op tim ization 1

Upload: chrissbans

Post on 03-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Op Tim Ization 1

    1/31

    InstitutInstitut TeknologiTeknologi BandungBandung, Indonesia, Indonesia

    FakultasFakultas TeknologiTeknologi IndustriIndustri -- DepartemenDepartemen TeknikTeknikKimiaKimia

    3030 MarchMarch 2010 in2010 in BandungBandung

    ADVANCED COGENERATION SYSTEMSADVANCED COGENERATION SYSTEMS --

    A DESALINATIONA DESALINATION--POWER PLANTPOWER PLANT--CONCEPTCONCEPT

    Dr.Dr.--Ing. Claudia WernerIng. Claudia Werner

    Technische UniversitTechnische Universitt Berlin, Germanyt Berlin, Germany

    Fachgebiet

    Anlagen- undSicherheitstechnik

    Fachgebiet

    Anlagen- undSicherheitstechnik

  • 7/28/2019 Op Tim Ization 1

    2/31

    Dr.-Ing. Claudia Werner

    CONTENT

    1. Introduction

    2. State of the Art of Desalination/Electricity Production

    3. Combination - Desalination Plant /CCGT Plant

    4. Recent Research - Thermoeconomics and Optimisation Approaches

    5. Simulation Process

    6. Results of the Simulation Process

    7. Conclusion and Outlook

    8. Acknowledgement

  • 7/28/2019 Op Tim Ization 1

    3/31

    Cogeneration is the simultaneous production of heat and power in a

    single thermodynamic process

    Cogeneration systems such as CCGT power plants or block heat andpower plants are available on the market

    Application is motivated by different issues of climate protection

    Advanced cogeneration systems:

    - Combined production of

    Electricity/District Cooling

    - Combined production of

    Electricity/Chemicals

    - Combined production of

    Electricity/Fresh Water

    Dr.-Ing. Claudia Werner

    1. INTRODUCTION - Cogeneration Systems

    Source: http://www.vattenfall.de, 2010.

  • 7/28/2019 Op Tim Ization 1

    4/31

    1. INTRODUCTION - Water Supply/Water Withdrawal

    Dr.-Ing. Claudia Werner

    Increasing world water withdrawals since 1900

    Source: http://www.worldwatercouncil.org, 2010.

  • 7/28/2019 Op Tim Ization 1

    5/31

    Dr.-Ing. Claudia Werner

    1. INTRODUCTION - Withdrawal to Availability Ratio

    Source: Konishi,T. Global Water Issues and Nuclear Seawater Desalination, 2010.

  • 7/28/2019 Op Tim Ization 1

    6/31

    18,000 island, 6,000 inhabited

    by 215 million people

    endowed with 5,590 riversflowing over 5,500 km/year

    of water

    annual amount of precipitation in the range of 1,000 mm to 5,000 mm

    fresh water supply by shallow water wells and deep water ground

    surface

    annual water resources in Indonesia: 1,690 x 10 m/km or16.8 x 10 m/capita

    intrusions of seawater detected in Jakarta, Medan, Semarang, Surabayaand Ujung Pandang

    Dr.-Ing. Claudia Werner

    1. INTRODUCTION - Situation in Indonesia

    Source: www.weltkarte.com, 2010 .

  • 7/28/2019 Op Tim Ization 1

    7/31

    Dr.-Ing. Claudia Werner

    1. INTRODUCTION - Water Resource and Water Demand

    358,813156,8503,221,000Indonesia

    1,886589981,000Mollucas+Papua

    23,0938,2041,008,000Borneo

    49,58325,298738,000Sumatra

    77,30525,555247,000Celebes

    42,27413,82760,000Lesser Sunda

    164,67283,378187,000Java

    20152000

    (mill. m/year)

    (mill. m/year)

    Water DemandWater ResourceIsland(s)

    Source: Sunaryo, G. R. Prospect on Desalination and other non-electric Applications of Nuclear Energy in Indonesia,

    2010.

