organic molecules in photonics - · pdf fileorganic molecules in photonics progressin...

20
ORGANIC MOLECULES in photonics Progress in Photonics, Florence 16.10. 2015 probe scattered waves surface Costanza Toninelli www.lens.unifi.it/quantumnanophotonics

Upload: lythien

Post on 24-Mar-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

ORGANIC MOLECULES in photonics

Progress  in  Photonics,  Florence  16.10.  2015  

probe  

scattered  waves  surface  

Costanza  Toninelli                    www.lens.unifi.it/quantum-­‐nanophotonics  

Page 2: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

ps |1〉 |1’〉

|0〉 |0’〉

ps |0〉

|1〉

narrow  line  50%  ZPL  

Cryogenic  T  

Single  molecule    in  the  solid  state  Fermi’s  golden  rule  

( ) ( )rirEdfT fi

ωω ρπ 22

⋅=→

Local  DOS  Radiative  and  non  

Transition  dipole  moment  

J. Hwang, et al., Nature 460, 76 (2009)

Single Molecules: From Sensing To Quantum Optics

Electron-­‐phonon    coupling  

•  Quantum  ICTs  

•  Sense  LDOS    by  lifetime  measurements  or  frequency  shift  

Sense  on  nanoscale  Quantum  sensors  

Opt

ical  tr

ansitio

n  

Single  photon  source  Coherenceà  nln.  element  Coupling  to  photonics  

Page 3: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

C. Toninelli et al., Opt. Express 18, 6577 (2010)

Dibenzoterrylene (DBT) in Anthracene

Anthracene  crystal  

5  µm  

DBT /Anthracene

•  Stable  at  room  temperature  

•  Thin  films  (~50  nm)  

•  Orient  on  the  plane  

•  ZPL  at  785  nm  

Page 4: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

DBT Optical Properties Brightness  Second  order  correlation  

98% suppression Single Photon Source

1 MHz Bright

C. Toninelli et al., Opt. Express 18, 6577 (2010)

Page 5: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

Exciation  spectrum  Scanning  laser  frequency  over  2  GHz  at  3.5  K  

DBT at Cryo Temperatures

Narrow molecules

Inhomogeneously broadened (0.1 nm)

Lifetime-limited linewidth

40 MHz

ü  Single  Photon  Source  ü  No  dephasing/  Coherence  ü  Tunability  by  Stark  shift  ü  Coupling  

Page 6: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

Nano-Positioning

(Berlin)

Fluorescence  

Intensity  autocorrelation  

Kewes  et  al.,  arxiv.:1501.04788  (2015)  

AFM manipulation

Page 7: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

•  Coupled  to  Hybrid  WG        for  SPS    and  coop.  effects  

•  Coupled  to  graphene          to  sense  position  

!

•  A  nice  competitor  for  DBT  SiV  centers  

Collaboration  with  M.  Agio          Collaboration  with  O.  Benson,  W.  Pernice,  S.  Meier  groups          Collaboration  with  F.  Koppens  group          Collaboration  with  S.  Lagomarsino  

•  Coupled  to  optical  antennas            for  enhanced  collection  

Sense/communicate at the n-scale

Page 8: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

Hwang  and  Hinds.,    New  Journal  of  Physics,  13,    (2011)

Dielectric Waveguides: Towards integrated SPS

Rate = (1/4)*(σ/A)*(1/n^2) σ  =  3λ^2/2π       A  =  effective  Area  depending  on  Jield   @  emitter  position

Page 9: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

Fluorescence

Dielectric Waveguides: Towards integrated SPS

Dense  sample  à  Fluorescence  is  coupled  into  the  WG

Kewes  et  al.,  arxiv.:1501.04788  (2015)  

Output    coupler

Pump  light  

Small  crystal

SEM   White  light  image  

Page 10: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

Pump    

Fluorescence

Dielectric Waveguides: Towards integrated SPS Fluorescence  spectra  

Page 11: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

Big  highly-­‐doped  molecular  crystal

Dark  waveguide  à  light  is  coupled  to  SP    Cooperative  effects?

Plasmonic Wedge-Waveguides: Towards Cooperative effects

Au  is  everywhere

Fluorescence  scan

Theoretical  model:  What  to  look  at,    what  to  expect  ?

