organoamines-grafted on nano-sized silica for carbon dioxide capture

7
Organoamines-graftedonnano-sizedsilicaforcarbondioxidecapture Miklos Czaun, Alain Goeppert, Ro be rt B. Ma y, Drew Peltier, Hang Zhang, G.K. Surya Prakash *, George A. Olah * Loker HydrocarbonResearchInstituteandDepartment of Chemistry, Universityof SouthernCalifornia, UniversityParkCampus, Los Angeles,CA90089-1661, USA 1.Introduction Theeverincreasingconsumptionof fossilfuelsbyhumankind hasresultedinarapidincreaseof carbondioxideconcentrationin theatmospherefrom270ppmatthedawnof theindustrial revolutiontothepresent395ppm.Itisgenerallyacceptedthatthis higheratmospheric carbondioxideconcentrationisoneof the majorcontributors toglobalwarming. However, globalwarmingis nottheonlyeffectof theincreasinganthropogenic emissionof CO 2 . Theoceansof ourplanetarenetsinksof CO 2 buttheirabsorption capacityisalsonite.Furthermore, thedissolutionof CO 2 inthe oceanslowersthepHof seawaterresultinginareductioninthe abundanceand/orsizeof shellsh, coralsandcrustaceans[1].In ordertoavoidfurtherincreaseinCO 2 concentration, the management of thisgreenhousegashastogainmoreattention andwebelievethatthereductionof anthropogenic CO 2 emission shouldbeamongthehighestprioritiesof thiscentury. Various sequestrationtechniquesthathavebeensuggestedmayprovide onlyatemporary answertoourCO 2 management problem. For examplepumpingCO 2 todeepaquifers, coalbed, depletedoilor naturalgaseldsarepromisingsolutions[2,3]butthese methods needtobevalidatedonalargescaletoensurethelongtermsafe storageof CO 2 .Asanalternativetosequestration, thecapture, recyclingandutilizationof CO 2 promisesanultimatesolution. An elegantwaytorecycleCO 2 ,forexample, istouseitinreforming reactionssuchasdryreformingorbi-reformingtoproducesyngas, amixtureof carbonmonoxideandhydrogen[4].Presently, approximately 130milliontonnesperyear[5]of CO 2 areusedin theenergyandchemicalindustriesandthemajorityisconverted tourea.Thisisstilladropinthebucketconsideringthathumanity nowemitsmorethan30billiontonnesof CO 2 peryear. Fortunately, thereareanincreasingnumberof scienticprojects [5–7]thatconsider CO 2 asavaluableindustrial feedstockrather than justagreenhousegasharmfulforthePlanet’secosystem. Asa resultof thepredictedimprovements, theamountof CO 2 utilized intheindustrymaygrowto300milliontonnesperyear[8]inthe shorttermandhigherinthefollowingdecades. Themostwidelyusedpost-combustion capturetechnologies arebasedonthechemisorptionof CO 2 (Scheme1) inaqueous alkanolamine solutionssuchasmonoethanolamine (MEA)[9], diethanolamine (DEA)andmethyldiethanolamine (MDEA). Thecontinuousregenerationof alkanolamine solutions(recov- eryof CO 2 )isaveryenergyintensiveprocessduetohighheating andpumpingcosts.Whileforexampleanaqueoussolutionof DEA/ MDEAhasaheatcapacityof approximately4.50 Jg À1 C À1 (  x H 2 O ¼0:6, x DEA /  x MDEA =0.24/0.16, t =50C)[10],silicabased adsorbents showsignicantlylowerheatcapacities (0.73 Jg À1 C À1 ) 1 makingthiskindof adsorbentsmoreenergeti- callyefcientcandidatesforlargescaleCO 2 captureandrecycling.  Journal of CO2 Utilization 1(2013)1–7 AR TICL EINFO  Article history: Received2February2013 Re cei ved in re vi sed form 26 Ma rch 2013 Accepted26March2013 Ava ila ble onl ine 24 Apr il 201 3 Keywords: Nanosilica Chemically graftedorganoamines Carbondioxidecapture ABSTR ACT Org anoamine– ino rga nic hybrid ads orbent materials wer e syn thesiz ed by cov alent immobilization of alkylaminotrime thox ysila nes and polyethyl enei minetrimethoxysilane onto fume d silic a (nan osilic a). The obtained si li ca–organ ic hy bri d materi al s were chara ct erized by thermogravimet ry and di ff use reecta nce infrared Fourier trans form spe ctroscopy (DRIFT) con rming the successful grafti ng of the amine deriv atives to si lic a an d thei r su rfa ce area measured usingBrun auer –Emme tt–Te ller metho d (BE T). The inuence of rea cti on con dit ion s on the gra ft den sit y of org ano ami neswas inv est iga ted and it was fo und th at th e sat ura ti on of th e sil ane co upl in g ag ents wit h ca rb on di ox id e pr io r to surf ac e mod ic ation result ed in hig her gra ft densities . Car bon dioxid e uptake of the obtained hybrid mat eri als were det ermine d by thermo gra vimetric analysis at roo m temper atu re as wel l as hig her temper atures result ing in CO 2 adsorpti on capaci ti es from 32.4 to 69.7 mg g À1 adsorbent. ß 2013 El sevi er Ltd. Al l ri ghts reserved. *Corresponding authors. Tel.:+12137405984;fax:+12137406679. E-mailaddresses: [email protected] (G.K.SuryaPrakash), [email protected] (G.A. Olah). 1 Averageheatcapacityof Sil-N2determinedbyDSCinthetemperature range from50to110C. ContentslistsavailableatSciVerseScienceDirect  Journal of CO 2 Utilization j ou r nalhome pa ge:www.elsevier.com/locat e/jcou 2212-9820/$ seefrontmatterß2013Elsevier Ltd.Allrightsreserved. http://dx.doi.org/10.1016/j.jcou.2013.03.007

