op-amp circuits: part 5sequel/ee101/mc_opamp_5.pdf · since the op amp has a high input resistance,...

132
Op-Amp Circuits: Part 5 M. B. Patil [email protected] www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay M. B. Patil, IIT Bombay

Upload: others

Post on 02-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Op-Amp Circuits: Part 5

M. B. [email protected]

www.ee.iitb.ac.in/~sequel

Department of Electrical EngineeringIndian Institute of Technology Bombay

M. B. Patil, IIT Bombay

Page 2: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: inverting amplifier

Vi

RL

R2

R1

Vo

V− = ViR2

R1 + R2

+ VoR1

R1 + R2

(2)

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

Eq. 2Eq. 2 Eq. 1

Vi ↑ → V− ↑ → Vo ↓ → V− ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = ViR2

R1 + R2+ Vo

R1

R1 + R2(3)

Eq. 3Eq. 3 Eq. 1

Vi ↑ → V+ ↑ → Vo ↑ → V+ ↑

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 3: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: inverting amplifier

Vi

RL

R2

R1

Vo

V− = ViR2

R1 + R2

+ VoR1

R1 + R2

(2)

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

Eq. 2Eq. 2 Eq. 1

Vi ↑ → V− ↑ → Vo ↓ → V− ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = ViR2

R1 + R2+ Vo

R1

R1 + R2(3)

Eq. 3Eq. 3 Eq. 1

Vi ↑ → V+ ↑ → Vo ↑ → V+ ↑

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 4: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: inverting amplifier

Vi

RL

R2

R1

Vo

V− = ViR2

R1 + R2

+ VoR1

R1 + R2

(2)

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

Eq. 2Eq. 2 Eq. 1

Vi ↑ → V− ↑ → Vo ↓ → V− ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = ViR2

R1 + R2+ Vo

R1

R1 + R2(3)

Eq. 3Eq. 3 Eq. 1

Vi ↑ → V+ ↑ → Vo ↑ → V+ ↑

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 5: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: inverting amplifier

Vi

RL

R2

R1

Vo

V− = ViR2

R1 + R2

+ VoR1

R1 + R2

(2)

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

Eq. 2Eq. 2 Eq. 1

Vi ↑ → V− ↑ → Vo ↓ → V− ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = ViR2

R1 + R2+ Vo

R1

R1 + R2(3)

Eq. 3Eq. 3 Eq. 1

Vi ↑ → V+ ↑ → Vo ↑ → V+ ↑

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 6: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: inverting amplifier

Vi

RL

R2

R1

Vo

V− = ViR2

R1 + R2

+ VoR1

R1 + R2

(2)

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

Eq. 2Eq. 2 Eq. 1

Vi ↑ → V− ↑ → Vo ↓ → V− ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = ViR2

R1 + R2+ Vo

R1

R1 + R2(3)

Eq. 3Eq. 3 Eq. 1

Vi ↑ → V+ ↑ → Vo ↑ → V+ ↑

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 7: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: inverting amplifier

Vi

RL

R2

R1

Vo

V− = ViR2

R1 + R2

+ VoR1

R1 + R2

(2)

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

Eq. 2Eq. 2 Eq. 1

Vi ↑ → V− ↑ → Vo ↓ → V− ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = ViR2

R1 + R2+ Vo

R1

R1 + R2(3)

Eq. 3Eq. 3 Eq. 1

Vi ↑ → V+ ↑ → Vo ↑ → V+ ↑

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 8: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: inverting amplifier

Vi

RL

R2

R1

Vo

V− = ViR2

R1 + R2

+ VoR1

R1 + R2

(2)

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

Eq. 2Eq. 2 Eq. 1

Vi ↑ → V− ↑ → Vo ↓ → V− ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = ViR2

R1 + R2+ Vo

R1

R1 + R2(3)

Eq. 3Eq. 3 Eq. 1

Vi ↑ → V+ ↑ → Vo ↑ → V+ ↑

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 9: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: non-inverting amplifier

Vi

RL

R2

R1

Vo

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

V− = VoR1

R1 + R2

(2)

Eq. 1Eq. 1 Eq. 2

Vi ↑ → Vo ↑ → V− ↑ → Vo ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = VoR1

R1 + R2(3)

Eq. 1Eq. 1 Eq. 3

Vi ↑ → Vo ↓ → V+ ↓ → Vo ↓

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 10: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: non-inverting amplifier

Vi

RL

R2

R1

Vo

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

V− = VoR1

R1 + R2

(2)

Eq. 1Eq. 1 Eq. 2

Vi ↑ → Vo ↑ → V− ↑ → Vo ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = VoR1

R1 + R2(3)

Eq. 1Eq. 1 Eq. 3

Vi ↑ → Vo ↓ → V+ ↓ → Vo ↓

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 11: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: non-inverting amplifier

Vi

RL

R2

R1

Vo

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

V− = VoR1

R1 + R2

(2)

Eq. 1Eq. 1 Eq. 2

Vi ↑ → Vo ↑ → V− ↑ → Vo ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = VoR1

R1 + R2(3)

Eq. 1Eq. 1 Eq. 3

Vi ↑ → Vo ↓ → V+ ↓ → Vo ↓

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 12: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: non-inverting amplifier

Vi

RL

R2

R1

Vo

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

V− = VoR1

R1 + R2

(2)

Eq. 1Eq. 1 Eq. 2

Vi ↑ → Vo ↑ → V− ↑ → Vo ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = VoR1

R1 + R2(3)

Eq. 1Eq. 1 Eq. 3

Vi ↑ → Vo ↓ → V+ ↓ → Vo ↓

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 13: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: non-inverting amplifier

Vi

RL

R2

R1

Vo

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

V− = VoR1

R1 + R2

(2)

Eq. 1Eq. 1 Eq. 2

Vi ↑ → Vo ↑ → V− ↑ → Vo ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = VoR1

R1 + R2(3)

Eq. 1Eq. 1 Eq. 3

Vi ↑ → Vo ↓ → V+ ↓ → Vo ↓

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 14: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: non-inverting amplifier

Vi

RL

R2

R1

Vo

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

V− = VoR1

R1 + R2

(2)

Eq. 1Eq. 1 Eq. 2

Vi ↑ → Vo ↑ → V− ↑ → Vo ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = VoR1

R1 + R2(3)

Eq. 1Eq. 1 Eq. 3

Vi ↑ → Vo ↓ → V+ ↓ → Vo ↓

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 15: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback: non-inverting amplifier

Vi

RL

R2

R1

Vo

Since the Op Amp has a high input resistance,

Vo = AV(V+ − V−) (1)

iR1 = iR2, and we get,

V− = VoR1

R1 + R2

(2)

Eq. 1Eq. 1 Eq. 2

Vi ↑ → Vo ↑ → V− ↑ → Vo ↓

The circuit reaches a stable equilibrium.

