open air interface and european fp7 collaboration …geni.net/nice2015/docs/geninice15-lte-2.pdfopen...

18
Open Air Interface and European FP7 Collaboration Report GENI NICE 2015 Wokshop San Francisco, CA November 10 th , 2015 Ivan Seskar WINLAB (Wireless Information Network Laboratory) Rutgers University seskar (at) winlab (.) rutgers (.) edu 11

Upload: duongnga

Post on 14-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Open Air Interface and European FP7 Collaboration Report GENI NICE 2015 Wokshop San Francisco, CA November 10th, 2015

Ivan Seskar WINLAB (Wireless Information Network Laboratory)

Rutgers University seskar (at) winlab (.) rutgers (.) edu

11

FLEX: FIRE LTE testbeds for open experimentation

�Open and highly configurable LTE platforms

� Interaction of the user with the real 4G world.

�Commercial and Open Source equipment

12

Courtesy: FLEX Consortium

FLEX contribution

• Two operational LTE testbeds: – Setup 1: Based on commercial equipment

• SIRRAN EPC

• ip.access cellular equipment

• commercial UE

– Setup 2: Open Source components

• OpenAirInterface core network

• OpenAirInterface eNodeB

• OpenAirInterface/commercial UE

• ENodeB’s, EPC and UE fully integrated with control and management frameworks

13

Courtesy: FLEX Consortium

Types of Supported Experiments Indicative experiments for Setup 1 Indicative experiments for Setup 2

x Comparison of a new LTE functionality with the commercial approach.

x Conducting measurements in an urban environment (macro-cells) or in an indoor setup (pico-cells) of a commercial LTE setup.

x Experimentation with handoffs between macro-cells, pico-cells or small-cells or heterogeneous handovers between cells of different levels (e.g., macro to pico).

x Experiments with real mobility in a commercial setup in an every day’s basis (e.g., monitoring the behavior of a multimedia application that runs on Android phones that are carried by volunteers around the campus).

x Experimentation with new PHY layer schemes in LTE that will be implemented from scratch.

x Evaluation and testing of new scheduling algorithms on the MAC layer of the LTE eNodeBs.

x Implementation and evaluation of cooperative networking schemes in LTE (where end-users can be packet forwarders between the eNodeBs and other end-users).

x Evaluation and testing of new rate adaptation algorithms in the MAC layer of LTE.

14

Courtesy: FLEX Consortium

Open Air Interface (OAI)

• OpenAirInterface.org today and Ecosystem

• Open-source for 5G

• Software Alliance – Membership

– License

– Strategic member areas

OAI - Open-Source Solutions for 5G

Hardware Platforms Software Platforms LTE in a PC

Courtesy: Navid Nikaein, Eurecom/Open Air Interface

OAI Ecosystem (current mailing list)

OAI - Open-Source Solutions for 5G

Europe ALU (Villarceaux) - Industry **** Thales (Colombes) - Industry * Air-Lynx (Velizy) - Industry ** IFFSTAR (Lille) - Research UBO (Brest) - Research * Orange (Issy-les-Moulineaux) - Industry Fraunhofer Erlanagen (Germany) - Research Fraunhofer Munich (Germany) - Research TU Berlin (Germany) - Research ** IMST (Kamp-Lintfort, Germany) - Research ** Nat. Inst (Dresden, Germany) - Industry ** TNO (Holland) - Research *** KCL (UK) - Research ** IMINDS (Belgium) - Research UMalaga (Malaga, Spain) - Research * CERTH (Greece) - Research * IASA (Greece) - Research * Inov (Portugal) - Research * NSN (Poland) - Industry * “some guy called Iardella” (Italy) - Research *

Asia Kaist (Korea) - Research KHU (Korea) - Research * Malaysia Telecom (Malaysia) - Industry TCS (India) - Industry * IIT Madras (India) - Research * IIT Hyderabad (India) - Research * BUPT (Beijing, China) - Research Geeflex (China) - Industry ** China Mobile (China) - Industry **** Keysight (ex Agilent), (China) - Industry **** CASIA (China) - Research Various undisclosed institutions (China) -Research/Industry **

North America Univ. Michigan (Ann Arbour, USA) - Research * Nat. Inst/Ettus (support, USA) - Industry ** Intel (Oregon, USA) – Industry ** Rutgers Univ. (Rutgers New Jersey, USA) - Research ALU (Murray Hill - USA) - Industry ** Idaho National Laboratory (USA) – Research **

