vane

    i s

    c a n t i -

    l e v er e d f ro m a b as e , t h e n t h e most e f f e c t i v e p a r t , t h e t i p , i s i n t h e h i g h -

    en e rgy a rea o f t h e f l o w fa r t h e s t f ro m t h e grou nd an d t h u s

    i s

    ae ro d y n am i ca l l y

    m o s t e f f e c t i v e .

    It

    i s a l s o ar gu ed t h a t ( 1) t h e ~ n a i n a r t of t h e s t r u c t u r e

    i s

    i n v o l v ed i n t h e p r im ary ex t r ac t i o n o f p ower , ( 2 ) t h i s s t ru c t u r e can b e manu-

    f a c t u r e d w i t h r e l a t i v e l y l ow - to le r an c e c o n s t r u c t i o n t e c h n i qu e s , ( 3 ) t h e power

    conversion mechanism

    i s

    l o c a t e d a t g ro un d l e v e l , and

    ( 4 )

    the concep t

    i s

    i n h e r e n t l y s e l f - s t a r t i n g .

    T he m a jo r d i s a d v a n t a g e s of t h i s WECS a r e t h a t

    ( 1 )

    b ecau s e

    i t i s

    a n o s c i l l a t i n e

    s y s tem , t h e fo u n d a t i o n s must be d esi g n ed t o w i t h s t an d o s c i l l a t i n g l o ad s ; and

    ( 2 ) t h e po wer -co n ve r si o n s y s t en , whi ch u s e s t h e o s c i l l a t i n g m ot io n an d pro-

    duces cons tan t - f requency

    AC

    power, coul d be expens ive.

    R ie la w a h a s s t u d i e d t h e o s c i l l a t i n g - v a n e c o n ce p t [ 4 ] an d r ep o r t ed o n t h e

    r e s u l t s of some t e s t s on a smal l model (Fi gur e 3-1). The measured power coef-

    f i c i e n t s w er e q u i t e s m a l l , l e s s t h a n 0.1. The power l o a d i n g ,

    Lp

    was a l s o

    low, wi th a maximum value of about 0.45. A s w i t h t h e o s c i l l a t i n g c a h l e, t h e

    b l ad e a r ea r e q u i r e d f o r a g i v en power o u t p u t was much p re a t e r t h an t h a t

    requ i red by conv en t io na l h igh- t ip -spee d-ra t io mach ines .

    It seems r e a s o n a b l e t h a t f u r t h e r d e ve l op n en t work c o u ld b e done t o r a i s e t h a t

    power c o e f f i c i e n t t o a ?:,re r e s p ec t ab l e v a l u e , and t h a t t h e power l o ad i n g

    c o ul d a l s o be i n c r e a s e d

    substantially. It i s

    u n l i k e l y , ho we ve r, t h a t

    i t w i l l

    be p o s s i b l e t o r e a c h t h e t i p s p e ed r e q u i r e d t o m a i n t a i n a h i g h po we r- lo ad in g

    c o e f f i c i e n t e v e n a t m o de r at e wind s p e ed s .

    T h e o s c i l l a t i n g -v an e WE S can b e d i r ec t l y compared wi t h a v e r t i c a l - ax i s w in d

    t u r b i n e (VAWT) ( F i g u r e 3 - 2 . Assuming t h a t , a t t h e same t i p s p e e d a nd t h e

    same inaxirnum de f le c t i on , th e os c i l l a t i n g vane would have an aero dyna ~xicper-

    f orm an ce s i m i l a r t o t h a t o f t h e a i r f o i l ( w hic h r o t a t e s ab ou t a p i vo t a t t h e

    bas e) , and th e maximum ac ce le ra t i on s and s t r e s s e s would be s i m i l a r , t h e t w o

    b l a d e d e s i g n s w ou ld b e q u i t e s i m i l a r . However, a s l o n g a s t li e t i p - s p e e d r a t i o