Vi

RL

R2

R1

Vo

V+ = VoR1

R1 + R2(3)

Eq. 1Eq. 1 Eq. 3

Vi ↑ → Vo ↓ → V+ ↓ → Vo ↓

We now have a positive feedback situation.

As a result, Vo rises (or falls) indefinitely,

limited finally by saturation.

M. B. Patil, IIT Bombay

Page 16: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback

Vi

Vi

RL RL

R2 R2

R1 R1Vo Vo

Inverting amplifier with +←→ − Non-inverting amplifier with +←→ −

* Because of positive feedback, both of these circuits are unstable.

* The output at any time is only limited by saturation of the op-amp, i.e., Vo = ±Vsat.

* Of what use is a circuit that is stuck at Vo = ±Vsat? It turns out that these circuits are actually useful!

Let us see how.

M. B. Patil, IIT Bombay

Page 17: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback

Vi

Vi

RL RL

R2 R2

R1 R1Vo Vo

Inverting amplifier with +←→ − Non-inverting amplifier with +←→ −

* Because of positive feedback, both of these circuits are unstable.

* The output at any time is only limited by saturation of the op-amp, i.e., Vo = ±Vsat.

* Of what use is a circuit that is stuck at Vo = ±Vsat? It turns out that these circuits are actually useful!

Let us see how.

M. B. Patil, IIT Bombay

Page 18: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback

Vi

Vi

RL RL

R2 R2

R1 R1Vo Vo

Inverting amplifier with +←→ − Non-inverting amplifier with +←→ −

* Because of positive feedback, both of these circuits are unstable.

* The output at any time is only limited by saturation of the op-amp, i.e., Vo = ±Vsat.

* Of what use is a circuit that is stuck at Vo = ±Vsat? It turns out that these circuits are actually useful!

Let us see how.

M. B. Patil, IIT Bombay

Page 19: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Feedback

Vi

Vi

RL RL

R2 R2

R1 R1Vo Vo

Inverting amplifier with +←→ − Non-inverting amplifier with +←→ −

* Because of positive feedback, both of these circuits are unstable.

* The output at any time is only limited by saturation of the op-amp, i.e., Vo = ±Vsat.

* Of what use is a circuit that is stuck at Vo = ±Vsat? It turns out that these circuits are actually useful!

Let us see how.

M. B. Patil, IIT Bombay

Page 20: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

10

5

−5

0

−10

−5 0

10

5

−5

0

−10

−5 0 5 10−10

Vsat

V+

Vo −Vsat

Vi (V)

Because of positive feedback, Vo can only be +Vsat (if V+ > V−) or −Vsat (if V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = +Vsat = +10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k10 V = 1 V .

(V+ − V−) = (1− 5) = −4 V→ Vo = −Vsat .

This is inconsistent with our assumption (Vo = +Vsat).

Case (ii): Vo = −Vsat = −10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k× (−10 V) = −1 V .

(V+ − V−) = (−1− 5) = −6 V→ Vo = −Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = −Vsat.

M. B. Patil, IIT Bombay

Page 21: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

10

5

−5

0

−10

−5 0

10

5

−5

0

−10

−5 0 5 10−10

Vsat

V+

Vo −Vsat

Vi (V)

Because of positive feedback, Vo can only be +Vsat (if V+ > V−) or −Vsat (if V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = +Vsat = +10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k10 V = 1 V .

(V+ − V−) = (1− 5) = −4 V→ Vo = −Vsat .

This is inconsistent with our assumption (Vo = +Vsat).

Case (ii): Vo = −Vsat = −10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k× (−10 V) = −1 V .

(V+ − V−) = (−1− 5) = −6 V→ Vo = −Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = −Vsat.

M. B. Patil, IIT Bombay

Page 22: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

10

5

−5

0

−10

−5 0

10

5

−5

0

−10

−5 0 5 10−10

Vsat

V+

Vo −Vsat

Vi (V)

Because of positive feedback, Vo can only be +Vsat (if V+ > V−) or −Vsat (if V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = +Vsat = +10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k10 V = 1 V .

(V+ − V−) = (1− 5) = −4 V→ Vo = −Vsat .

This is inconsistent with our assumption (Vo = +Vsat).

Case (ii): Vo = −Vsat = −10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k× (−10 V) = −1 V .

(V+ − V−) = (−1− 5) = −6 V→ Vo = −Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = −Vsat.

M. B. Patil, IIT Bombay

Page 23: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

10

5

−5

0

−10

−5 0

10

5

−5

0

−10

−5 0 5 10−10

Vsat

V+

Vo −Vsat

Vi (V)

Because of positive feedback, Vo can only be +Vsat (if V+ > V−) or −Vsat (if V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = +Vsat = +10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k10 V = 1 V .

(V+ − V−) = (1− 5) = −4 V→ Vo = −Vsat .

This is inconsistent with our assumption (Vo = +Vsat).

Case (ii): Vo = −Vsat = −10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k× (−10 V) = −1 V .

(V+ − V−) = (−1− 5) = −6 V→ Vo = −Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = −Vsat.

M. B. Patil, IIT Bombay

Page 24: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

10

5

−5

0

−10

−5 0

10

5

−5

0

−10

−5 0 5 10−10

Vsat

V+

Vo −Vsat

Vi (V)

Because of positive feedback, Vo can only be +Vsat (if V+ > V−) or −Vsat (if V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = +Vsat = +10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k10 V = 1 V .