Upload: ghdezq

Post on 02-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

7/27/2019 Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

http://slidepdf.com/reader/full/organoamines-grafted-on-nano-sized-silica-for-carbon-dioxide-capture 1/7

Organoamines-grafted  on  nano-sized  silica  for  carbon  dioxide  capture

Miklos Czaun, Alain Goeppert, Robert B. May, Drew Peltier, Hang Zhang, G.K. Surya Prakash *,George A. Olah *

Loker   Hydrocarbon  Research  Institute  and  Department   of   Chemistry,  University  of   Southern  California,  University  Park  Campus,  Los   Angeles,  CA  90089-1661,  USA

1.  Introduction

The  ever  increasing  consumption  of   fossil  fuels  by  humankind

has  resulted  in  a  rapid  increase  of   carbon  dioxide  concentration  in

the  atmosphere  from  270  ppm  at  the  dawn   of   the  industrial

revolution  to  the present 395  ppm.   It  is  generally  accepted  that  this

higher  atmospheric  carbon  dioxide  concentration  is  one  of   the

major  contributors  to  global warming. However,  global warming  is

not  the  only  effect  of   the  increasing  anthropogenic  emission of  CO2.

The  oceans  of   our  planet  are  net  sinks  of   CO2 but  their  absorption

capacity  is  also  finite.  Furthermore,  the  dissolution  of   CO2 in  the

oceans  lowers  the  pH  of   seawater  resulting  in  a  reduction  in  the

abundance  and/or  size  of   shellfish,  corals  and  crustaceans  [1].  In

order   to  avoid  further  increase  in  CO2 concentration,  the

management  of   this  greenhouse  gas  has  to  gain  more  attention

and  we  believe  that  the  reduction  of   anthropogenic  CO2 emission

should  be  among  the  highest  priorities  of   this  century.  Various

sequestration  techniques  that  have  been   suggested  may  provideonly  a  temporary   answer  to  our  CO2 management  problem.  For

example  pumping  CO2 to  deep  aquifers,  coal  bed,   depleted  oil  or

natural  gas  fields  are  promising  solutions  [2,3]  but  these  methods

need  to  be  validated  on  a  large  scale  to  ensure  the  long  term  safe

storage  of   CO2.  As  an  alternative  to  sequestration,  the  capture,

recycling  and  utilization  of   CO2 promises  an  ultimate  solution.  An

elegant  way  to  recycle  CO2,   for  example,  is  to  use  it  in  reforming

reactions  such  as  dry  reforming  or  bi-reforming  to  produce  syngas,

a  mixture  of   carbon  monoxide   and  hydrogen  [4].  Presently,

approximately  130  million  tonnes  per  year  [5]  of   CO2 are  used  in

the  energy  and  chemical  industries  and  the  majority  is  converted

to  urea.  This  is  still  a  drop  in  the  bucket  considering  that  humanity

now  emits  more   than  30  billion  tonnes  of   CO2 per  year.

Fortunately,  there  are  an  increasing  number  of   scientific  projects

[5–7]  that  consider  CO2 as  a  valuable  industrial  feedstock  rather

than  just  a  greenhouse  gas  harmful  for  the  Planet’s  ecosystem. As  a

result  of   the  predicted  improvements,  the  amount  of   CO2 utilized

in  the  industry  may  grow  to  300  million  tonnes  per  year  [8]  in  the

short  term   and  higher  in  the  following  decades.

The  most  widely  used  post-combustion  capture  technologies

are  based  on  the  chemisorption  of   CO2 (Scheme  1) in  aqueous

alkanolamine  solutions  such  as  monoethanolamine  (MEA)  [9],

diethanolamine  (DEA)   and  methyldiethanolamine  (MDEA).

The  continuous  regeneration  of   alkanolamine  solutions  (recov-ery  of   CO2)  is  a  very  energy  intensive  process  due  to  high  heating

and pumping  costs. While  for  example  an  aqueous  solution  of  DEA/

MDEA  has  a  heat  capacity  of   approximately  4.50  J  gÀ1 8CÀ1

( xH2O ¼  0:6,   xDEA / xMDEA =  0.24/0.16,  t   =  50  8C)  [10],   silica  based

adsorbents  show  significantly  lower  heat  capacities

(0.73  J  gÀ1 8CÀ1)1 making  this  kind  of   adsorbents  more  energeti-

cally  efficient  candidates  for  large  scale  CO2 capture  and  recycling.

 Journal  of   CO2 Utilization  1  (2013)  1–7

A  R   T  I  C  L   E  I  N  F   O

 Article history:

Received   2  February   2013

Received in revised form 26 March 2013Accepted   26  March  2013

Available online 24 April 2013

Keywords:

Nanosilica

Chemically  grafted  organoamines

Carbon  dioxide  capture

A  B  S  T  R   A  C  T

Organoamine–inorganic hybrid adsorbent materials were synthesized by covalent immobilization of 

alkylaminotrimethoxysilanes and polyethyleneiminetrimethoxysilane onto fumed silica (nanosilica).

The obtained silica–organic hybrid materials were characterized by thermogravimetry and diffusereflectance infrared Fourier transform spectroscopy (DRIFT) confirming the successful grafting of the

amine derivatives to silica and their surface area measured using  Brunauer–Emmett–Teller method

(BET). The influenceof reaction conditions on the graft density of organoamineswas investigatedand it

was found that the saturation of the silane coupling agents with carbon dioxide prior to surface

modification resulted in higher graft densities. Carbon dioxide uptake of the obtained hybridmaterials

were determined by thermogravimetric analysis at room temperature as well as higher temperatures

resulting in CO2 adsorption capacities from 32.4 to 69.7mggÀ1 adsorbent.