    i s s u f f i c i e n t l y h i g h , t h e r o t a t i n g v a ne do e s n ot n eed

    a

    c y c l i c p i t c h c o :l tr o l

    t o a c hi e ve

    reas o r i ab l e ae ro d y n am i c e f f i c i en cy

    It ap p ea r s t h a t t h e d es i g n and m an ufac tu re of a t ap e red v ane t h a t c an t s o u t -

    wards a t an an g l e o f 45' f rom t h e base and ha s a

    t i p

    s o l i d i t y nf

    i . 5

    wg,.??d

    n ot b e d i f f i c u l t f o r t i p s pe e ds o n t h e o r d e r of 30.5

    m / s 10;1

    f t / s ) . 1.f t h a

    r o t a t i n g v a n e i s co m p ared wi t h an o s c i l l . a t i r l ~ :vane

    t lat

    o p e r a t e s tlhrouz'i a

    rang e of f45" a t th e same maximum t i p sp ee ds , and th e vane c e s i f n

    i s

    s im-i l . a r ,

  • 8/19/2019 Oscillating Wind Energy Conversion System

    16/24

  • 8/19/2019 Oscillating Wind Energy Conversion System

    17/24

    t he maximum s t r e s s l e ve l s due t o t he a c c e l e r a t i on would a l s o be s i a i l a r . Ho d

    e v e r , w i t h a n o s ci 1 .L a ti n g v an e , t h e d i r e c t i o n o f t h e s c r e s s rt ? ve r se s

    c y c l i c a l l y ; w i t h t h e r o t a t i n g v a ne , i t r e m ai ns c o ns t a n t , a l t hough t he a e r o -

    dy nam ic f o r c e s a r e c y c l i c a l . The l o a d s o n t h e f o : ~ n d a t i o n s

    7oul.d

    h e s i;qi l. ar i n

    magni tude i n bo th c as es , a l tho l igh wi-tli t h e o s c i l l a t i n g vane , th e fo rc es wou1.d

    o c c u r i n o n e p l a n e.

    I f

    h ow ever, t h e o s c i l l a t i n g va ne

    i s

    des ign ed f o r omni-

    d i r e c t i o n a l w in d s, t h e f o u n d at i o n s w i l l he s i m i l a r i n t he two c a s e s .

    The

    e s s e n t i a l d i f f e r e n c e b et we en t h e two s y s tt m s i s t h a t a n o s c i l l a t i n g v an e would

    r e q u i r e a n e l a s t i c h i n g e an d an o s c i l l a t o r y power c o n v e r s io n n l e ch ~ ni s , ,w h i l e

    a comparable VAW would have a ro ta ry be ar in g artd ro ta r y power con ver s ion

    mechanism.

    On b o t h t h e o s c i l l a t i n g v a ne an d t h e c om p a ra b le

    V.4\7T

    t h e d yn am ic f o r c e s a nd

    moments can be reduced by th e use of tuned masses o r ba lan ce we igh ts , resp ec-

    t i v e l y . R e ga rd in g t h e comparable

    VAWT m eth od s a r e a v a i l a b l e t o d r a m a t i ca l l y

    reduce t he bending moment on the vane and th e reb y reduce the c os t o f t h e

    s t r u c t u r e . A l so , r o t a r y power c o n v e rs i o n d e v i c e s a r e more r e a d i l y

    a v a i l a b l e .

    It

    a p p e a r s , t h e n , t h a t mo st of t h e a d v an t ag e s of t h e o s c i l l a t i n g

    va ne a r e t h e same a s t h os e o f t h e c om pa ra b l e VAWT, a nd t h a t t h e r o t a t i ng va ne

    h a s a d v an t a g e s t h a t t h e o s c i l l a t i n g v an e d o e s n o t ha ve .