Courtesy: Navid Nikaein, Eurecom/Open Air Interface

OAI Software platform

– Commercial UE l OAI eNB + Commercial EPC * – Commercial UE l OAI eNB + OAI EPC * – Commercial UE l Commercial eNB + OAI EPC * – OAI UE l Commercial eNB + OAI EPC * – OAI UE l Commercial eNB + Commercial EPC * – OAI UE l OAI eNB + Commercial EPC – OAI UE l OAI eNB + OAI EPC

Courtesy: Navid Nikaein, Eurecom/Open Air Interface

OAI Soft eNB and UE • Challenge : efficient base band unit • OpenAirInterface uses general-purpose x86

processors (GPP) for base-band processing – front-end, channel decoding, phy procedures, L2 protocols

• Key elements – Real-time extensions to Linux OS

• x86-64 multicore arch

– Real-time data acquisition to PC – SIMD optimized integer DSP

• 64-bit MMX o 128-bit SSE2/3/4 o 256-bit AVX2 • iFFT/FFT, Channel Estimation, Turbo Decoding

– SMP Parallelism • Master-worker model

©www.openairinterface.org

Courtesy: Navid Nikaein, Eurecom/Open Air Interface

OAI Strategic Vectors

5G Modem

Software-defined 5G system

Heterogeneous 5G Network

Large-Scale Emulation

Test and measurements

RF Platform

Massive MIMO

Full-duplex Radio new waveform

SDN/NFV

Cloud-native RAN Juju/OpenStack

Ethernet Fronthaul

MEC API

Ultra-dense network

Coexistence and Aggregation

Unlicensed bands

Relaying

Carrier aggregation

Realistic experimentation

PHY abstraction

Channel models

Interoperability / Compliance System Integration

System Integration

Design Validation Channel Sounding

Performance

Low cost BS

Soft RRH

Courtesy: Navid Nikaein, Eurecom/Open Air Interface

Slide title 44 pt

Text and bullet level 1 minimum 24 pt

Bullets level 2-5 minimum 20 pt

Characters for Embedded font: !"#$%&'()*+,-

./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øù

úûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl

ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰαβγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ

ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃẄẅỲỳ№

Do not add objects or text in the

footer area

METIS-II, <event>, Page 20

METIS-II Objectives & Partners

19 Partners: › Operators: NTT Docomo, Orange, DTAG,

Telefonica, Telecom Italia › Vendors: Ericsson, Nokia, Huawei,

Alcatel-Lucent, Samsung, Intel › Academia (in Europe): KTH,

Uni Valencia, Uni Kaiserslautern › SMEs: iDate, Janmedia › Non-European partners: NYU, Winlab, ITRI Project coordinator: Olav Queseth, Ericsson Technical manager: Patrick Marsch, Nokia

Develop the overall 5G radio access network design

Provide the 5G collaboration framework within 5G-PPP for a common evaluation of

5G radio access network concepts

Prepare concerted action towards regulatory and standardization bodies

1

2

3

Special focus on pre-standardization

Slide title 44 pt

Text and bullet level 1 minimum 24 pt

Bullets level 2-5 minimum 20 pt

Characters for Embedded font: !"#$%&'()*+,-

./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øù

úûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl

ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰαβγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ

ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃẄẅỲỳ№

Do not add objects or text in the

footer area

METIS-II, <event>, Page 21

METIS-II Project Structure

WP 5 – Synchronous Control Func. and Resource Abstraction Framework

WP 6 – Asynchronous Control Func. and Overall 5G Control Plane Design

WP 4 – Air Interface Harmonization and User Plane Design

WP 3 – Spectrum

Key innovation pillars

WP 2 – Overall RAN Design and Performance Overall 5G RAN Design

Hol

istic

Spe

ctru

m

Man

agem

ent A

rchi

tect

ure

(driv

en b

y W

P 3

)

Cro

ss-la

yer a

nd c

ross

-air-

inte

rface

A

cces

s an

d M

obili

ty F

ram

ewor

k (d

riven

by

WP

6)

Agi

le R

esou

rce

Man

agem

ent F

ram

ewor

k (d

riven

by

WP

5)

Hol

istic

Air

Inte

rface

H

arm

onis

atio

n Fr

amew

ork

(driv

en b

y W

P 4

)

WP

1 –

Sce

nario

s, T

est C

ases

, Req

uire

men

ts a

nd

Tech

no-e

cono

mic

Fea

sibi

lity

Ass

essm

ent

WP

7 –

Dis

sem

inat

ion,

Sta

ndar

disa

tion,

Reg

ulat

ion,

C

olla

bora

tion

and

Vis

ualis

atio

n

WP

8 –

Man

agem

ent

Com

mon

Con

trol a

nd

Use

r Pla

ne F

ram

ewor

k (d

riven

by

WP

2)