ß 2013 Elsevier Ltd. All rights reserved.

*  Corresponding   authors.   Tel.:  +1  213  740  5984;   fax:  +1  213  740  6679.

E-mail  addresses:  [email protected]   (G.K.  Surya  Prakash),   [email protected]

(G.A.  Olah).

1 Average   heat  capacity   of   Sil-N2  determined   by  DSC  in  the  temperature  range

from   50  to  110  8C.

Contents  lists   available  at  SciVerse  ScienceDirect

 Journal of CO2 Utilization

jo urn  al  hom ep ag e:  www.elsev ier .com/locat  e/ jco  u

2212-9820/$   –  see  front  matter  ß  2013   Elsevier  Ltd.  All  rights  reserved.

http://dx.doi.org/10.1016/j.jcou.2013.03.007

Page 2: Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

7/27/2019 Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

http://slidepdf.com/reader/full/organoamines-grafted-on-nano-sized-silica-for-carbon-dioxide-capture 2/7

Substituting  aqueous  adsorbents  by  solid  analogues  offers

therefore  a  potentially  lower  cost  solution.  Developing  more

economical  alternatives  for  CO2 adsorption  is  part  of   our  ongoing

efforts  (Methanol  Economy1)  [11]  on  CO2 capture  and  its

conversion  to  value  added  products  such  as  methanol  [11–13],

dimethyl  ether,  [12]  formic  acid  [14,15], methyl  formate  and

eventually  to  most  of   the  important  petrochemical  intermediates

such  as  ethylene  and  propylene,  which  are  presently  produced

from   natural  gas  or  petroleum  oil.

Various   approaches   have  been   utilized   to  prepare  inorganic–

organoamine   hybrid  materials.   Based  on  the  interactions   that   occurbetween   the  organic   compounds  and  the  inorganic   supports,   the

synthetic   techniques  can be divided  into   two main  groups.  Materials

in  which  there  is  physical   interaction   between   the  amines   and  the

supports  fall   into  the first  group (a),e.g. amine   impregnated  supports

[16,17].  In  order  to  increase   the  stability   of   the  adsorbents,   amines

can  be  chemically   attached   to  the  support   giving  grafted   organic–

inorganic   hybrids   constituting   the  second   group  (b).   Functionaliza-

tion  of   surface   accessible   OH  groups   of   inorganic   materials   using

silane   coupling  agents   is a widely  used  technique   to  fabricate  hybrid

materials   for a variety  of  applications   [18]. Chemically  attached   thin

films  can  be prepared  via  ‘‘grafting   from’’  techniques   (b1)  where  the

organic   coating  is  prepared  by  surface-initiated   oligomerization/

polymerization   [19]. They can also  be prepared by  immobilization  of 

an  organic   compound  (e.g.  polymeric)  bearing   anchoring   groupsreacting   with   the  OH  groups   of   the  support.   This   latter   technique   is

often   referred   to  as  the  ‘‘grafting   to  approach’’   (b2)   [20–23]. While

inorganic–organoamine  adsorbents   in which  the organic   compound

is  physically   adsorbed   often  suffer from  leaching   of   the  amine

component   [16,17], chemically grafted  amines  usually show a better

stability,   that   helps  to  maintain   the  adsorption   capacity   over  many

adsorption/desorption   cycles.

The  application  of   silica–amine  hybrid  materials  for  CO2

capture  has  been  reviewed  [23–25]  and  it  can  be  observed  that

a  majority  of   the  reported   adsorbent materials  are  based  on  porous

(high  surface  area)  supports.  Although,  the  high  porosity  and  high

surface  area  are  advantageous  for  gas  adsorption,  very  often

impregnation  or  grafting  of   organic  compounds  to  porous   supports

results 

in 

significant 

drop 

in 

the 

surface 

area 

indicating 

thenecessity  to  develop  new  adsorbent  materials  using  more   cost

effective  non-porous  supports  such  as  fumed  silica.  It  should  be

added  here  that we  use  the  term  ‘‘adsorption’’  in  this manuscript  to

indicate  the  reversible  capture  of   CO2 molecules  as  a  surface

phenomenon  rather  than  a  bulk  one.   Since  a  chemical  reaction

takes  place  between  CO2 and  organoamines,  in  fact  here  we  deal

with  the  phenomenon  of   chemisorption.

2.  Experimental

 2.1.  Materials

Fumed  silica  Aerosil1 380  (average  primary  particle  size  7  nm)

was 

obtained 

from 

Evonik 

(formerly 

Degussa). 

Toluene

(Mallinckrodt,   99.5%),   methanol   (Mallinckrodt,   99.8%),

3-aminopropyl-trimethoxysilane   (N1, Acros,  95%),  3-(2-aminoethy-

lamino)propyltrimethoxy-silane   (N2,  Acros,   97%),  3-[2-(2-ami-

noethylamino)ethylamino]-propyl-trimethoxysilane   (N3,   Acros,

technical   grade),   trimethoxysilylpropyl-polyethyleneimine   (PEI,

Gelest,   50%  in iPrOH)  were   used  without   further   purification.

 2.2.  Preparation  of   adsorbents

Aerosil-380   (7.0  g)  was  mixed   in  280  mL   toluene   and  N2 wasbubbled   through   the  vigorously   stirred   suspension   for 30  min.

19.95  mmol  of   silane   coupling   agent   was  added  dropwise   and  the

reaction  mixture  was  stirred  at  room  temperature   for 10  min before

heating   to  110  8C.  The  suspension   was  stirred at  this   temperature

under  a nitrogen  atmosphere   for 12  h. The cold  reaction  mixture  was

separated  by  centrifugation   and  the  obtained  solid  was  re-

suspended   in  cold  toluene.   This   suspension   was  again separated

by  centrifugation.   The  above  described   purification   steps  were

repeated   three times  using  cold   methanol   as  a  solvent. Finally,  the

solid  was  transferred   to  a  round  bottom  flask   and  the  solvent  was

removed by heating  at 50  8C under vacuum  on  a  rotovapor  followed

by  vacuum  treatment  overnight   (65  mTorr).   A  small  sample   of   the

obtained white solid material  was placed   in a  sealable  glass  tube and

kept  under  vacuum  at  85  8C  for  3  h  and  then   used  either forcharacterization   or  for  measuring   the  adsorption   capacity.