(V+ − V−) = (1− 5) = −4 V→ Vo = −Vsat .

This is inconsistent with our assumption (Vo = +Vsat).

Case (ii): Vo = −Vsat = −10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k× (−10 V) = −1 V .

(V+ − V−) = (−1− 5) = −6 V→ Vo = −Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = −Vsat.

M. B. Patil, IIT Bombay

Page 25: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

10

5

−5

0

−10

−5 0

10

5

−5

0

−10

−5 0 5 10−10

Vsat

V+

Vo −Vsat

Vi (V)

Because of positive feedback, Vo can only be +Vsat (if V+ > V−) or −Vsat (if V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = +Vsat = +10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k10 V = 1 V .

(V+ − V−) = (1− 5) = −4 V→ Vo = −Vsat .

This is inconsistent with our assumption (Vo = +Vsat).

Case (ii): Vo = −Vsat = −10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k× (−10 V) = −1 V .

(V+ − V−) = (−1− 5) = −6 V→ Vo = −Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = −Vsat.

M. B. Patil, IIT Bombay

Page 26: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

10

5

−5

0

−10

−5 0

10

5

−5

0

−10

−5 0 5 10−10

Vsat

V+

Vo −Vsat

Vi (V)

Because of positive feedback, Vo can only be +Vsat (if V+ > V−) or −Vsat (if V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = +Vsat = +10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k10 V = 1 V .

(V+ − V−) = (1− 5) = −4 V→ Vo = −Vsat .

This is inconsistent with our assumption (Vo = +Vsat).

Case (ii): Vo = −Vsat = −10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k× (−10 V) = −1 V .

(V+ − V−) = (−1− 5) = −6 V→ Vo = −Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = −Vsat.

M. B. Patil, IIT Bombay

Page 27: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

10

5

−5

0

−10

−5 0

10

5

−5

0

−10

−5 0 5 10−10

Vsat

V+

Vo −Vsat

Vi (V)

Because of positive feedback, Vo can only be +Vsat (if V+ > V−) or −Vsat (if V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = +Vsat = +10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k10 V = 1 V .

(V+ − V−) = (1− 5) = −4 V→ Vo = −Vsat .

This is inconsistent with our assumption (Vo = +Vsat).

Case (ii): Vo = −Vsat = −10 V→ V+ =R1

R1 + R2Vo =

1 k

1 k + 9 k× (−10 V) = −1 V .

(V+ − V−) = (−1− 5) = −6 V→ Vo = −Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = −Vsat.M. B. Patil, IIT Bombay

Page 28: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 29: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 30: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 31: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 32: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 33: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 34: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 35: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 36: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 37: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 38: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 39: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R1

R1 + R2Vo =

1 k

10 k(−Vsat) = −1 V .

As long as Vi = V− > V+ = −1 V , Vo remains at −Vsat.

When Vi < V+ = −1 V , Vo changes sign, i.e., Vo = +Vsat.

V+ now becomesR1

R1 + R2(+Vsat) = +1 V .

Decreasing Vi further makes no difference to Vo (since Vi = V− < V+ = +1 V holds).

Now, the threshold at which Vo flips is Vi = +1 V .

M. B. Patil, IIT Bombay

Page 40: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

VTHVTL

Vsat

−Vsat

* The threshold values (or “tripping points”), VTH and VTL, are given by ±(

R1

R1 + R2

)Vsat.

* The tripping point (whether VTH or VTL) depends on where we are on the Vo axis. In that sense, thecircuit has a memory.

* ∆VT = VTH − VTL is called the “hysteresis width.”

M. B. Patil, IIT Bombay

Page 41: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

VTHVTL

Vsat

−Vsat

* The threshold values (or “tripping points”), VTH and VTL, are given by ±(

R1

R1 + R2

)Vsat.

* The tripping point (whether VTH or VTL) depends on where we are on the Vo axis. In that sense, thecircuit has a memory.

* ∆VT = VTH − VTL is called the “hysteresis width.”

M. B. Patil, IIT Bombay

Page 42: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

VTHVTL

Vsat

−Vsat

* The threshold values (or “tripping points”), VTH and VTL, are given by ±(

R1

R1 + R2

)Vsat.

* The tripping point (whether VTH or VTL) depends on where we are on the Vo axis. In that sense, thecircuit has a memory.

* ∆VT = VTH − VTL is called the “hysteresis width.”

M. B. Patil, IIT Bombay

Page 43: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Inverting Schmitt trigger

10

5

−5

0

−10

−10 −5 0 5 10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

VTHVTL

Vsat

−Vsat

* The threshold values (or “tripping points”), VTH and VTL, are given by ±(

R1

R1 + R2

)Vsat.

* The tripping point (whether VTH or VTL) depends on where we are on the Vo axis. In that sense, thecircuit has a memory.

* ∆VT = VTH − VTL is called the “hysteresis width.”

M. B. Patil, IIT Bombay

Page 44: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

5

0

−5

−10

10

−10 −5 0 5 10

Vi (V)

Vo

V+

Vsat

−Vsat

Because of positive feedback, Vo can only be +Vsat (for V+ > V−) or −Vsat (for V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = −Vsat = −10 V

→ V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 k× 5 +

1 k

10 k× (−10) = 4.5− 1 = 3.5 V .

(V+ − V−) = (3.5− 0) = 3.5 V → Vo = +Vsat .

This is inconsistent with our assumption (Vo = −Vsat).

Case (ii): Vo = +Vsat = +10 V → V+ =9 k

10 k× 5 +

1 k

10 k× 10 = 4.5 + 1 = 5.5 V .

(V+ − V−) = (5.5− 0) = 5.5 V → Vo = +Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = +Vsat.

M. B. Patil, IIT Bombay

Page 45: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

5

0

−5

−10

10

−10 −5 0 5 10

Vi (V)

Vo

V+

Vsat

−Vsat

Because of positive feedback, Vo can only be +Vsat (for V+ > V−) or −Vsat (for V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = −Vsat = −10 V

→ V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 k× 5 +

1 k

10 k× (−10) = 4.5− 1 = 3.5 V .