Slide title 44 pt

Text and bullet level 1 minimum 24 pt

Bullets level 2-5 minimum 20 pt

Characters for Embedded font: !"#$%&'()*+,-

./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øù

úûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl

ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰαβγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ

ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃẄẅỲỳ№

Do not add objects or text in the

footer area

METIS-II, <event>, Page 22

METIS-II Milestones and Key Deliverables

20 24 23 22 21 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

Month

R 1.2 Prelim. quantitative techno-econ. assessment

R 1.1 – Prelim. scen., requirem.

test cases

D 1.1 – Consolidated scen., requirem., test cases, qual. techno-econ. feasibility

D 1.2 Quant. techn.-econ. assessment

D 7.3 – Final 5G visualization

R 7.1 – Prelim. 5G visualization considerations

D 7.2 – Preliminary 5G visualization

Month

M4: Final 5G RAN design and 5G

roadmap proposal

M1: Consensus for evaluation framework in 5G-PPP obtained

M2: Key 5G RAN design questions

clarified

M3: Prelim. Assessment and visualization of 5G RAN design concepts

D 3.2 Spectrum roadmap

R 3.1 Prelim. spectrum scenarios, justification for WRC AI > 6 GHz

D 3.1 Spectrum scenarios, requirements, rationale

5G-PPP report

Deliverable

D 2.2 Draft overall RAN design

D 2.4 Final overall RAN design

R 2.1 RAN design guideline

methodology

R 4.1, 5.1, 6.1 – Prelim. cons. on user / control plane design

D 2.3 Performance evaluation results

D 2.1 Performance evaluation framework

R 2.3 Prelim. perf. evaluation

R 2.2 Prelim. perf. eval. framework

Mar Jun May Apr Feb Jan Dec Nov Oct Sep Aug Jul Jun May Apr Mar Feb Jan Dec Nov Oct Sep Aug Jul

5G Wireless: Technical Challenges

Faster Cellular Radios Access

~1-10 Gbps ~1000x capacity

Low-Latency/ Low-Power

Access Network For Real-Time IoT

New Spectrum

& Dynamic Spectrum

Access

Next-Gen Mobile

Network

Wideband PHY Cloud RAN arch Massive MIMO

mmWave (60 Ghz) Multi-Radio access HetNet (+WiFi, etc.)

Custom PHY for IoT New MAC protocols

RAN redesign Light-weight control

Control/data separation

Network protocol redesign

….

60 Ghz & other new bands

New unlicensed/shared spectrum

Dynamic spectrum access

Spectrum sharing techniques

Non-contiguous spectrum

Network/DB coordination methods

….

Mobile network redesign Convergence with Internet

Clean-slate Mobile Internet

Software Defined Networks

Open wireless network APIs

Cloud services & computing

Edge cloud/fog computing Virtualization, NFV

….

OBRIT Extension: Proposal

OBRIT Extension: Current • 40 USRP X310s

– Available FPGA resources:

– RF 2 x UBX-160 (10 MHz - 6 GHz RF, 160 MHz

BB BW) – 2 x 10G Ethernet for fronthaul/interconnect – Four corner movable mini-racks (4 x 20 x 20 ->

1 x 80 x 80)

• > 500+ GPP Cores/CloudLab Rack (?) • Number of GPU platforms • 32x40G SDN aggregation switch

Resource Type Number

DSP48 Blocks 58K

Block Rams (18 kB) 14K

Logic Cells 7.2M

Slices (LUTs) 1.5M

OBRIT Extension: Clock Distribution

LTE eNodeB (BS) Platforms

Ip.access Amarisoft

(USRP) OAI (USRP) Airpsan

AirSynergy

/ Air 4G

Rel 8.9 Rel 10,12 Rel 8.6,10 Rel 10

(upgreadable)

FDD FDD/TDD FDD/TDD TDD/(FDD)

10MHz 20 MHz 10 MHz 20 MHz

2 x 10 dBm 10 dBm

(2 x 10 dBm) 10 dBm

(4 x 30 dBm) 2 x 37 dBm (2 x 40 dBm)

13 Mbps BW limited 20 Mbps 300 Mbps

4 (max idle 64) BW limited 5 (25) > 100 (256)

Ideal GENI Wireless Unit

Local processing

SDR front-end

RF “Firewall” Modest power amplifier

GENI Rack