  • 7/28/2019 Op Tim Ization 1

    8/31

    Thermal Processes

    - Multi Effect Distillation (MED)

    - Multi Stage Flash (MSF)- Thermal Vapor Compression (TVC)

    Non-Thermal Processes

    - Reverse Osmosis (RO)- Mechanical Vapor Compression (MVC)

    Desalination Projects in Indonesia

    - Fossil Desalination Projects (Pulau Seribu, Sulawesi)

    - Nuclear Desalination Projects (Madura Island)

    - Renewable Desalination Projects (Cituis)

    Thermal Processes

    - Multi Effect Distillation (MED)

    - Multi Stage Flash (MSF)- Thermal Vapor Compression (TVC)

    Non-Thermal Processes

    - Reverse Osmosis (RO)- Mechanical Vapor Compression (MVC)

    Desalination Projects in Indonesia

    - Fossil Desalination Projects (Pulau Seribu, Sulawesi)

    - Nuclear Desalination Projects (Madura Island)

    - Renewable Desalination Projects (Cituis)

    1. INTRODUCTION - Desalination Processes and Projects

    Dr.-Ing. Claudia Werner

    Source: Konishi,T. Global Water Issues and Nuclear Seawater Desalination, 2010.

  • 7/28/2019 Op Tim Ization 1

    9/31

    2. STATE OF THE ART - Desalination Plants

    Dr.-Ing. Claudia Werner

    Multi Effect Distillation (MED)

    Typical capacity: 500 - 18,000 m/d

    Electric consumption: 1 - 2.5 kWh/m

    Heat consumption: 150 - 260 MJ/m

    Product salinity: < 10 ppm TDS

    Facility: Telde & Las Palmas -Gran Canaria

    Multi Effect Distillation ProcessSource: http://www.ide-tech.com, 2009.

  • 7/28/2019 Op Tim Ization 1

    10/31

    2. STATE OF THE ART - Desalination Plants

    Dr.-Ing. Claudia Werner

    feed

    product

    sole

    finalcondenser

    stage 1

    steam

    stage 2 stage 3

    condensate

    steamfromCCGT

    steam toCCGT

    sole

    feed

    product

    sole

    finalcondenser

    stage 1

    steam

    stage 2 stage 3

    condensate

    steamfromCCGT

    steam toCCGT

    p1 > p2 > p3T1 > T2 > T3

    H. Mller-Holst: Mehrfacheffekt-Feucht-

    luftdestillation bei Umgebungsdruck, 2002.

  • 7/28/2019 Op Tim Ization 1

    11/31

    2. STATE OF THE ART - Desalination Plants

    Dr.-Ing. Claudia Werner

    Reverse Osmosis (RO)

    Typical capacity: 1 - 10,900 m/dElectric consumption: 4 - 9 kWh/m

    Product salinity: < 500 ppm TDS

    product

    concentrate

    feed

    HP PUMP

    pretreat-ment

    posttreat-ment

    H. Mller-Holst: Mehrfacheffekt-Feuchtluftdestillation bei Umgebungsdruck, 2002.

  • 7/28/2019 Op Tim Ization 1

    12/31

    2. STATE OF THE ART - Hybrid Desalination Plants

    Dr.-Ing. Claudia Werner

    Increased flexibility in desalination plant management

    Economic aspects of hybrid desalination plants

    Modulation of the Power-to-Water-Ratio (PWR) as required

    MEDMED--MSFMSFMEDMED--MSFMSF--VCVCMEDMED--VCVCMEDMED--RORO

    ThermalThermal ratioratio of hybrid MEDof hybrid MED plantsplants

    Figure: Hybrid desalination plants based on MED according to the thermal ratio

  • 7/28/2019 Op Tim Ization 1

    13/31

    2. STATE OF THE ART - Hybrid Desalination Plants

    Dr.-Ing. Claudia Werner

    MED/RO in parallel connection

    - independent operation of the

    desalination units (MED/RO)

    - complete sharing of the energy

    supply, the water pre- and post-treatment as well as the product

    and sole removal facilities

    - examples (parallel connection):

    Jubail (Saudi Arabia)

    Madina-Yanbu (Saudi Arabia)

    common

    intake

    MED plant

    RO plant

    outfall

    product

    Source: M. A. Helal, et al.: Optimal design of hybrid

    RO/MSF desalination plant, 2003.