(V+ − V−) = (3.5− 0) = 3.5 V → Vo = +Vsat .

This is inconsistent with our assumption (Vo = −Vsat).

Case (ii): Vo = +Vsat = +10 V → V+ =9 k

10 k× 5 +

1 k

10 k× 10 = 4.5 + 1 = 5.5 V .

(V+ − V−) = (5.5− 0) = 5.5 V → Vo = +Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = +Vsat.

M. B. Patil, IIT Bombay

Page 46: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

5

0

−5

−10

10

−10 −5 0 5 10

Vi (V)

Vo

V+

Vsat

−Vsat

Because of positive feedback, Vo can only be +Vsat (for V+ > V−) or −Vsat (for V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = −Vsat = −10 V

→ V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 k× 5 +

1 k

10 k× (−10) = 4.5− 1 = 3.5 V .

(V+ − V−) = (3.5− 0) = 3.5 V → Vo = +Vsat .

This is inconsistent with our assumption (Vo = −Vsat).

Case (ii): Vo = +Vsat = +10 V → V+ =9 k

10 k× 5 +

1 k

10 k× 10 = 4.5 + 1 = 5.5 V .

(V+ − V−) = (5.5− 0) = 5.5 V → Vo = +Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = +Vsat.

M. B. Patil, IIT Bombay

Page 47: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

5

0

−5

−10

10

−10 −5 0 5 10

Vi (V)

Vo

V+

Vsat

−Vsat

Because of positive feedback, Vo can only be +Vsat (for V+ > V−) or −Vsat (for V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = −Vsat = −10 V

→ V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 k× 5 +

1 k

10 k× (−10) = 4.5− 1 = 3.5 V .

(V+ − V−) = (3.5− 0) = 3.5 V → Vo = +Vsat .

This is inconsistent with our assumption (Vo = −Vsat).

Case (ii): Vo = +Vsat = +10 V → V+ =9 k

10 k× 5 +

1 k

10 k× 10 = 4.5 + 1 = 5.5 V .

(V+ − V−) = (5.5− 0) = 5.5 V → Vo = +Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = +Vsat.

M. B. Patil, IIT Bombay

Page 48: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

5

0

−5

−10

10

−10 −5 0 5 10

Vi (V)

Vo

V+

Vsat

−Vsat

Because of positive feedback, Vo can only be +Vsat (for V+ > V−) or −Vsat (for V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = −Vsat = −10 V

→ V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 k× 5 +

1 k

10 k× (−10) = 4.5− 1 = 3.5 V .

(V+ − V−) = (3.5− 0) = 3.5 V → Vo = +Vsat .

This is inconsistent with our assumption (Vo = −Vsat).

Case (ii): Vo = +Vsat = +10 V → V+ =9 k

10 k× 5 +

1 k

10 k× 10 = 4.5 + 1 = 5.5 V .

(V+ − V−) = (5.5− 0) = 5.5 V → Vo = +Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = +Vsat.

M. B. Patil, IIT Bombay

Page 49: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

5

0

−5

−10

10

−10 −5 0 5 10

Vi (V)

Vo

V+

Vsat

−Vsat

Because of positive feedback, Vo can only be +Vsat (for V+ > V−) or −Vsat (for V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = −Vsat = −10 V

→ V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 k× 5 +

1 k

10 k× (−10) = 4.5− 1 = 3.5 V .

(V+ − V−) = (3.5− 0) = 3.5 V → Vo = +Vsat .

This is inconsistent with our assumption (Vo = −Vsat).

Case (ii): Vo = +Vsat = +10 V → V+ =9 k

10 k× 5 +

1 k

10 k× 10 = 4.5 + 1 = 5.5 V .

(V+ − V−) = (5.5− 0) = 5.5 V → Vo = +Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = +Vsat.

M. B. Patil, IIT Bombay

Page 50: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

5

0

−5

−10

10

−10 −5 0 5 10

Vi (V)

Vo

V+

Vsat

−Vsat

Because of positive feedback, Vo can only be +Vsat (for V+ > V−) or −Vsat (for V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = −Vsat = −10 V

→ V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 k× 5 +

1 k

10 k× (−10) = 4.5− 1 = 3.5 V .

(V+ − V−) = (3.5− 0) = 3.5 V → Vo = +Vsat .

This is inconsistent with our assumption (Vo = −Vsat).

Case (ii): Vo = +Vsat = +10 V → V+ =9 k

10 k× 5 +

1 k

10 k× 10 = 4.5 + 1 = 5.5 V .

(V+ − V−) = (5.5− 0) = 5.5 V → Vo = +Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = +Vsat.

M. B. Patil, IIT Bombay

Page 51: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

5

0

−5

−10

10

−10 −5 0 5 10

Vi (V)

Vo

V+

Vsat

−Vsat

Because of positive feedback, Vo can only be +Vsat (for V+ > V−) or −Vsat (for V+ < V−).

Consider Vi = 5 V .

Case (i): Vo = −Vsat = −10 V

→ V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 k× 5 +

1 k

10 k× (−10) = 4.5− 1 = 3.5 V .

(V+ − V−) = (3.5− 0) = 3.5 V → Vo = +Vsat .

This is inconsistent with our assumption (Vo = −Vsat).

Case (ii): Vo = +Vsat = +10 V → V+ =9 k

10 k× 5 +

1 k

10 k× 10 = 4.5 + 1 = 5.5 V .

(V+ − V−) = (5.5− 0) = 5.5 V → Vo = +Vsat (consistent)

If we move to the right (increasing Vi ), the same situation applies, i.e., Vo = +Vsat.

M. B. Patil, IIT Bombay

Page 52: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 53: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 54: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 55: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 56: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 57: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 58: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 59: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 60: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 61: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 62: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 63: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

Vi (V)

Vo

V+

Vsat

−Vsat

Consider decreasing values of Vi .

V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi +

1 k

10 kVo .

As long as V+ > 0 V , Vo remains at +Vsat.