 2.3.  Thermogravimetric   analysis  to  determine  the  organic   content   of 

the   prepared  adsorbent 

Thermogravimetric  measurements  were  carried  out  on  a

Shimadzu  TGA-50   thermogravimetric  analyzer  under  an  air  flow

of   30  mL   minÀ1 in  a  temperature  range  from  25  to  800  8C  with  a

heating  rate  of   10  8C  minÀ1.

 2.4.  FTIR

Diffuse reflectance  infrared  Fourier transform spectroscopic

measurements 

were conducted under vacuum 

on a 

Bruker 

Vertex80v  FTIRspectrometer using KBr as a  reference. Samples were diluted

with   KBr,  placed  into a  PrayingMantisTM DRP-SAP   diffuse reflection

accessory  and  scanned  from  4000  to 500  cmÀ1 (number  of 

scans =  32).

 2.5.  Surface  area  and   pore  volume  analysis

The  supports   were  characterized   by  N2 adsorption/desorption

isotherm   measurements   on  a  Quantachrome   NOVA  2200e  instru-

ment.  The  surface   area  was  determined   by  the  multipoint   BET

method. The total  pore volume  was evaluated at a P/P0 close   to 0.995.

 2.6.  Heat   capacity

Heat  capacity  of   the  solid  adsorbent  was  measured  on  a  PerkinElmer  DSC  7  differential  scanning  calorimeter.  In  a  typical

experiment,  about  5  mg  of   the  adsorbent  (measured  precisely

with  a  microbalance)  was  placed  in  an  aluminium  pan  and  inside

the  sample  cell  of   the  DSC  under  a  flow  of   nitrogen  (20  mL   minÀ1).

Temperature  programme:   heating  from  0  to  120  8C with  a  heating

rate   of   5  8C  minÀ1;  cooling  from  120  to  0  8C  with  a  rate  of 

20  8C  minÀ1.  This  temperature  programme  was  repeated  two

times.  The  heat  flow  measured  in  the  second  cycle  was  considered

to  determine  the  heat  capacity.

 2.7.  Measurement   of   CO 2 adsorption  capacity

6–13  mg  of   solid  adsorbent  was  loaded   in  a  platinum  crucible

and  placed  into  a  Shimadzu  TGA-50   thermogravimetric  analyzer.

Scheme   1.  Chemisorption  of   CO2 with  amines.

M.  Czaun  et   al.  /   Journal  of   CO 2 Utilization  1  (2013)  1–7 2

Page 3: Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

7/27/2019 Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

http://slidepdf.com/reader/full/organoamines-grafted-on-nano-sized-silica-for-carbon-dioxide-capture 3/7

The  sample  was  first   heated  to  110  8C under  N2 atmosphere

(flow   =  60  mL/min)  and  this  temperature  was  maintained  for

30  min  for  desorbing  water  and  CO2 from  the  surface.  The

adsorbent  was  exposed  to  pure  CO2 (flow  =  60  mL   minÀ1)  at

25  8C for  3  h,  and  then  the  sweeping  gas  was  replaced  with  N2 at

85  8C for  90  min  for  desorption.  The  second  adsorption   cycle  was

carried  out  under CO2 at  55  8C  for  3  h  followed by  desorption under

N2 for  90  min  at 85  8C.The  third  adsorption  cycle was  carried  out  at

85  8C for  3  h.  Finally  10  adsorption/desorption  cycles  were  carried

out  isothermally  at  85  8C.  15  min  adsorption  under  pure   CO2 wasfollowed  by  25  min  desorption  under  N2.  For  the  100  cycle

experiment,  adsorption  (10  min,  85  8C)  was  followed  by  desorp-

tion   (15  min,  85  8C).  Otherwise  the  experimental  conditions  were

similar  to  those  described  earlier.

3.  Results

 3.1.  Preparation  and  characterization  of   adsorbent   materials

Herein,  we  report  on  the  facile synthesis of   alkylamine-fumed

silica  hybridmaterialsfromcommercially  available  and  relatively

inexpensive starting materials.  We  have  selected Aerosil-380

(fumedsilica, averageprimary particlesize7  nm  [26],   surfacearea

329 m2

gÀ1

)  as  a  support forthe amine  containing  adsorbents. It  isgenerally  acceptedand widelypracticed that  surface hydroxyls of 

inorganic substrates can be functionalized with  reactive groups

such as  chlorosilanes [18,27], alkoxysilanes  [18], and phosphonic

acid  derivatives   [28], establishing chemically attached organic

layers   on  the  inorganic materials.  Primary   and  secondary

trialkoxysilylalkylamines such  as  3-aminopropyl-trimethoxysi-

lane  (N1), 3-(2-aminoethylamino)propyltrimethoxysilane  (N2),

3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane

(N3), and trimethoxysilylpropyl-polyethyleneimine (PEI) were

immobilized onto  Aerosil-380 by the  reaction of   alkoxysilyl

anchoring  groups   andsurface silanol groups of   the supportgiving

siloxane   linkages  (Scheme   2).

The obtained suspension was  separated by centrifugation

and the 

adsorbent particles 

were 

washed 

repeatedly withtoluene and methanol and dried under reduced pressure

(65  mTorr)   at  85  8C. Hybrid  materials were  characterized by

thermogravimetric analysis  (TGA)  and diffuse reflectance

infrared Fourier transform  spectroscopy   (DRIFT).   The surface

area was determined by the  Brunauer–Emmett–Teller method

(BET).