  • 8/19/2019 Oscillating Wind Energy Conversion System

    18/24

  • 8/19/2019 Oscillating Wind Energy Conversion System

    19/24

    SECTION 4.0

    OSCILLATINGWING

    WECS

    It

    a p p e a rs t h a t t h e o s c i l l a t i n g - u i u g s ys te n c o n ce p t o r i g i n a t e d i n t h e h el -i e f

    t h a t m ax in un power c a n h e e x t r a c t e t i f ro m a l i f t i n g e l e m e nt i i t

    i s

    a l l ow e d

    t o

    rilove i n t h e d i r e c t i o n of t h e i f t f o r c e . On t h e s u r f a c e , t h i s

    i s

    a

    v e r y r e a -

    s o n a b l e :z ss:l mp tio n, s i n c e t h e work o n e i.s t h e f o r c e m u l t i p l ie d h v t h e

    d-is-

    tar ice t r a v e l e d i n tl le d i r e c t i o r : o f t h e f o r c e . Wit h t h e a i r f o i l , l ~ ow e ve r , h e

    l i f t f o r c e

    i s

    normal t o t h e r e l a t i v e

    velar-ity;

    a n y n o t i o n n o rm a l t o t h e wind

    c a u s e s a t i l t i n t h e l i f t v e ct o r . Assurning c o: ls ta nt l i f t c o e f f i c i e n t , t h e

    ma gni tud e of t h e l i f t f o r c e i s p r o p o r t i o n a l

    t o

    t h e s q u a re

    o f

    t h e r e l a t i v e wind

    speed .

    A t

    h i g h r e l a t i v e s p e e d s, t h e p o w er -e x~ ra ct in ): c a p a b i l i t y

    of

    a n

    i s o l a t e d win g

    i s

    n e ar l y p r o p o r t i o n al t o t h e s q u a r e o f i t s r e l a t i v e s p ee d; i t

    i s t h e n

    noving

    i n a d i r e c t i s n t h a t i s n e a r l y no rma l t o t h e l i f t v e c t o r .

    Even i t h e b a s i c p re m is e i s n o t c o r r e c t , t h e o s c i l l a t i n g wing s ho u ld be

    examined

    3

    i t s o m n e r i t s as a i-EGS. T t

    i s

    r e a s on a b l e t o h el i . ev e t h a t f o r

    a

    c a r e f u l l y d e si g n ed o s c i l l a t i n g v i n g , a power c o e f f i c i e n t c a n b e o b t a i n ed

    t ;aC

    i s

    not much worse than th a t ob ta i i l ed f o r convenc iona . WECS. However , the

    po wer i o a d i n g c o e f f i c i e n t x . il .1 b e d e p e n d e nt u p o ~ b o t h

    t h e

    s o l i t ' i i t y an d t h e

    s pe ed r a t i o , 3 , e b e nd i ng mo nent s t h a t e x i s t as t h e d i r e c t i o n o f m o tl on i i :

    r e v e r s e d

    a c

    t h e

    l i n i t s

    of t r a v e l i ~ i l i ove r n t h e maximum s pe e d a t t a i n a b l e .

    R ence , a s i n o t h e r o s c i l l a t i n g co n c e p t s, a r e l a t i v e l y l a r g e , lo w--co st w ic g

    i s

    i n d i c a t e d .

    To c o n v e r t t h e p ow er t o a u s e f u l f o m , some a r i v e n s y s t e m m u st

    h e

    a t t a c h e 5 t o

    t h e wing. .Al though conce ptu a l mechanisms e x i s t , a r e l i a b l e . e f f i c i e n t power

    co? ive rs i on mechanism must s t i l l

    be

    producsd a t

    a

    c o s t c o mp ar ab le t o t h a t o f

    c o n v e n t i o n a l d e v i c e s .