When V+ = 0 V , i.e., Vi = −R1

R2Vsat = −

1 k

9 k10 V = −1.11 V , Vo changes sign, i.e., Vo becomes −Vsat.

V+ now follows the equation, V+ =R2

R1 + R2Vi +

R1

R1 + R2Vo =

9 k

10 kVi −

1 k

10 kVsat .

Decreasing Vi further makes no difference to Vo (since V+ remains negative).

Now, the threshold at which Vo flips is V+ = 0, i.e., Vi = +R1

R2Vsat = +1.11 V .

M. B. Patil, IIT Bombay

Page 64: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

VTHVTL

Vi (V)

Vo

−Vsat

Vsat

* The threshold values VTH and VTL are given by ±(R1

R2

)Vsat.

* As in the inverting Schmitt trigger, this circuit has a memory, i.e., the tripping point (whether VTH orVTL) depends on where we are on the Vo axis.

* ∆VT = VTH − VTL is called the “hysteresis width.”

M. B. Patil, IIT Bombay

Page 65: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

VTHVTL

Vi (V)

Vo

−Vsat

Vsat

* The threshold values VTH and VTL are given by ±(R1

R2

)Vsat.

* As in the inverting Schmitt trigger, this circuit has a memory, i.e., the tripping point (whether VTH orVTL) depends on where we are on the Vo axis.

* ∆VT = VTH − VTL is called the “hysteresis width.”

M. B. Patil, IIT Bombay

Page 66: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

VTHVTL

Vi (V)

Vo

−Vsat

Vsat

* The threshold values VTH and VTL are given by ±(R1

R2

)Vsat.

* As in the inverting Schmitt trigger, this circuit has a memory, i.e., the tripping point (whether VTH orVTL) depends on where we are on the Vo axis.

* ∆VT = VTH − VTL is called the “hysteresis width.”

M. B. Patil, IIT Bombay

Page 67: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Non-inverting Schmitt trigger

−10 −5 0 5 10

5

0

−5

−10

10

Vi

RL

R2

R1 Vo

Vsat = 10 V

1 k

9 k

VTHVTL

Vi (V)

Vo

−Vsat

Vsat

* The threshold values VTH and VTL are given by ±(R1

R2

)Vsat.

* As in the inverting Schmitt trigger, this circuit has a memory, i.e., the tripping point (whether VTH orVTL) depends on where we are on the Vo axis.

* ∆VT = VTH − VTL is called the “hysteresis width.”

M. B. Patil, IIT Bombay

Page 68: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt triggers

Non−inverting

Inverting

Vi

Vi

RL

RL

R2

R2

R1

R1

Vo

Vo

Vsat

ViVTH

Vo

VTL

−Vsat

−Vsat

Vo

ViVTHVTL

Vsat

VoVi

VoVi

VTH, VTL = ± R1

R2

Vsat

VTH, VTL = ± R1

R1 + R2Vsat

M. B. Patil, IIT Bombay

Page 69: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

V+

V−

(V+ − V−)

Vo

Vo

−Vsat

+Vsat

An op-amp in the open-loop configuration serves as a comparator because of itshigh gain (∼ 105) in the linear region.

As seen earlier, the width of the linear region, [Vsat − (−Vsat)]/AV , is small (∼ 0.1 mV ),and could be treated as 0.

i.e., if V+ > V−, Vo = +Vsat ,

if V+ < V−, Vo = −Vsat .

M. B. Patil, IIT Bombay

Page 70: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

V+

V−

(V+ − V−)

Vo

Vo

−Vsat

+Vsat

An op-amp in the open-loop configuration serves as a comparator because of itshigh gain (∼ 105) in the linear region.

As seen earlier, the width of the linear region, [Vsat − (−Vsat)]/AV , is small (∼ 0.1 mV ),and could be treated as 0.

i.e., if V+ > V−, Vo = +Vsat ,

if V+ < V−, Vo = −Vsat .

M. B. Patil, IIT Bombay

Page 71: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

V+

V−

(V+ − V−)

Vo

Vo

−Vsat

+Vsat

An op-amp in the open-loop configuration serves as a comparator because of itshigh gain (∼ 105) in the linear region.

As seen earlier, the width of the linear region, [Vsat − (−Vsat)]/AV , is small (∼ 0.1 mV ),and could be treated as 0.

i.e., if V+ > V−, Vo = +Vsat ,

if V+ < V−, Vo = −Vsat .

M. B. Patil, IIT Bombay

Page 72: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

V+

V−

(V+ − V−)

Vo

Vo

−Vsat

+Vsat

An op-amp in the open-loop configuration serves as a comparator because of itshigh gain (∼ 105) in the linear region.

As seen earlier, the width of the linear region, [Vsat − (−Vsat)]/AV , is small (∼ 0.1 mV ),and could be treated as 0.

i.e., if V+ > V−, Vo = +Vsat ,

if V+ < V−, Vo = −Vsat .

M. B. Patil, IIT Bombay

Page 73: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

t

t

Vsat

−Vsat

Vi

Vo

Vo

Vi

A comparator can be used to convert an analog signal into a digital (high/low) signal for further processing withdigital circuits.

In practice, the input (analog) signal can have noise or electromagnetic pick-up superimposed on it. As a result,erroneous operation of the circuit may result.

M. B. Patil, IIT Bombay

Page 74: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

t

t

Vsat

−Vsat

Vi

Vo

Vo

Vi

A comparator can be used to convert an analog signal into a digital (high/low) signal for further processing withdigital circuits.

In practice, the input (analog) signal can have noise or electromagnetic pick-up superimposed on it. As a result,erroneous operation of the circuit may result.

M. B. Patil, IIT Bombay

Page 75: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

t

t

Vsat

−Vsat

Vi

Vo

Vo

Vi

A comparator can be used to convert an analog signal into a digital (high/low) signal for further processing withdigital circuits.

In practice, the input (analog) signal can have noise or electromagnetic pick-up superimposed on it. As a result,erroneous operation of the circuit may result.

