opamp ppt

24

Upload: er-akhilesh-singh

Post on 15-Dec-2015

3 views

Category:

Documents


0 download

DESCRIPTION

operational amplifier

TRANSCRIPT

Page 1: OPAMP PPT
Page 2: OPAMP PPT

CONTENTS

Introduction of Operation Amplifier (Op-Amp)

Analysis of ideal Op-Amp applications Comparison of ideal and non-ideal Op-

Amp Non-ideal Op-Amp consideration Properties of Op-Amp

Page 3: OPAMP PPT

Vd

+

Vo

Rin~inf Rout~0

Input 1

Input 2

Output

+Vcc

-Vcc

Operational Amplifier (Op-Amp)

Very high differential gain

High input impedance Low output impedance Provide voltage changes

(amplitude and polarity) Used in oscillator, filter

and instrumentation Accumulate a very high

gain by multiple stages

ddo VGV

510say large,y ver

normally gain aldifferenti : dG

Page 4: OPAMP PPT

Single-Ended Input

+

Vo

~ Vi

+

Vo

~ Vi

• + terminal : Source• – terminal : Ground• 0o phase change

• + terminal : Ground• – terminal : Source• 180o phase change

Page 5: OPAMP PPT

Double-Ended Input

~ V1

+

Vo

~ V2

+

Vo~

Vd

• Differential input

• 0o phase shift change

between Vo and Vd

VVVd

Ques: What Vo should b e if,

V1

V2

(A) (B)Ans: (A or B) ?

Page 6: OPAMP PPT

Distortion

Vd

+

Vo

+Vcc=+5V

Vcc= 5V

0

+5V

5V

The output voltage never excess the DC voltage supply of the Op-Amp

Page 7: OPAMP PPT

Common-Mode Operation+

Vo

Vi ~

• Same voltage source is applied at both terminals

• Ideally, two input are equally amplified

• Output voltage is ideally zero due to differential voltage is zero

• Practically, a small output signal can still be measured

Note for differential circuits:Opposite inputs : highly amplifiedCommon inputs : slightly amplified

Common-Mode Rejection

Page 8: OPAMP PPT

Common-Mode Rejection Ratio (CMRR)

Differential voltage input :

VVVd

Common voltage input :

)(2

1 VVVc

Output voltage :

ccddo VGVGV

Gd : Differential gainGc : Common mode gain

)dB(log20CMRR 10c

d

c

d

G

G

G

G

Common-mode rejection ratio:

Note:When Gd >> Gc or CMRR Vo = GdVd

+

Noninverting Input

Inverting Input

Output

Page 9: OPAMP PPT

Op-Amp Properties(1) Infinite Open Loop gain

- The gain without feedback- Equal to differential gain- Zero common-mode gain- Pratically, Gd = 20,000 to 200,000

(2) Infinite Input impedance- Input current ii ~0A- T- in high-grade op-amp - m-A input current in low-grade op-

amp

(3) Zero Output Impedance- act as perfect internal voltage source- No internal resistance- Output impedance in series with load- Reducing output voltage to the load- Practically, Rout ~ 20-100

+

V1

V2

Vo

+

Vo

i1~0

i2~0

+

Rout

Vo'Rload

outload

loadoload RR

RVV

Page 10: OPAMP PPT

Frequency-Gain Relation

• Ideally, signals are amplified from DC to the highest AC frequency

• Practically, bandwidth is limited

• 741 family op-amp have an limit bandwidth of few KHz.

• Unity Gain frequency f1: the gain at unity

• Cutoff frequency fc: the gain drop by 3dB from dc gain Gd

(Voltage Gain)

(frequency)f1

Gd

0.707Gd

fc0

1

GB Product : f1 = Gd fc

20log(0.707)=3dB

Page 11: OPAMP PPT

Ideal Vs Practical Op-Amp

Ideal Practical

Open Loop gain A 105

Bandwidth BW 10-100Hz

Input Impedance Zin >1M

Output Impedance Zout

0 10-100

Output Voltage VoutDepends only on Vd = (V+V)

Differential mode signal

Depends slightly on average input Vc = (V++V)/2 Common-Mode signal

CMRR 10-100dB

+

~

AVin

Vin Vout

Zout=0

Ideal op-amp

+

AVin

Vin Vout

Zout

~Zin

Practical op-amp

Page 12: OPAMP PPT

Ideal Op-Amp Applications

Analysis Method :Two ideal Op-Amp Properties:(1) The voltage between V+ and V is zero V+ = V