  • 7/28/2019 Op Tim Ization 1

    14/31

    2. STATE OF THE ART - Hybrid Desalination Plants

    electric power requirement

    (MED/RO)1.3 kWh/m / 6.5 kWh/m(3)

    steam recirculation (MED)66 t/h / 1.1 bar / 102 C(2)steam requirement (MED)66 t/h / 1.1 bar / 157 C(1)

    Dr.-Ing. Claudia Werner

    product

    water

    feed

    (seawater)

    Hybrid desalination plant

    MED Plant

    A2

    RO Plant

    A1 A3

    sole

    TotalTotal desalinationdesalination capacitycapacity = 2 x 17,500 m= 2 x 17,500 m/d/d

    MEDMED capacitycapacity/ RO/ RO capacitycapacity = 1= 1 :: 11

  • 7/28/2019 Op Tim Ization 1

    15/31

    2. STATE OF THE ART - Electricity Production (750 MW)

    Dr.-Ing. Claudia Werner

    CCGT Seabank Power Station -

    Electric base and mid-load supply

    Source: Kraftwerksschule Essen e.V.

  • 7/28/2019 Op Tim Ization 1

    16/31

    low pressure parameter36.2 t/h / 4.8 bar / 235 C

    medium pressure parameter52.1 t/h / 30 bar / 320 C

    reheat parameter247.6 t/h / 28.5 bar / 550 C

    high pressure parameter253.3 t/h / 110 bar / 550 C

    Electricity Production: CCGT Seabank Power Station

    Triple-pressure process and single reheat

    CCGT Power Station on natural gas basis

    Electricity yield: 57.8 %

    Dr.-Ing. Claudia Werner

  • 7/28/2019 Op Tim Ization 1

    17/31

    3. COMBINATION - Desalination plant /CCGT plant

    Dr.-Ing. Claudia Werner

    flue gas

    product

    water

    feed

    (seawater)

    CCGT power plantair

    natural gas gas turbines HRSGsteam

    turbines

    Hybrid desalination plant

    MED Plant

    A2

    RO Plant

    A1 A3

    sole

    electric

    power

    electric power requirement

    (MED/RO)1.3 kWh/m / 6.5 kWh/m(3)

    steam recirculation (MED)66 t/h / 1.1 bar / 102 C(2)

    steam requirement (MED)66 t/h / 1.1 bar / 157 C(1)

  • 7/28/2019 Op Tim Ization 1

    18/31

    Dr.-Ing. Claudia Werner

    Interfaces Desalination Plant - CCGT Power Station

    Interface Desalination PlantInterface Desalination PlantInterfaces Desalination PlantInterfaces Desalination Plant

  • 7/28/2019 Op Tim Ization 1

    19/31

    4. RECENT RESEARCH -

    Aspects of Thermoeconomics

    component k

    in,k,nC&

    in,k,2C&

    OMk

    CIkk ZZZ

    &&& +=

    1

    out,k,2C&

    out,k,1C&

    2

    1

    out,k,mC& mn

    2

    in,k,1C&

    Dr.-Ing. Claudia Werner

    jjjjjj emcEcC ==&&

    ( ) ( )==

    =++

    m

    joutkjj

    OMk

    CIk

    n

    jinkjj

    EcZZEc

    1,

    1,

    &&&&

    Source: A. Bejan, et al.: Thermal design and optimization, 1996

  • 7/28/2019 Op Tim Ization 1

    20/31

    ED/ED,max in %

    (Z/ED)/(Z/ED

    )maxin%

    mediumlow hi h

    lo

    w

    mediu

    m

    high

    4. RECENT RESEARCH -

    Optimisation Approach according to Ogriseck/Meyer

    .