Graft  density  and  nitrogen  content  of   adsorbent-grafted  silica

particles  were  calculated  on  the  basis  of   weight  losses  indicated  by

the  thermograms.  Representative  thermograms  of   bare

Aerosil-380  (a),  Sil-N3  (b),  Sil-N3-CO2 (c),  Sil-PEI  (d)  (heating

rate   10  8C  minÀ1,  30  mL   minÀ1 air)  are  shown  in  Fig.  1.

Weight  losses  (WL)  were  recorded  in  the  temperature  range  from

25  to  800  8C and  nitrogen  contents  (NC)  are  summarized  in

Table 

1.

Grafting  of   N1  onto  Aerosil-380  resulted  in  Sil-N1  adsorbent,

which  contained  1.89  mmol   N  atom  gÀ1 silica  while  immobiliza-

tion  of   N2  containing  two  nitrogen  atom  per  molecule  resulted  in

an  almost  double  amine  loading  (3.42  mmol  N  atom  gÀ1 silica).

Immobilization  of   N3  did  not  follow  the  same   trend  and  resulted

only  in  slightly  higher  amine  content  (3.56  mmol   N  a-

tom  gÀ1 silica)  compared   with  Sil-N2.

Not  surprisingly,  covalent  immobilization  of   alkylaminotri-

methoxysilanes  onto  Aerosil-380  resulted  in  significant  decrease

in  surface  area  compared  to  the  bare  support.   While  Aerosil-380had  a  surface  area   of   329  m2 gÀ1,   Sil-N1,   Sil-N2  and  Sil-N3  were

found  to  have  159,  148  and  157  m2 gÀ1,  respectively,  indicating  a

54–57%  drop  in  surface  area.  It  can  also  be  observed  that  the

surface  area  of   the  grafted  silica  particles  are  very  similar

regardless  of   the  silane  coupling  agent  applied.  Diffuse  reflectance

infrared  Fourier  transform  spectroscopy  is  a  very  powerful method

to  gain  structural  information  about  the molecules  immobilized  on

the  surface  of   inorganic  materials.  Successful  grafting  of   the  silane

coupling  agents  N1–3 is   indicated  by  the  antisymmetric  ( yasNH2)

and  symmetric  stretching  vibrations  ( ysNH2)  of   hydrogen  bonded

NH2 groups  (3366  and  3302  cmÀ1)  [29,30],  respectively,  and  the

corresponding  vibrations  of   CH2 groups  ( yasCH2 at  2928  and   ysCH2

at  2856   cmÀ1)  [31].

Deformation  vibration  of   amino  groups  (dNH2)  could  also  bedetected  at  1595  cmÀ1 in  Sil-N1–3  while  CH2 deformations  were

observed  at  1475  and  1449  cmÀ1 [31]  in  Sil-N1.  These  peaks  are

overlapped  in  Sil-N2–3  giving  a  relatively  broad  band  at

1458  cmÀ1.  The  disappearance  of   the  signal  in  the  DRIFT  spectrum

of   Aerosil-380  at  3745  cmÀ1 attributed  to  surface  OH  groups  [32]

Scheme   2.  Immobilization  of   N1,  N2, N3  and  PEI  onto   Aerosil-380.

Fig.  1.  TGA  curves  of   bare   Aerosil-380   (a),   Sil-N3  (b),  Sil-N3-CO2 (c),   and  Sil-PEI  (d).

M.  Czaun  et   al.  /   Journal  of   CO 2 Utilization  1  (2013)  1–7   3

Page 4: Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

7/27/2019 Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

http://slidepdf.com/reader/full/organoamines-grafted-on-nano-sized-silica-for-carbon-dioxide-capture 4/7

further  confirmed  the  surface  modification  of   surface  OH  groups

using  methoxysilanes  (Fig.  2).

 3.2.  Measurement   of   adsorption  capacities

Adsorption  capacities  of   the  silica–alkylamine  hybrids  were

measured with  a  Shimadzu  TGA-50   thermogravimetric  analyzer  at

room  temperature,  55  8C  and  85  8C  using  instrument  grade  CO2

under  flow  conditions.  Adsorbents  were  heated  at  110  8C for

30  min  under  N2 atmosphere  prior  to  the  measurements.  The

weight  increases were  determined  after  an  exposure  to  CO2 (3  h)  at

each  temperature.  The  adsorption  and  desorption  cycles  were

repeated  ten  times  at  85  8C  showing  insignificant  changes  in  the

adsorption  capacities  (Figs.  3  and  4).

For  two  selected  adsorbents  (Sil-N1  and  Sil-PEI) the  adsorp-

tion/desorption  cycles  were   repeated  100  times  at  the  same

temperature  confirming  the  good  stability of   the hybrid adsorbents

(Fig.  5).  It  should  be  noted  here  that  slightly  lower  adsorption

capacities were measured  in  the  course  of   100  cycles due  to  shorter

adsorption  (10  min)  and  desorption  (15  min)  times.

The  monoamino  derivative  (Sil-N1)  showed  moderate  CO2

uptake  at  room  temperature  (32.4  mg  CO2 gÀ1

adsorbent),  but  asexpected  the  adsorbents with higher  nitrogen  content  (3.42  for  Sil-

N2  and  3.56  mmol  N  gÀ1 for  Sil-N3)  exhibited  a  higher  CO2

 Table  1

Weight   loss  (WL),   nitrogen  content   (NC),  surface   area   ( ABET)  and  pure  CO2 adsorption  capacity   of   silica–organic  hybrids.