(2) The current into both V+ and V termainals is zero

For ideal Op-Amp circuit:(1) Write the kirchhoff node equation at the noninverting

terminal V+ (2) Write the kirchhoff node eqaution at the inverting

terminal V

(3) Set V+ = V and solve for the desired closed-loop gain

Page 13: OPAMP PPT

Non-Inverting Amplifier(1) Kirchhoff node equation at V+

yields,

(2) Kirchhoff node equation at V yields,

(3) Setting V+ = V– yields

or

+Vin

Vo

RaRf

iVV

00

f

o

a R

VV

R

V

0

f

oi

a

i

R

VV

R

V

a

f

i

o

R

R

V

V1

Page 14: OPAMP PPT

+

vi

Ra

vov-

v+

Rf

+

vi

Ra

vov-

v+

Rf

R2R1

+

vi vov-

v+

Rf

+

vi

vov-

v+

Rf

R2R1

Noninverting amplifier Non-Inverting input with voltage divider

ia

fo v

RR

R

R

Rv ))(1(

21

2

Voltage follower io vv

ia

fo v

R

Rv )1(

Less than unity gain

io vRR

Rv

21

2

Page 15: OPAMP PPT

Inverting Amplifier(1) Kirchhoff node equation at V+

yields,

(2) Kirchhoff node equation at V yields,

(3) Setting V+ = V– yields

0V

0_

f

o

a

in

R

VV

R

VV

a

f

in

o

R

R

V

V

Notice: The closed-loop gain Vo/Vin is dependent upon the ratio of two resistors, and is independent of the open-loop gain. This is caused by the use of feedback output

voltage to subtract from the input voltage.

+

~

Rf

Ra

Vin

Vo

Page 16: OPAMP PPT

Multiple Inputs(1) Kirchhoff node

equation at V+ yields,

(2) Kirchhoff node equation at V yields,

(3) Setting V+ = V– yields

0V

0_

c

c

b

b

a

a

f

o

R

VV

R

VV

R

VV

R

VV

c

aj j

jf

c

c

b

b

a

afo R

VR

R

V

R

V

R

VRV

+

Rf

Va

VoRb

Ra

RcVb

Vc

Page 17: OPAMP PPT

Non-ideal case (Inverting Amplifier)

+

~

Rf

Ra

Vin

Vo

3 categories are considering

Close-Loop Voltage Gain Input impedance Output impedance

Equivalent Circuit

Rf

RaVin

Vo

+

+

R RV

-AV

+

AVin

Vin Vout

Zout

~Zin

Practical op-amp

Page 18: OPAMP PPT

Close-Loop Gain

Rf

RaVin

Vo

+

+

R R

-AV

Ra Rf

R

V

V

Vin Vo

Applied KCL at V– terminal,

0

f

o

a

in

R

VV

R

V

R

VV

By using the open loop gain,

AVVo

0f

o

f

oo

a

o

a

in

AR

V

R

V

AR

V

AR

V

R

V

fa

aafafo

a

in

RRAR

RARRRRRRRV

R

V

The Close-Loop Gain, Av

RARRRRRRR

RAR

V

VA

aafaf

f

in

ov

Page 19: OPAMP PPT

Close-Loop GainWhen the open loop gain is very large, the above equation become,

a

fv R

RA

~

Note : The close-loop gain now reduce to the same form as an ideal case

Page 20: OPAMP PPT

Input Impedance

Rf

Ra

Vin Vo

+

+

R

-AV

R'

RV

Rf

+

R

-AV

if

V

Input Impedance can be regarded as,RRRR ain //

where R is the equivalent impedance of the red box circuit, that is

fi

VR

However, with the below circuit,

A

RR

i

VR

RRiAVV

of

f

off

1

)()(

Page 21: OPAMP PPT

Input Impedance

Finally, we find the input impedance as,1

11

of

ain RR

A

RRR

RARR

RRRRR

of

ofain )1(

)(

Since, RARR of )1( , Rin become,

)1(

)(~

A

RRRR of

ain

Again with )1( ARR of

ain RR ~

Note: The op-amp can provide an impedance isolated from input to output

Page 22: OPAMP PPT

Output Impedance

Only source-free output impedance would be considered, i.e. Vi is assumed to be 0 Rf

Ra

Vo

+

R

-AV

R

V

io

V

V

Rf

Ra R+

R

-AV

V

i2 i1

(a) (b)

Firstly, with figure (a),

ofafa

ao

af

a VRRRRRR

RRVV

RRR

RRV

//

//

By using KCL, io = i1+ i2

o

o

faf

oo R

AVV

RRR

Vi

)(

//

By substitute the equation from Fig. (a),

RRARRRRRRR

RRRRRRR

i

V

R

afafao

fafao

o

o

out

)1())(1(

)(

is impedance,output The

R and A comparably large,

a

faoout AR

RRRR

)(~

Page 23: OPAMP PPT
Page 24: OPAMP PPT