M. B. Patil, IIT Bombay

Page 76: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

t

t

original

input

signal

Vsat

−Vsat

Vo

Vi

Vi

Vo

t

t

corrupted

input

signalexpand

t

t

expanded

view

The comparator has produced multiple (spurious) transitions or “bounces,” referred to as “comparator chatter.”

A Schmitt trigger can be used to eliminate the chatter.

M. B. Patil, IIT Bombay

Page 77: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

t

t

original

input

signal

Vsat

−Vsat

Vo

Vi

Vi

Vo

t

t

corrupted

input

signal

expand

t

t

expanded

view

The comparator has produced multiple (spurious) transitions or “bounces,” referred to as “comparator chatter.”

A Schmitt trigger can be used to eliminate the chatter.

M. B. Patil, IIT Bombay

Page 78: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

t

t

original

input

signal

Vsat

−Vsat

Vo

Vi

Vi

Vo

t

t

corrupted

input

signalexpand

t

t

expanded

view

The comparator has produced multiple (spurious) transitions or “bounces,” referred to as “comparator chatter.”

A Schmitt trigger can be used to eliminate the chatter.

M. B. Patil, IIT Bombay

Page 79: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

t

t

original

input

signal

Vsat

−Vsat

Vo

Vi

Vi

Vo

t

t

corrupted

input

signalexpand

t

t

expanded

view

The comparator has produced multiple (spurious) transitions or “bounces,” referred to as “comparator chatter.”

A Schmitt trigger can be used to eliminate the chatter.

M. B. Patil, IIT Bombay

Page 80: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

t

t

original

input

signal

Vsat

−Vsat

Vo

Vi

Vi

Vo

t

t

corrupted

input

signalexpand

t

t

expanded

view

The comparator has produced multiple (spurious) transitions or “bounces,” referred to as “comparator chatter.”

A Schmitt trigger can be used to eliminate the chatter.

M. B. Patil, IIT Bombay

Page 81: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Comparators

t

t

original

input

signal

Vsat

−Vsat

Vo

Vi

Vi

Vo

t

t

corrupted

input

signalexpand

t

t

expanded

view

The comparator has produced multiple (spurious) transitions or “bounces,” referred to as “comparator chatter.”

A Schmitt trigger can be used to eliminate the chatter.M. B. Patil, IIT Bombay

Page 82: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

corrupted

input

signal

t

t

Vi

Vsat

Vo

−Vsat

Vi Vo

expand

expanded

view

t

t

VTH

VTL

Vi

Vo

−Vsat

Vsat

* While going from positive to negative values, Vi needs to cross VTL (and not 0 V ) to cause a change in Vo .

* In the reverse direction (negative to positive), Vi needs to cross VTH .

* The circuit gets rid of spurious transitions, a major advantage over the simple comparator.

* The hysteresis width (VTH − VTL) should be designed to be larger than the spurious excursions riding on Vi .

M. B. Patil, IIT Bombay

Page 83: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

corrupted

input

signal

t

t

Vi

Vsat

Vo

−Vsat

Vi Vo

expand

expanded

view

t

t

VTH

VTL

Vi

Vo

−Vsat

Vsat

* While going from positive to negative values, Vi needs to cross VTL (and not 0 V ) to cause a change in Vo .

* In the reverse direction (negative to positive), Vi needs to cross VTH .

* The circuit gets rid of spurious transitions, a major advantage over the simple comparator.

* The hysteresis width (VTH − VTL) should be designed to be larger than the spurious excursions riding on Vi .

M. B. Patil, IIT Bombay

Page 84: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

corrupted

input

signal

t

t

Vi

Vsat

Vo

−Vsat

Vi Vo

expand

expanded

view

t

t

VTH

VTL

Vi

Vo

−Vsat

Vsat

* While going from positive to negative values, Vi needs to cross VTL (and not 0 V ) to cause a change in Vo .

* In the reverse direction (negative to positive), Vi needs to cross VTH .

* The circuit gets rid of spurious transitions, a major advantage over the simple comparator.

* The hysteresis width (VTH − VTL) should be designed to be larger than the spurious excursions riding on Vi .

M. B. Patil, IIT Bombay

Page 85: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

corrupted

input

signal

t

t

Vi

Vsat

Vo

−Vsat

Vi Vo

expand

expanded

view

t

t

VTH

VTL

Vi

Vo

−Vsat

Vsat

* While going from positive to negative values, Vi needs to cross VTL (and not 0 V ) to cause a change in Vo .

* In the reverse direction (negative to positive), Vi needs to cross VTH .

* The circuit gets rid of spurious transitions, a major advantage over the simple comparator.

* The hysteresis width (VTH − VTL) should be designed to be larger than the spurious excursions riding on Vi .

M. B. Patil, IIT Bombay

Page 86: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

corrupted

input

signal

t

t

Vi

Vsat

Vo

−Vsat

Vi Vo

expand

expanded

view

t

t

VTH

VTL

Vi

Vo

−Vsat

Vsat

* While going from positive to negative values, Vi needs to cross VTL (and not 0 V ) to cause a change in Vo .

* In the reverse direction (negative to positive), Vi needs to cross VTH .

* The circuit gets rid of spurious transitions, a major advantage over the simple comparator.

* The hysteresis width (VTH − VTL) should be designed to be larger than the spurious excursions riding on Vi .

M. B. Patil, IIT Bombay

Page 87: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

corrupted

input

signal

t

t

Vi

Vsat

Vo

−Vsat

Vi Vo

expand

expanded

view

t

t

VTH

VTL

Vi

Vo

−Vsat

Vsat

* While going from positive to negative values, Vi needs to cross VTL (and not 0 V ) to cause a change in Vo .

* In the reverse direction (negative to positive), Vi needs to cross VTH .

* The circuit gets rid of spurious transitions, a major advantage over the simple comparator.

* The hysteresis width (VTH − VTL) should be designed to be larger than the spurious excursions riding on Vi .

M. B. Patil, IIT Bombay

Page 88: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

corrupted

input

signal

t

t

Vi

Vsat

Vo

−Vsat

Vi Vo

expand

expanded

view

t

t

VTH

VTL

Vi

Vo

−Vsat

Vsat

* While going from positive to negative values, Vi needs to cross VTL (and not 0 V ) to cause a change in Vo .