Hybrid  WL (%)  NCa (mmolN gÀ1)  Adsorption  capacityb (mg gÀ1)   Ads.   CO2 per  N  at  25  8C  ABET (m2gÀ1)   Total  pore

volume  (mL  gÀ1)

25  8C  55  8C 85  8C

Sil-N1  9.9  1.89  32.4   26.2  19.7  0.43  159  1.66

Sil-N2  14.7  3.42  35.6   27.2  18.3  0.28  148  1.61

Sil-N3  14.6  3.56  41.3   33.2  24.6  0.31  157  1.63

Sil-N1-CO2 11.8  2.29  37.4   31.5  24.5  0.42  149  1.75

Sil-N2-CO2 18.6 

4.51 

47.3 

39.3 

30.1 

0.29 

132 

1.47Sil-N3-CO2 21.0  5.52  49.8   42.9  33.7  0.26  127  1.26

Sil-PEI  47.0  20.6  24.0   50.2  68.0  0.05  43.0   0.76

Sil-PEI-CO2 46.3  20.0  30.1  58.8  69.7  0.06  19.6   0.31

a Millimoles  of   NH2 and  NH  groups   per  gram  silica  support.b Milligrams  of   adsorbed   CO2 per  gram   adsorbent.

Fig.  2. DRIFT  spectra  of  bare  Aerosil-380   (a),   Sil-N1  (b),  Sil-N2  (c),   Sil-N3  (d), and  Sil-

PEI  (e).

Fig.  3.  A  typical  thermogram   of   adsorption/desorption  measurements   for  Sil-N1.

M.  Czaun  et   al.  /   Journal  of   CO 2 Utilization  1  (2013)  1–7 4

Page 5: Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

7/27/2019 Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

http://slidepdf.com/reader/full/organoamines-grafted-on-nano-sized-silica-for-carbon-dioxide-capture 5/7

adsorption   capacities  at  35.6  and  41.3  mg  CO2 gÀ1 adsorbent,

respectively.  CO2 adsorption   was  also  measured  at  55  and  85  8C

showing  decreasing  adsorption  capacity,  26.2  and  19.7  mg  gÀ1 for

Sil-N1,  respectively, as  the  temperature  increased. A  trend  could beobserved  for  the  diamine  and  triamine  functionalized  silica  giving

lower  adsorption  capacities,  27.2/18.3  mg  gÀ1and  33.2/

24.6  mg  gÀ1at  55  and  85  8C  respectively.

In  order  to  further  increase  the  adsorption   capacities  of   the

hybrid materials, we  attempted  to  achieve higher  graft densities byfollowing  a  different  grafting  procedure.  It  was  shown  that  H-

Fig.  4.  Adsorption  capacities   of   functionalized  silica  particles  at  25/55/85   8C followed  by  10  cycles   of   adsorption/desorption  at  85  8C.

Fig.  5.  Adsorption  capacity   of   Sil-N1  and  Sil-PEI  in  repeated   adsorption  and  desorption  cycles  at  85  8C. Inset:  Adsorbent   weight   versus   time  diagram  for  Sil-PEI.

M.  Czaun  et   al.  /   Journal  of   CO 2 Utilization  1  (2013)  1–7   5

Page 6: Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

7/27/2019 Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

http://slidepdf.com/reader/full/organoamines-grafted-on-nano-sized-silica-for-carbon-dioxide-capture 6/7

bonded   aminopropylsilanes  are  less  reactive  and  only  a  small

portion   of   alkoxysilane  groups  participates  in  Si–O–Si  bond

formation  [29].

It  was  also  suggested  that  the  saturation  of   alkylaminotri-

methoxysilane  solutions  with  CO2 prior  to  introducing  the  solid

support  facilitates  covalent  immobilization  preventing  the  inter-

action  of   amine  nitrogens  of   silane  coupling  agents  with  surface

silanols  through  hydrogen  bonding  [33].  Following  these  leads,

toluene  solutions  of   N1–3were  evacuated  and  then  exposed  to  CO2

for  15  min  before  silica  particles  were  added.   The  suspension  was

then  slowly  heated  to  60  8C  and  the  temperature  was  maintained

for  30  min.  After  that,  the  reaction  mixture  was  heated  and  kept  at

110  8C  for  12  h.  In  accordance  with  the  results  of   Knowles  et  al.

[33],  we  obtained  alkylamino-grafted  silica  with  higher  graft

densities  (Sil-N1-CO2:  2.29;  Sil-N2-CO2:  4.51;  Sil-N3-CO2:

5.52  mmol  N  atom  gÀ1 silica)  which  corresponds  to  a  21,  32  and

55%  increase  compared  to  the  adsorbents  prepared   in  the  absence

of   CO2.  Interestingly  the  increase  in  graft  density  is  higher  when

the  silane  coupling  agent  contains  more   nitrogen  which  seems  to

confirm  that  the  reaction  of   amino  groups  with  CO2 makes  the

formation  of   hydrogen  bond  with  surface  silanol  groups  less

favourable.  The  higher  graft  densities  resulted  in  higher  CO2

adsorption   capacities  of   37.4,  47.3  and  49.8  mg  CO2 gÀ1 adsorbent

at  25  8C,  respectively,  and  similar  trend  could  be  observed  at  55and  85  8C  as  well  (Table  1).

Similarly  to  the  adsorbents  prepared  from  practically  CO2 free

silane  coupling  agents  and  silica  suspension  these  hybrid materials

also  showed  lower  adsorption  capacity  at  higher  temperature

(Table  1).  Immobilization  of   N1, N2  and  N3  using  solutions

saturated  with  CO2 resulted  in  slightly  lower  surface  areas  (149,

132  and  127  m2 gÀ1)  than  those  we  obtained  for  Sil-N1,  Sil-N2  and

Sil-N3  but  significantly  lower  than  that  of   bare  Aerosil-380.

