organic seminar prakash kumar shee - michigan state …€¦ · prakash kumar shee ......

69
Prakash Kumar Shee Department of Chemistry Michigan State University November 27, 2013 Organic Seminar

Upload: lamkien

Post on 11-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Prakash Kumar Shee Department of Chemistry Michigan State University

November 27, 2013

Organic Seminar

2

OUTLINE

Introduction

Background

Recently Reported Approaches

Conclusion

Approach 1: Donor Atom Assistance

Approach 2: Using an End-on Template

Approach 3: Through Remote ortho-C-H activation

3

DRUG TARGETS THAT BENEFIT FROM META C-H ACTIVATION

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

Friedel - Crafts Reaction:

4

C-H ACTIVATION

Friedel, C.; Crafts, J. M. Competes Rendus 1877, 84, 1392.

ELECTROPHILIC AROMATIC SUBSTITUTION

5

Difficulty:

Friedel, C.; Crafts, J. M. Competes Rendus 1877, 84, 1392.

Kitching, M. O.; Snieckus, V. Nature 2012, 486, 478.

TRANSITION METAL CATALYZED C-H BOND FUNCTIONALIZATION

6

Directed C-H activation:

How to obtain meta functionalization selectively ?

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

7

OUTLINE

Introduction

Background

Recently Reported Approaches

Conclusion

Approach 1: Donor Atom Assistance

Approach 2: Using an End-on Template

Approach 3: Through Remote ortho-C-H activation

8

MALECZKA AND SMITH

Previous Synthesis:

Maleczka, R. E., Jr.; Shi, F.; Holmes, D.; Smith, M. R., III J. Am. Chem. Soc. 2003, 125, 7792.

Hodgson, H. H.; Wignall, J. S. J. Chem. Soc. 1926, 129, 2077.

9

MALECZKA AND SMITH

Mono substituted benzenes gives mixture of meta- and para-substituted product

Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith, M. R., III Science 2002, 295, 305.

10

HARTWIG

How to obtain meta-functionalized product exclusively starting from mono substituted benzene?

Murphy, J. M.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 15434.

11

OUTLINE

Introduction

Background

Recently Reported Approaches

Approach 1: Donor Atom Assistance

Approach 2: Using an End-on Template

Approach 3: Through Remote ortho-C-H activation

Conclusion

APPROACH 1: DONOR ATOM ASSISTANCE

Prof. Matthew J. Gaunt Department of Chemistry University of Cambridge Cambridge, UK

12 Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

cyclophane like pre-transition state ≥ 12-membered ring

Prof. Jin-Quan Yu Frank and Bertha Hupp Professor of Chemistry

Scripps Research Institute La Jolla, CA, USA

13

APPROACH 2: USING AN END-ON TEMPLATE

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

Dai, H. -X.; Li, G.; Zhang, X. -G.; Stephan, A. F.; Yu, J. -Q. J. Am. Chem. Soc. 2013, 135, 7567.

Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J. -Q. J. Am. Chem. Soc. 2013, ASAP, 10.1021/ja410760f.

Remote ortho C-H activation leading to meta functionalization

Prof. Lutz Ackermann Dean of Research, Faculty of Chemistry, Georg-August-Universität Göttingen, Germany

14

APPROACH 3: THROUGH REMOTE ORTHO C-H ACTIVATION

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

15

Approach 1 : Donor atom assistance

Approach 2: Using an end-on Template

Approach 3: Through Remote ortho C-H Activation

16

OUTLINE

Introduction

Background

Recently Reported Approaches

Conclusion

Approach 1: Donor Atom Assistance

Approach 2: Using an End-on Template

Approach 3: Through Remote ortho-C-H activation

Only meta arylation No ortho / para product

APPROACH 1: DONOR ATOM ASSISTANCE

Reaction:

17 Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

Inspiration: Complementary Catalysis

Similarly,

18 Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.

Deprez, N. R.; Kalyani, D.; krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972.

Daugulis, O.; Zaitsev, V. G. Angew. Chem. Int. Ed. 2005, 44, 4046.

Inspiration: Complementary Catalysis

Similarly,

19 Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.

Deprez, N. R.; Kalyani, D.; krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972.

Daugulis, O.; Zaitsev, V. G. Angew. Chem. Int. Ed. 2005, 44, 4046.

REACTION OPTIMIZATION

entry R1 R2 Yield %

1 H Me 14

2 Me Me 43

3 Me OMe 45

4 Me NEt2 31

5 Me Ph 73

6 Me CMe3 79

Model System

Me3C-CO = Piv

20 Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

AMIDE GROUP IS NECESSARY

Decomposition No arylation product

21 Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

22

PROPOSED MECHANISM

Anti oxy-cupration

Reductive Elimination

Cu(I)/Cu(III) cycle

Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

23

SUBSTRATE SCOPE

diarylation

Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

24

SUBSTRATE SCOPE

Diarylation Stoichiometric control

Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

X Yield (%)

4-Me 82

4-CO2Et 82

4-NO2 60

4-I 49

3-CF3 70

3-Br 72

2-Me 44

SCOPE OF ARYL COUPLING PARTNER

25

steric, electronic and functionally diverse

Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

26

3- OXYGENATED PIVANILIDE

meta to both -OTs and -NHPiv ortho to -NHPiv, para to -OMe

Any other pathway involved ?

Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

27

ANTI-OXYCUPRATION IS EXTREMELY UNFAVORABLE

Amide is weak π electron donor

ortho-position is electron rich

Aromaticity broken without compensation

Typical C(sp3) – O bond 1.45 Å

Chen, B.; Hou, X. -L.; Li, Y. -X.; Wu, Y. -D. J. Am. Chem. Soc. 2011, 133, 7668.

28

OTHER CALCULATED REACTION PATHWAYS

Chen, B.; Hou, X. -L.; Li, Y. -X.; Wu, Y. -D. J. Am. Chem. Soc. 2011, 133, 7668.

29 Chen, B.; Hou, X. -L.; Li, Y. -X.; Wu, Y. -D. J. Am. Chem. Soc. 2011, 133, 7668.

30 Chen, B.; Hou, X. -L.; Li, Y. -X.; Wu, Y. -D. J. Am. Chem. Soc. 2011, 133, 7668.

31 Chen, B.; Hou, X. -L.; Li, Y. -X.; Wu, Y. -D. J. Am. Chem. Soc. 2011, 133, 7668.

32

EFFECT OF SUBSTITUENTS ON THE REACTION

entry R1 R2 1 2 TS1-b TS1-c

1 Me H 0.0 3.1 21.2 19.2

2 CMe3 H 0.0 0.2 18.0 16.1

3 CMe3 m-OMe 0.4 0.0 13.5 12.3

4 CMe3 P-F 0.0 0.4 19.9 17.8

Bigger CMe3

Electrophilic attack

Relative free energies in solvent (ΔGsol) in kcal/mol :

Chen, B.; Hou, X. -L.; Li, Y. -X.; Wu, Y. -D. J. Am. Chem. Soc. 2011, 133, 7668.

33

EFFECT OF SUBSTITUENTS ON THE REACTION

entry R1 R2 1 2 TS1-b TS1-c

2 CMe3 H 0.0 0.2 18.0 16.1

3 CMe3 m-OMe 0.4 0.0 13.5 12.3

Relative free energies in solvent (ΔGsol) in kcal/mol :

4.5 3.8 stabilization

Chen, B.; Hou, X. -L.; Li, Y. -X.; Wu, Y. -D. J. Am. Chem. Soc. 2011, 133, 7668.

34

SEPARATE MODEL FOR m-METHOXY PIVANILIDE

ΔΔGsol (TS1-b to TS1-c) = -0.9 kcal/mol

Chen, B.; Hou, X. -L.; Li, Y. -X.; Wu, Y. -D. J. Am. Chem. Soc. 2011, 133, 7668.

35

CLEAVAGE OF PIVALOYL

Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

36

LIMITATIONS

Electron deficient arenes give poor yield

Strong electron donating substituent changes the regioselectivity

What besides aryl groups can be transferred?

Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593.

Maleczka, R. E., Jr. Science 2009, 323, 1572.

37

AN APPROACH OVERCOMING THESE PROBLEMS

Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J. -Q. J. Am. Chem. Soc. 2013, ASAP, 10.1021/ja410760f.

38

OUTLINE

Introduction

Background

Recently Reported Approaches

Conclusion

Approach 1: Donor Atom Assistance

Approach 2: Using an End-on Template

Approach 3: Through Remote ortho-C-H activation

39

APPROACH 2: USING AN END-ON TEMPLATE

σ – Chelation:

Cyclic pre transition state 6 or 7 membered ring

End-on Template:

Energetically disfavored

Distal C-H bond activation ( >10 bonds away)

Rigid cyclophane like pre transition state

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

40

Solution:

Linear end-on binding

Reversible weak coordination

Cyclophane like pre transition state

High strain for ortho-activation

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

41

META SELECTIVE C-H ARYLATION USING A U-SHAPED TEMPLATE

Distal meta C-H is 11 bonds away

Readily cleavable amide linkage

Nitrile is important

Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J. -Q. J. Am. Chem. Soc. 2013, ASAP, 10.1021/ja410760f.

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

42

META SELECTIVE C-H ARYLATION USING A U-SHAPED TEMPLATE

Why This Motif?

Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J. -Q. J. Am. Chem. Soc. 2013, ASAP, 10.1021/ja410760f.

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

43

SUBSTRATE SCOPE

Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J. -Q. J. Am. Chem. Soc. 2013, ASAP, 10.1021/ja410760f.

44

EFFECTIVE FOR OTHER MOTIFS ALSO

Phenoxyl is strong EDG

Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J. -Q. J. Am. Chem. Soc. 2013, ASAP, 10.1021/ja410760f.

45

Why These Motifs?

Pharmacophores in the fibrate class of lipid lowering agents

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

Dai, H. -X.; Li, G.; Zhang, X. -G.; Stephan, A. F.; Yu, J. -Q. J. Am. Chem. Soc. 2013, 135, 7567.