    .

    .

    .

    Dr.-Ing. Claudia Werner

    An increase of the capital cost of

    these components is recommended

    A decrease of

    the capital cost

    of these

    components is

    recommended

  • 7/28/2019 Op Tim Ization 1

    21/31

    4. RECENT RESEARCH -

    Optimisation Approach according to Scheffler

    .

    .

    .

    .

    Dr.-Ing. Claudia Werner

    Direction and extent

    specifications for the inputparameter variations within

    the optimisation process

    Example of an isolineillustration to describe the

    nonlinear correlation of the

    input parameters

    (x1, x2 - cp. figure)

    Source: E. Scheffler: Statistische Versuchsplanung

    und -auswertung, 1997.

  • 7/28/2019 Op Tim Ization 1

    22/31

    5. SIMULATION/OPTIMISATION PROCESS

    Combination of the parameters of both subsystems

    Stationary nominal operation of the cogeneration system

    Simulation of the energy supply of the hybrid desalination plant

    on the basis of GE Energy - GateCycle

    Thermoeconomic analyses on the basis GATEX, MATLAB and

    Microsoft Excel

    SOFTWARE APPLICATIONS:

    Dr.-Ing. Claudia Werner

  • 7/28/2019 Op Tim Ization 1

    23/31

    5. SIMULATION PROCESS

    Dr.-Ing. Claudia Werner

    Electricity cost: 4.32 ct/kWh Water cost: 2.08 EUR/m

    0

    33

    67

    100

    0 33 67 100

    ED/ED,max in %

    (Zk/ED

    )/(Zk/ED)maxin%

    mediumlow high

    low

    medium

    high

    CMB1/CMB2

    HPSHT3/HPSH23

    PUMP2

    PUMP3MPECO/MPECO2ST2

    ST1

    PUMP1

    MPZHT2/MPZH22

  • 7/28/2019 Op Tim Ization 1

    24/31

    6. RESULTS OF THE SIMULATION PROCESS

    Dr.-Ing. Claudia Werner

    100 C 140 C

    1220 C 1220 C

    - 0.22 %

    0.00 %

    Exergy

    efficiency

    - 0.03 %

    0.00 %

    Electricity

    cost

    - 0.07 %

    0.00 %

    CMB1/CMB2

    Fuel preheating

    Outlet Temperature

    Water

    cost

  • 7/28/2019 Op Tim Ization 1

    25/31

    Dr.-Ing. Claudia Werner

    - 0.01 %

    0.00 %

    0.00 %

    0.00 %

    0.00 %

    0.00 %

    - 0.02 %

    0.00 %

    - 0.02 %

    85.0 % 80.5 %

    85.0 % 85.0 %

    85.0 % 83.0 %

    PUMP1

    PUMP2

    PUMP3Isentropic efficiency

    25.3 K 54.3 K9.8 K 67.8 K

    33.9 K 81.9 K

    85.0 % 82.0 %

    89.0 % 87.5 %

    100 C 140 C

    1220 C 1220 C

    - 0.10 % 0.00 %

    - 1.31 %

    - 0.20 %

    - 0.12 %

    - 0.22 %

    0.00 %

    Exergy

    efficiency

    - 0.58 %- 0.43 %

    - 1.01 %

    - 0.03 %

    - 0.03 %

    - 0.03 %

    0.00 %

    Electricity

    cost

    - 0.07 %

    0.00 %

    CMB1/CMB2

    Fuel preheating

    Outlet Temperature

    - 0.04 %

    - 0.01 %

    ST1

    ST2

    Isentropic efficiency

    - 0.34 %- 0.37 %

    - 0.41 %

    HPSHT3/HPSH23MPECO/MPECO2

    MPZHT2/MPZHT22Temperature difference

    Water

    cost

    6. RESULTS OF THE SIMULATION PROCESS

  • 7/28/2019 Op Tim Ization 1

    26/31

    6. RESULTS OF THE SIMULATION PROCESS

    Dr.-Ing. Claudia Werner

    Electricity cost: 4.23 ct/kWh Water cost: 2.05 EUR/m

    0

    33

    67

    100

    0 33 67 100ED/ED,max in %

    (Zk/ED)/(Zk/ED)maxin%