As  the  increasing  number  of   secondary  amino  groups   in  the

grafted  layer  resulted  in  better  CO2 adsorption  capacity  per  g

adsorbent,  we  attempted  to  immobilize  polyethyleneimine

bearing  trimethoxysilyl  (PEI)  anchoring  groups.  (The  average

number  of   ethyleneimine  groups  in  the  PEI  chain  was  18  based  on1

H  NMR   measurements).2

The  high  organic  content  of   the  hybridmaterials  was  reflected  by  the  significant  weight  losses  in  TGA

experiments.  Sil-PEI  showed  a  weight  loss  of   47.0%

(20.6  mmolN  gÀ1)  between  200  and  800  8C.

DRIFT  study  of   PEI-grafted  silica  revealed  stretching vibration  of 

NH  groups  at  3255  cmÀ1 and  a  group  of   signals  from  2947   to

2825   cmÀ1 due  to  antisymmetric  and  symmetric  CH2 stretching

vibrations.  Moreover   the  CH2 deformation  bands  overlapped

showing  an  intense  and  broad  peak  at  1450   cmÀ1.

Impregnation  or  covalent  grafting  of   polymers  onto  supports

usually  causes  dramatic  decrease  of   the  surface  area  as  it  was

observed  in  the  case  of   Sil-PEI.  Surface  area  of   Sil-PEI  (43  m2 gÀ1)

showed  a  87%  decrease  compared   to  that  of   Aerosil-380.

Regardless,  the  low  surface  area   PEI-grafted  silica  exhibited

remarkable 

adsorption 

capacities 

of  

68.0 

mg 

CO2 gÀ1

at 

85  8C

compared   with  mono-,  di-  and  triamine  functionalized  silica.

We  also  attempted  to  obtain  a  higher  graft  density  of   amine

adsorbents  on  silica  by  saturating  the  toluene  solution  of   silane

coupling  agents  with  CO2 prior  to  the  addition  of  Aerosil-380  using

PEI.  Although  the  saturation  of   the  silane  coupling  agent  with  CO2

resulted  in  higher  graft  density  for  the  mono-,   di-  and  triamine

derivatives  it  did  not  increase  the  graft  density  for  PEI. (N  content

of   20.0  mmolN   gÀ1)  compared  to  what  we  obtained  under  a

nitrogen  atmosphere  (20.6  mmolN   gÀ1).  Furthermore, while  all  the

mono-,   di-  and  triamine-functionalized  silica  showed  lower

adsorption   capacity  at  higher  temperature  a  reverse  trend  could

be  observed  in  the  adsorption  capacity  in  the  case  of   Sil-PEI  and

Sil-PEI-CO2.  Although  the  graft  density  of   Sil-PEI-CO2 was

somewhat  lower  than  for  Sil-PEI,  its  CO2 adsorption  was  however

slightly  higher.  This  hybrid  material  exhibited  an  adsorption

capacity  of   24.0/50.2/68.0  mg  gÀ1 and  30.1/58.8/69.7  mg  gÀ1 at  25,

55  and  85  8C, respectively.

As  reflected  by  a  large  number  of   publications,  a  variety  of 

supports  such  as  mesoporous  [34]  or  delaminated  [35]  materials,

and  metal  organic  frameworks  (MOFs)  [36]  were  functionalized

with  organoamine  derivatives  in  order   to  develop  high  perfor-

mance  CO2 adsorbent  materials.  If   one  intends  to  make   a  detailed

comparison  of   present  results with  those  reported   in  the  literature,

one  should  refer  to  a  comprehensive  review  by   Jones  et  al.  [23]

Furthermore,  the  comparison  of   the  adsorption  capacity  and

surface  area  of   some  hybrid  materials  with  present  aminopropyl-

functionalized  fumed  silica  is  also  given  in  the  supplementary

information  (Table  S1).

Supplementary  material  related  to  this  article  found,  in  the

online  version,  at  doi:10.1016/j.jhazmat.2012.10.056.

4.  Conclusions

Silica–organoamine 

hybrid 

materials 

were 

prepared 

by 

cova-lent  grafting  of   alkylamines  (with  one,  two  or  three  amino  groups)

and  polyethyleneimine  bearing  reactive  methoxysilane  groups.

The  characterization  of   the  grafted  silica  particles  was  carried  out

by  thermogravimetry,  DRIFT  and  BET  methods.  Both  the  nitrogen

contents  and  the  adsorption  capacities  of   hybrid  materials

increased  (although  not  linearly)  as  the  molecular  weight  of   the

organic  component  increased.  However  the  CO2/N  ratio  decreased,

indicating  that  less  amino  functional  groups  were  accessible  or/

and  active  for  adsorption.  Higher  graft  densities  and  higher  CO2

adsorption  capacities  could  be  obtained  when  silane  coupling

agents  containing  one,  two  or  three  amino  groups  were   saturated

with  CO2 prior  to  the  reaction  with  surface  silanol  groups.  Mono-,

di-  and  triamine-functionalized  silica  sorbents  showed  decreasing

adsorption 

capacities 

as 

function 

of  

temperature 

while 

thepolyamine-functionalized  ones  exhibited  increasing  adsorption

capacity  at  higher  temperatures.  Organoamine  functionalized

fumed  silica  adsorbents  are  easy  to  prepare,  high  performance

adsorbents  and  more  cost  effective  alternatives  to  other  amine-

grafted  porous   adsorbents  based  on  supports  for  carbon  dioxide

capture.  To  the  best  of   our  knowledge  it  is  also  the  first  time  that

trimethoxysilylpropyl-polyethyleneimine  has  been  used  to  pre-

pare   materials  for  CO2 adsorption.

 Acknowledgement

Support  of   our  work   by  the  Loker  Hydrocarbon  Research

Institute  and  the  United  States  Department   of   Energy  is  gratefully

acknowledged.