* In the reverse direction (negative to positive), Vi needs to cross VTH .

* The circuit gets rid of spurious transitions, a major advantage over the simple comparator.

* The hysteresis width (VTH − VTL) should be designed to be larger than the spurious excursions riding on Vi .

M. B. Patil, IIT Bombay

Page 89: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

corrupted

input

signal

t

t

Vi

Vsat

Vo

−Vsat

Vi Vo

expand

expanded

view

t

t

VTH

VTL

Vi

Vo

−Vsat

Vsat

* While going from positive to negative values, Vi needs to cross VTL (and not 0 V ) to cause a change in Vo .

* In the reverse direction (negative to positive), Vi needs to cross VTH .

* The circuit gets rid of spurious transitions, a major advantage over the simple comparator.

* The hysteresis width (VTH − VTL) should be designed to be larger than the spurious excursions riding on Vi .

M. B. Patil, IIT Bombay

Page 90: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using Schmitt triggers

Non−inverting Schmitt trigger Inverting Schmitt trigger

Vo VoVi Vi

L+

L−

L+

L−

Vi ViVTH VTHVTL VTL

Vo Vo

* A Schmitt trigger has two states, Vo = L+ and Vo = L−.

* With a suitable RC network, it can be made to freely oscillate between L+ and L−. Such a circuit is calledan “astable multivibrator” or a “free-running multivibrator.”

* An astable multivibrator produces oscillations without an input signal, the frequency being controlled bythe component values.

* The maximum operating frequency of these oscillators is typically ∼ 10 kHz, due to op-amp speedlimitations.

M. B. Patil, IIT Bombay

Page 91: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using Schmitt triggers

Non−inverting Schmitt trigger Inverting Schmitt trigger

Vo VoVi Vi

L+

L−

L+

L−

Vi ViVTH VTHVTL VTL

Vo Vo

* A Schmitt trigger has two states, Vo = L+ and Vo = L−.

* With a suitable RC network, it can be made to freely oscillate between L+ and L−. Such a circuit is calledan “astable multivibrator” or a “free-running multivibrator.”

* An astable multivibrator produces oscillations without an input signal, the frequency being controlled bythe component values.

* The maximum operating frequency of these oscillators is typically ∼ 10 kHz, due to op-amp speedlimitations.

M. B. Patil, IIT Bombay

Page 92: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using Schmitt triggers

Non−inverting Schmitt trigger Inverting Schmitt trigger

Vo VoVi Vi

L+

L−

L+

L−

Vi ViVTH VTHVTL VTL

Vo Vo

* A Schmitt trigger has two states, Vo = L+ and Vo = L−.

* With a suitable RC network, it can be made to freely oscillate between L+ and L−. Such a circuit is calledan “astable multivibrator” or a “free-running multivibrator.”

* An astable multivibrator produces oscillations without an input signal, the frequency being controlled bythe component values.

* The maximum operating frequency of these oscillators is typically ∼ 10 kHz, due to op-amp speedlimitations.

M. B. Patil, IIT Bombay

Page 93: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using Schmitt triggers

Non−inverting Schmitt trigger Inverting Schmitt trigger

Vo VoVi Vi

L+

L−

L+

L−

Vi ViVTH VTHVTL VTL

Vo Vo

* A Schmitt trigger has two states, Vo = L+ and Vo = L−.

* With a suitable RC network, it can be made to freely oscillate between L+ and L−. Such a circuit is calledan “astable multivibrator” or a “free-running multivibrator.”

* An astable multivibrator produces oscillations without an input signal, the frequency being controlled bythe component values.

* The maximum operating frequency of these oscillators is typically ∼ 10 kHz, due to op-amp speedlimitations.

M. B. Patil, IIT Bombay

Page 94: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using Schmitt triggers

Non−inverting Schmitt trigger Inverting Schmitt trigger

Vo VoVi Vi

L+

L−

L+

L−

Vi ViVTH VTHVTL VTL

Vo Vo

* A Schmitt trigger has two states, Vo = L+ and Vo = L−.

* With a suitable RC network, it can be made to freely oscillate between L+ and L−. Such a circuit is calledan “astable multivibrator” or a “free-running multivibrator.”

* An astable multivibrator produces oscillations without an input signal, the frequency being controlled bythe component values.

* The maximum operating frequency of these oscillators is typically ∼ 10 kHz, due to op-amp speedlimitations.

M. B. Patil, IIT Bombay

Page 95: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

4

0

−2

−4

−6

2

6

0 101 2 3 5 6 7 8 94

R

C

t (msec)

L− = −5 V

VTL = −1 V

L+ = +5V

VTH = +1V

RL

VTL VTH

C = 1µF

R = 2 k

Vi

Vo

Vo

L+

L−

ViVc

At t = 0, let Vo = L+, and Vc = 0 V .

The capacitor starts charging toward L+.

When Vc crosses VTH , the output flips. Now, the capacitor starts discharging toward L−.

When Vc crosses VTL, the output flips again → oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

M. B. Patil, IIT Bombay

Page 96: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

4

0

−2

−4

−6

2

6

0 101 2 3 5 6 7 8 94

R

C

t (msec)

L− = −5 V

VTL = −1 V

L+ = +5V

VTH = +1V

RL

VTL VTH

C = 1µF

R = 2 k

Vi

Vo

Vo

L+

L−

ViVc

At t = 0, let Vo = L+, and Vc = 0 V .

The capacitor starts charging toward L+.

When Vc crosses VTH , the output flips. Now, the capacitor starts discharging toward L−.

When Vc crosses VTL, the output flips again → oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

M. B. Patil, IIT Bombay

Page 97: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

4

0

−2

−4

−6

2

6

0 101 2 3 5 6 7 8 94

R

C

t (msec)

L− = −5 V

VTL = −1 V

L+ = +5V

VTH = +1V

RL

VTL VTH

C = 1µF

R = 2 k

Vi

Vo

Vo

L+

L−

ViVc

At t = 0, let Vo = L+, and Vc = 0 V .