    T h e

    3sc i . l l a t i i ;g -w ing

    i n C S i s ana l oz o ; l s

    t o t h e C i r o n i l l

    [ 5 ] .

    t ? lc s m e t o t a l

    sc. .idi t y , :naxii::-m - t i ~ - - s r ; e ? d

    ratio,^,

    2nd o v s r a l i d i ~ e n a t o n s , h e a e r~ d yn a i r i

    p ~ ~ ' ; : - r ~ i a n c ef

    'i:e two dey; -iz?s s .oi?:ri

    5e qs.i i te similar.

    f d k e w i s e ,

    a t

    t i l e same

    ri~:.::.nvz

    ~ i z g

    P ~ ~ C ~ S

    he

    ;naxF-v.>n dyrlanic Ioadi: an2 stresses shn ;? d

    h e

    si. :?iIar

    ". ;

    f.,?t: .he < : i r v m i i i tiie

    osc - : ;

    l : . . ~ i n p~ . i i nc .~- ? owr.ver,

    f o r t h e f i x e d- p i t 2 r;

    G< r . = . ? ; : i . l 1 ar_c..c.lerat-ng f : : ~ c c s an: :

  • 8/19/2019 Oscillating Wind Energy Conversion System

    20/24

  • 8/19/2019 Oscillating Wind Energy Conversion System

    21/24

    ST:

      :>

      . _

    8:sciIZa 5r . i~-c lemi ;~t ._.

    'YTCS

    are

    interest ing

    e nz r gy - e x t r a c

    tion

    r ~ e c ? ~ a n i s m s .

    TI . a :ey

    a p p e a r

    t o

    have

    no c l ea r -c i lt a d v a n t a ~ e over cor3parahle

    r c r . z t i ng MECS;

    n

    f a c t , they a p pe ar t o have scme s i g n f f i c a n t d i sa d va n ta g es .

    i int? c i tile ar jp l i : t . i l t~

    n f ~ v o r

    f

    s u c h s:~scttns i s t h a t o s c i l . l a t i n g - e l e n e n t WECS

    e: . lpl~y . ,

    r

    .

    ;:-.ea of low-cost m a t e r i a l , whfch r e p r e s e n t s an o v e r a l l c o s t

    s a v i r ? . ~ v r t l?e s m l l e r , r e l a t i v e l y e xp en si ve m a t e r i a l now used. This

    i s

    ail

    arg:in eni. tl:zt car, b e a p p l i e d e q u a l l y w e l l t o

    IE S

    sing r o t a t i n g e l e m e z t s , n

    r o t a t i z q - e l e m e n t

    I\ECS

    i n f a c t , u s i n g r e l a t i v e l y s i na ll -s iz e, s o p h i s t i c a t e d

    e i c n e n t s has

    proven

    t o

    be

    m ore e c onom i c a l l y v i a b l e t ha n u s i ng l a r g e - s i z e , low -

    c o s t

    . r? lmen ts .

    S i nc e o s c i l l a t i ng - e l e m c n i . WECS d c n o t a p p e a r t o h a ve a ny s i g -

    n i f i c a n t a dva r t t i z ge s O ve r e qu i va l e n t r c t a t i r : g - e l e m e n t WECS i t i s u n l i k e l y that

    t h e y

    c a n coi-i l~e

    e w i t h c h e p r e s e n t g e n e r a t i o n o f c o n v e n t i o n a l wind e n e rg y

    sys tems .

  • 8/19/2019 Oscillating Wind Energy Conversion System

    22/24

  • 8/19/2019 Oscillating Wind Energy Conversion System

    23/24

    SECTION 6 0

    REFERENCES

    1. Payne,

    P.

    R . k o l i a n W i n d n i l l , U.S. Pa t e n t 4 , 0 2 4 ,4 0 9 , ? lay 17, 1977.

    2 .

    Payne,

    P. R . A

    T h e o r e t i c a l A n a l y s i s o f O s c i l l a t i n g C a b l e Wind E n e r w S y s-

    te ms , SERI/TR-0-9173-1, Gol den ,

    GO

    S o la r Energy R e ~ a r c h n s t i t u t e ,

    September 1951.