References

[1] N.M. Whiteley, Mar. Ecol. Prog. Ser. 430 (2011) 257–271.[2]  D.P. Schrag, Science 325 (2009) 1658–1659.[3] F.M. Orr Jr., Science 325 (2009) 1656–1658.[4]  G.A. Olah, A. Goeppert, M. Czaun, G.K.S. Prakash, J. Am. Chem. Soc. 135 (2012)

648–650.[5]  M. Aresta, Carbon, Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim,

Germany,  2010.[6]  A. Goeppert, M. Czaun, R.B. May, G.K.S. Prakash, G.A. Olah, S.R. Narayanan, J. Am.

Chem.  Soc. 133 (2011) 20164–20167.[7]  A.Goeppert, M.Czaun,G.K. SuryaPrakash,G.A.Olah, EnergyEnviron.Sci. 5 (2012)

7833–7853.[8]  M. Aresta, A. Dibenedetto, Catal. Today 98 (2004) 455–462.[9]  G.T. Rochelle, Science 325 (2009) 1652–1654.

[10] 

T.-W. Shih, A.N. Soriano, M.-H. Li, J. Chem. Thermodyn. 41 (2009) 1259–1263.

2 Number   of   ethyleneimine  groups   were  determined   based  on  the  integrals  of 

methoxide- 

and 

ethylene 

protons 

in 

the

1

NMR  

spectrum.

M.  Czaun  et   al.  /   Journal  of   CO 2 Utilization  1  (2013)  1–7 6

Page 7: Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

7/27/2019 Organoamines-Grafted on Nano-sized Silica for Carbon Dioxide Capture

http://slidepdf.com/reader/full/organoamines-grafted-on-nano-sized-silica-for-carbon-dioxide-capture 7/7

[11] G.A. Olah, A. Goeppert, G.K.S. Prakash, Beyond Oil and Gas The MethanolEconomy,   2nd ed., Wiley VCH, Weinheim, Germany, 2009.

[12]  G.A. Olah, A. Goeppert, G.K.S. Prakash, J. Org. Chem. 74 (2009) 487–498.[13]  G.A.Olah,G.K.S. Prakash,A. Goeppert,J. Am.Chem. Soc.133 (2011)12881–12898.[14]  M.Czaun, A. Goeppert,R. May,R. Haiges, G.K.S. Prakash,G.A.Olah, ChemSusChem

4  (2011) 1241–1248.[15] A. Boddien, B. Loges, H. Junge, F. Gartner, J.R. Noyes, M. Beller, Adv. Synth. Catal.

351  (2009) 2517–2520.[16] A. Goeppert, S. Meth, G.K.S. Prakash, G.A. Olah, Energy Environ. Sci. 3 (2010)

1949–1960.[17]  S.Meth,A. Goeppert,G.K.S.Prakash,G.A.Olah, Energy Fuels 26(2012)3082–3090.

[18] 

M. Czaun, A.K. Mallik, M. Takafuji, H. Ihara, in: W.J. Ackrine (Ed.), PolymerInitiators, Nova Science Publishers, Hauppauge, NY, USA, 2010.[19]  Z. Liang, B. Fadhel, C.J. Schneider, A.L. Chaffee, Micropor. Mesopor. Mater. 111

(2008)   536–543.[20] V. Zelenak, D. Halamova, L. Gaberova, E. Bloch, P. Llewellyn, Micropor.Mesopor.

Mater.  116 (2008) 358–364.[21] G.P . Knowles, S.W. Delaney, A.L. Chaffee, Ind. Eng. Chem. Res. 45 (2006)

2626–2633.

[22] C. Knofel, J. Descarpentries, A. Benzaouia, V. Zelenak, S. Mornet, P.L. Llewellyn, V.Hornebecq,  Micropor. Mesopor. Mater. 99 (2007) 79–85.

[23]  S. Choi, J.H. Drese, C.W. Jones, ChemSusChem 2 (2009) 796–854.[24]  Q. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 4 (2011) 42–55.[25]  D.M.D’Alessandro,B. Smit, J.R.Long, Angew. Chem.Int. Ed. 49 (2010) 6058–6082.[26]  Product Data Sheet, Evonik Industries (Former Degussa).[27]  M. Czaun, M.M. Rahman, M. Takafuji, H. Ihara, Polymer 49 (2008) 5410–5416.[28]  I. Minet,  J. Delhalle, L.Hevesi, Z.Mekhalif,J.  ColloidInterfaceSci.  332(2009)317–326.[29]  L.D. White, C.P. Tripp, J. Colloid Interface Sci. 232 (2000) 400–407.[30]   K.C. Vrancken, P. Vandervoort, I. Gillisdhamers, E.F. Vansant, P. Grobet, J. Chem.

Soc.,  Faraday Trans. 88 (1992) 3197–3200.

[31] 

N. Hiyoshi, K. Yogo, T. Yashima, Micropor. Mesopor. Mater. 84 (2005) 357–365.[32]  T. Takei, K. Kato, A. Meguro, M. Chikazawa, Colloids Surf. A 150 (1999) 77–84.[33]  G.P.Knowles, V. Beyton, A.L.Chaffee,Prepr. Symp.-Am.Chem Soc.Div. FuelChem.

51  (2006) 102–103.[34] V. Zelenak, M. Badanicova, D. Halamova, J. Cejka, A. Zukal, N. Murafa, G. Goerigk,

Chem.  Eng. J. 144 (2008) 336–342.[35] A. Zukal, I. Dominguez, J. Mayerova, J. Cejka, Langmuir 25 (2009) 10314–10321.[36]  S.N. Kim, S.T. Yang, J. Kim, J.E. Park, W.S. Ahn, CrystEngComm 14 (2012)

4142–4147.

M.  Czaun  et   al.  /   Journal  of   CO 2 Utilization  1  (2013)  1–7   7