    prior to optimisation

    after optimistion

    mediumlow high

    low

    medium

    high

  • 7/28/2019 Op Tim Ization 1

    27/31

    Application of combined methods including thermoeconomic and

    statistical approaches

    Investigation of further cogeneration concepts, e. g. combined

    production of hydrogen and electricity

    7. CONCLUSION AND OUTLOOK

    Each component is characterised by specific dimensioning parameters,

    which qualify the relative exergy destruction and the specific cost ratios

    According to the optimisation approach by Ogriseck/Meyer differentcomponents are determined to affect the exergy or cost efficiency

    Modifications investigated result in decreased product cost

    (electricity/water) and decreased exergy efficiency

    Dr.-Ing. Claudia Werner

  • 7/28/2019 Op Tim Ization 1

    28/31

    The author gratefully acknowledge the support of the Kraftwerksschule

    Essen e.V. and Siemens AG.

    Contact Data: Dr.-Ing. Claudia Werner

    Technische Universitt Berlin

    Institut fr Prozess- und Verfahrenstechnik

    Fachgebiet: Anlagen- und Sicherheitstechnik (TK-01)Strae des 17. Juni 135

    D-10623 Berlin

    http://www.ast.tu-berlin.de/

    [email protected]

    Anlagen- undSicherheitstechnik

  • 7/28/2019 Op Tim Ization 1

    29/31

    Dr.-Ing. Claudia Werner

    Sensitivity Analyses - Product Cost (Electricity/Water)

    Variation of the component parameters 5 % (prior to optimisation)

    -0.5

    0.0

    0.5

    1.0

    1.5

    -5 -2.5 0 2.5 5

    parameter variation in %

    costvariationin

    CMB1/CMB2 - Fuel preheating CMB1/CMB2 - Outlet temperature

    PUMP1 - Isentropic efficiency PUMP2 - Isentropic efficiency

    PUMP3 - Isentropic efficiency ST1 - Isentropic efficiency

    ST2 - Isentropic efficiency HPSHT3/HPSH23 - Temperature difference

    MPECO/MPECO2 - Temperature difference MPZHT2/MPZH22 - Temperature difference

    -0.5

    0.0

    0.5

    1.0

    1.5

    -5 -2.5 0 2.5 5

    parameter variation in %

    costvariationin

    Electricity Water (MED/RO)

  • 7/28/2019 Op Tim Ization 1

    30/31

    Dr.-Ing. Claudia Werner

    Economic Aspects of Hybrid Desalination Plants (MED:RO)

    Water cost in EUR/m related to the ratio of MED: RO and

    the total desalination capacity

    0.0 0.1 0.3 0.4 0.7 1.0 1.5 2.3 4.0 9.0

    13500

    20250

    27000

    33750

    40500

    47250

    54000

    60750

    67500

    MED:RO-Verhltnis

    total

    desalinationcapacityinm/

    1.00-1.25 1.25-1.50

    1.50-1.75 1.75-2.00

    2.00-2.25 2.25-2.50

    2.50-2.75 2.75-3.00

    MED : RO

    Totaldes

    alinationcapacity

    inm/d

  • 7/28/2019 Op Tim Ization 1

    31/31

    Dr.-Ing. Claudia Werner

    10.32 EUR/temission certificate (CO2 )

    2.63 EUR/GJfuel cost

    1.0 %fuel escalation

    0.7 %general escalation

    2.3 %inflation12 %interest rate

    7446 hannual utilisation period

    30 alife cycle

    01/2007reference date

    Economic Data of the Desalination Plant/CCGT Plant (Selection)

    Desalination data according to the publications of Wangnick Consul-

    ting GmbH, IDE Technologies Ltd. and A. M. Helal et al.