46

SCOPE OF ARYLBORONIC ACID ESTER

Ar Yield (%)

H 73

4-Me 72

4-OMe 70

4-F 83

3-CF3 75

4-CO2Me 85

EWG works better

Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J. -Q. J. Am. Chem. Soc. 2013, ASAP, 10.1021/ja410760f.

47

EXPANDING THE FIELD: USE OF OTHER COUPLING PARTNER

Olefination:

Methylation:

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J. -Q. J. Am. Chem. Soc. 2013, ASAP, 10.1021/ja410760f.

48

SUBSTRATE SCOPE FOR OLEFINATION USING A U-SHAPED TEMPLATE

Electronic bias overridden

Baclofen diversification

overcoming Steric hindrance

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

49

OLEFINATION RECTION OF OTHER MOTIFS

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

Dai, H. -X.; Li, G.; Zhang, X. -G.; Stephan, A. F.; Yu, J. -Q. J. Am. Chem. Soc. 2013, 135, 7567.

50

PROPOSED CATALYTIC CYCLE FOR META C-H OLEFINATION

Dai, H. -X.; Li, G.; Zhang, X. -G.; Stephan, A. F.; Yu, J. -Q. J. Am. Chem. Soc. 2013, 135, 7567.

51

META SELECTIVE C-H METHYLATION

Alkylation in presence of b-hydrogen needs further investigation

Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J. -Q. J. Am. Chem. Soc. 2013, ASAP, 10.1021/ja410760f.

52

EASY REMOVAL OF TEMPLATE

Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.

53

META SELECTIVE C-H BOND ALKYLATION WITH 2o ALKYL HALIDES

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

54

OUTLINE

Introduction

Background

Recently Reported Approaches

Conclusion

Approach 1: Donor Atom Assistance

Approach 2: Using an End-on Template

Approach 3: Through Remote ortho-C-H activation

55

APPROACH 3: REMOTE ORTHO C-H ACTIVATION

Remote ortho C-H activation leading to meta functionalization

Ru-Caryl s bond directs SEAr

Frost:

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

Saidi, O.; Marafie, J.; Ledger, A. E. W.; Liu, P. M.; Mahon, M. F.; Kociok-Kohn, G.; Whittlesey, M. K.; Frost, C. G. J. Am. Chem. Soc. 2011, 133, 19298.

56

Reaction:

Other Directing Groups:

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

57

SUBSTRATE SCOPE

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

58

META SUBSTITUTED ARENES ARE LESS REACTIVE

Steric interaction: Reduced efficacy

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

59

INTRAMOLECULAR COMPETITION WITH ORTHO SUBSTITUTED ARENES

More sterically congested arene is major product

Preferred alkylation

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

60

INTERMOLECULAR COMPETITION EXPERIMENTS

18% conversion ratio = 2.6 :1.0

Electrophilic type activation

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

61

EVIDENCE OF CARBOXYLATE ASSISTANCE

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

62

EXPERIMENTS WITH DEUTERIUM LABELED SUBSTRATES

Cycloruthenation in the product

D5 Substrate:

Reversible ortho C-H metalation

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

63

D3 Substrate:

meta C-H cleavage is not kinetically relevant

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

64

PROPOSED CATALYTIC CYCLE

Hofmann, N.; Ackermann, L. J. Am. Chem. Soc. 2013, 135, 5877.

65

OUTLINE

Introduction

Background

Recently Reported Approaches

Conclusion

Approach 1: Donor Atom Assistance

Approach 2: Using an End-on Template

Approach 3: Through Remote ortho-C-H activation

66

SUMMARY

Approach 1

Operationally simple, mild and inexpensive

Electron deficient arenes give poor yield

Strongly electron donating group overrides meta-selectivity

67

SUMMARY

Approach 1

Approach 2

Operationally simple, mild and inexpensive

Electron deficient arenes give poor yield

Strongly electron donating group overrides meta-selectivity

Activates distal C-H bonds

Overrides intrinsic electronic and steric bias of molecules

Easily removable template

β-hydride elimination for 1o and 2o alkyls

68

SUMMARY

Approach 1

Approach 2

Approach 3

Operationally simple, mild and inexpensive

Electron deficient arenes give poor yield

Strongly electron donating group overrides meta-selectivity

Activates distal C-H bonds

Overrides intrinsic electronic and steric bias of molecules

Easily removable template

β-hydride elimination for 1o and 2o alkyls

First meta selective metal- catalyzed alkylation with 2o alkyl halides

Works well with both EDG and EWG

Ru is more expensive than both Cu and Pd

69

ACKNOWLEDGEMENTS

Dr. Kevin D. Walker

Chelsea Thornburg Dilini Ratnayake Ruth Muchiri Tyler Walter Dr. Buddhadeb Chattopadhyay Dr. Abhishek Dutta Chowdhury Dhritabrata Mandal Hadi Nayebi Tamal Kanti Ghosh and my friends and family