    3 . Tnornyc rof t , J. I . Wind Mot or, U.S. P a t e n t 1,4 90, 787 , A p r i l 1.5, 1944.

    4. Bielawa,

    R.

    L . Development of an O s ci l l a t i n g Vane Concept a s an Innova-

    t i v e Wind En er w Convers ion Sys tem,

    S E R I / T R - ? ~ ~ O ~ ~ - ~

    olden, CO: S o l a r

    Energy Resea rch In s t i t u t e , March 1982.

    5. McConnell,

    R.

    D. G i ro m il l Overvi ew, SERI/TP-35-263, Golden ,

    CO:

    S o l a r

    Energy b s e a r c h I n s t i t u t e , Play 1979.

  • 8/19/2019 Oscillating Wind Energy Conversion System

    24/24

     

    Doc~ment

    ontrol

    1 SERI Report No 2. N i l s Access~onNo

    3.

    Recipient s Accession No

    Page I SERI/TR-211-1911

    I

    I

    4. Title and Subtttle

    5.

    Publication Date

    December 1983

    Osc i 1 a t i n g Wind Energy C onvers ion Sys tems

    I

    I

    7 Author(s)

    8 Performing Organization Rept. No.

    12 Sponsoring Organization Name and Address

    13. Type of Report Period Covered

    P e t e r S o ut h, R i c k M i t c h e l l

    9. Performing Organization Name and Address

    S o l a r E n e r g y R e s e a r c h I n s t i t u t e

    1617 Co le Bou levard

    Go1 den, Co lor ad o 80401

    T ec hn i c a l R epo r t

    14.

    15. Supplementary Notes

    10. ProjecVTask/Work Uni t NO.

    1067.10

    11. Contract (C) or Grant (G) No

    (C)

    16. Abstract (Limit: 200 words)

    The i n f o r m a t i o n i n t h i s d ocu me nt s u g ge s ts t h a t O s c i l l a t i n g W ind E n er gy C o nv e rs io n

    S yste ms d o n o t a p p e ar t o h a ve an y s i g n i f i c a n t a d va n ta g es o v e r e q u i v a l e n t c o n-

    v e n t i o n a l r o t a t i n g - e l e m e n t w i n d e n er gy c o n v e r s i o n s ys te ms . I n f a c t , i n m os t

    cases

    i t

    appears t h a t th ey have seve ra l d i sad van tage s . The document addresses

    t h e o s c i l l a t i n g c a b l e - t yp e w i nd e ne rg y co n v e rs i o n s ys te m as w e l l as t h e o s c i l -

    l a t i n g vane and t h e o s c i l l a t i n g w i ng .

    The advantages and d isadvan tage s o f each

    t y p e o f s y st em a r e ev a l u a t ed , and i n eac h c ase a . c om pa r i s on i s made bet ween

    i t

    and a c o n v e n t i o n a l r o t a t i n g - e l e m e n t w i n d en e r g y c o n v e r s i o n d e v i c e .

    t

    appears

    u n l i k e l y t h a t a ny o f t h e o s c i l l a t i n g e le me nt c o n ce p ts c an compete w i t h t h e

    p r e s e n t g e n e r a t i o n o f c o n v e n t i o n a l w i n d e n e r gy s ys te m s.

    17 Document Analysis

    a.Descriptors

    irfoils Cables Girornill Turbines Oscillations Power

    Coefficient Vanes Wind Power Wind Turbines

    b. Identifiers/Open-Ended Terms

    I

    c. UC Categories

    U.S. Dep artmen t o f Commerce

    5285 Port Royal Road

    S p r i n g f i e l d , V i r g i n i a 22161

    .

    20. Price

    18. Ava~labilityStatement

    N a t i o n a l T e c h n ic a l I n f o r m a t i o n S e r v i c e

    19. No. of Pages

    25