Page 12: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

•  Coupled  to  Hybrid  WG        for  SPS    and  coop.  effects  

•  Coupled  to  graphene          to  sense  position  

!

•  A  nice  competitor  for  DBT  SiV  centers  

Collaboration  with  M.  Agio          Collaboration  with  O.  Benson,  W.  Pernice,  S.  Meier  groups          Collaboration  with  F.  Koppens  group          Collaboration  with  S.  Lagomarsino  

•  Coupled  to  optical  antennas            for  enhanced  collection  

Sense/communicate at the n-scale

Page 13: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

FRET from DBT to graphene

Γg

Γref

=1+9να

256π 3 εsub +εref( )2

λ0

d

"

#$

%

&'

4

1  or  2  (orientation)   fine  structure  constant  

distance  from  graphene  

• Universal  scaling  law  •  Long  interaction  length  

Graphene-based Nanoruler

• Measure  lifetime  vs  distance…statistical  analysis  •  Get  a  good  reference  

E >1.3EF                Plasmons  are  strongly  damped  

Page 14: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

•  Lifetime  reduction  is  associated  to  quenching   N(t) =QYρee(t)Γrad

DBT-energy transfer to Graphene

Mazzamuto  et  al.,  New  J.  Phys.  16  (2014)  113007  

Page 15: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

Proof of principle for G-ruler

•  Good  agreement    btw  model  and  data  

Guess  from  model  

Exper.  values  

Proof for Graphene-based Nanoruler

ηMax ≈ (61± 20)%

•  Estimators      

η =1−Γref

Γg

Mazzamuto  et  al.,  New  J.  Phys.  16  (2014)  113007  

Page 16: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

In progress: Casimir force-ruler

Modified  Vacuum  potential   Distance-­‐dependent  Level  shift  

C.  A.  Muschik,  et  alt.  Phys.  Rev.  Lett.  112,  223601  (2014)    

Page 17: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

•  Coupled  to  Hybrid  WG        for  SPS    and  coop.  effects  

•  Coupled  to  graphene          to  sense  position  

!

•  A  nice  competitor  for  DBT  SiV  centers  

Collaboration  with  M.  Agio          Collaboration  with  O.  Benson,  W.  Pernice,  S.  Meier  groups          Collaboration  with  F.  Koppens  group          Collaboration  with  S.  Lagomarsino  

•  Coupled  to  optical  antennas            for  enhanced  collection  

Sense/communicate at the n-scale

Page 18: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

SiV centers in diamond

•   Inversion  symmetric  potential:  -­‐  narrow  line    @  room  temp.  (1  nm)  -­‐  70%  brunching  ratio  for  ZPL  -­‐  no  charge  dynamic  spectral  diffusion  -­‐  weak  coupling  with  host  matrix  -­‐  low  inhomogeneous  broadening  (1  GHz)    •  Single  SiV  centers  both                in  nDiamonds  and  in  bulk              •  150MHz  ZPL  @  cryo  temp.  

D3d  geometry  

Around  5  nm    ensamble  linewidth    

@  RT  

pump  @  632  nm    

       HOME-­‐MADE  implanted  SiV    (collaboration  with  CNR-­‐Firenze)  •  Mono-­‐crystalline  diamonds      •  Implantation  depth:  2um                    (impl.  Energy      Mev)  

A.  Sipahigil  et  al.,  PRL  113,  113602  (2014)    

Page 19: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

LAB ALBUM 2014/2015

O. Benson W. Pernice S. Meier

F. Koppens

G. Mazzamuto

D.S. Wiersma M. Gurioli

F.S. Cataliotti

S. Rizvi S. Pazzagli

F. Sgrignuoli P.E. Lombardi

S. Checcucci

Post-Doc

PhD students

Collaborators:

Page 20: ORGANIC MOLECULES in photonics - · PDF fileORGANIC MOLECULES in photonics Progressin Photonics,Florence’16.10.2015’ probe’ scattered waves surface Costanza’Toninelli ’’’’’’’’’’www

!

THANK YOU FOR YOUR ATTENTION

Costanza  Toninelli                    www.lens.unifi.it/quantum-­‐nanophotonics  

On-­‐demand  source  of  single  indistinguishable  

photons

WG-­‐  Integrated  SPS  SP-­‐mediated  coop.  effects

SM-­‐graphene  nanoposition  sensor

planar  antennas

Implanted  SiV