The capacitor starts charging toward L+.

When Vc crosses VTH , the output flips. Now, the capacitor starts discharging toward L−.

When Vc crosses VTL, the output flips again → oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

M. B. Patil, IIT Bombay

Page 98: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

4

0

−2

−4

−6

2

6

0 101 2 3 5 6 7 8 94

R

C

t (msec)

L− = −5 V

VTL = −1 V

L+ = +5V

VTH = +1V

RL

VTL VTH

C = 1µF

R = 2 k

Vi

Vo

Vo

L+

L−

ViVc

At t = 0, let Vo = L+, and Vc = 0 V .

The capacitor starts charging toward L+.

When Vc crosses VTH , the output flips. Now, the capacitor starts discharging toward L−.

When Vc crosses VTL, the output flips again → oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

M. B. Patil, IIT Bombay

Page 99: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

4

0

−2

−4

−6

2

6

0 101 2 3 5 6 7 8 94

R

C

t (msec)

L− = −5 V

VTL = −1 V

L+ = +5V

VTH = +1V

RL

VTL VTH

C = 1µF

R = 2 k

Vi

Vo

Vo

L+

L−

ViVc

At t = 0, let Vo = L+, and Vc = 0 V .

The capacitor starts charging toward L+.

When Vc crosses VTH , the output flips. Now, the capacitor starts discharging toward L−.

When Vc crosses VTL, the output flips again → oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

M. B. Patil, IIT Bombay

Page 100: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

4

0

−2

−4

−6

2

6

0 101 2 3 5 6 7 8 94

R

C

t (msec)

L− = −5 V

VTL = −1 V

L+ = +5V

VTH = +1V

RL

VTL VTH

C = 1µF

R = 2 k

Vi

Vo

Vo

L+

L−

ViVc

At t = 0, let Vo = L+, and Vc = 0 V .

The capacitor starts charging toward L+.

When Vc crosses VTH , the output flips. Now, the capacitor starts discharging toward L−.

When Vc crosses VTL, the output flips again → oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

M. B. Patil, IIT Bombay

Page 101: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

4

0

−2

−4

−6

2

6

0 101 2 3 5 6 7 8 94

R

C

t (msec)

L− = −5 V

VTL = −1 V

L+ = +5V

VTH = +1V

RL

VTL VTH

C = 1µF

R = 2 k

Vi

Vo

Vo

L+

L−

ViVc

At t = 0, let Vo = L+, and Vc = 0 V .

The capacitor starts charging toward L+.

When Vc crosses VTH , the output flips. Now, the capacitor starts discharging toward L−.

When Vc crosses VTL, the output flips again → oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

M. B. Patil, IIT Bombay

Page 102: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

4

0

−2

−4

−6

2

6

0 101 2 3 5 6 7 8 94

R

C

t (msec)

L− = −5 V

VTL = −1 V

L+ = +5V

VTH = +1V

RL

VTL VTH

C = 1µF

R = 2 k

Vi

Vo

Vo

L+

L−

ViVc

At t = 0, let Vo = L+, and Vc = 0 V .

The capacitor starts charging toward L+.

When Vc crosses VTH , the output flips. Now, the capacitor starts discharging toward L−.

When Vc crosses VTL, the output flips again → oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

M. B. Patil, IIT Bombay

Page 103: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

4

0

−2

−4

−6

2

6

0 101 2 3 5 6 7 8 94

R

C

t (msec)

L− = −5 V

VTL = −1 V

L+ = +5V

VTH = +1V

RL

VTL VTH

C = 1µF

R = 2 k

Vi

Vo

Vo

L+

L−

ViVc

At t = 0, let Vo = L+, and Vc = 0 V .

The capacitor starts charging toward L+.

When Vc crosses VTH , the output flips. Now, the capacitor starts discharging toward L−.

When Vc crosses VTL, the output flips again → oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

M. B. Patil, IIT Bombay

Page 104: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

4

0

−2

−4

−6

2

6

0 101 2 3 5 6 7 8 94

R

C

t (msec)

L− = −5 V

VTL = −1 V

L+ = +5V

VTH = +1V

RL

VTL VTH

C = 1µF

R = 2 k

Vi

Vo

Vo

L+

L−

ViVc

At t = 0, let Vo = L+, and Vc = 0 V .

The capacitor starts charging toward L+.

When Vc crosses VTH , the output flips. Now, the capacitor starts discharging toward L−.

When Vc crosses VTL, the output flips again → oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

M. B. Patil, IIT Bombay

Page 105: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

T

t

0

R

C

RL

VTH

VTL

L−

L+

t2

Vc

Vo

t1

Vi

Vo

Vc

Charging: Let Vc (t) = A1 exp(−t/τ) + B1, with τ = RC .

Using Vc (0) = VTL, Vc (∞) = L+, find A1 and B1.

At t = t1, Vc = VTH → VTH = A1 exp(−t1/τ) + B1 → find t1.

Discharging: Let Vc (t) = A2 exp(−(t − t1)/τ) + B2.

Using Vc (t1) = VTH , Vc (∞) = L−, find A2 and B2.

At t = t2, Vc = VTL → VTL = A2 exp(−(t2 − t1)/τ) + B2 → find (t2 − t1)→ t2 → T = t2.

If L+ = L, L− = −L, VTH = VT , VTL = −VT , show that T = 2 RC ln

(L + VT

L− VT

).

M. B. Patil, IIT Bombay

Page 106: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

T

t

0

R

C

RL

VTH

VTL

L−

L+

t2

Vc

Vo

t1

Vi

Vo

Vc

Charging: Let Vc (t) = A1 exp(−t/τ) + B1, with τ = RC .

Using Vc (0) = VTL, Vc (∞) = L+, find A1 and B1.

At t = t1, Vc = VTH → VTH = A1 exp(−t1/τ) + B1 → find t1.

Discharging: Let Vc (t) = A2 exp(−(t − t1)/τ) + B2.

Using Vc (t1) = VTH , Vc (∞) = L−, find A2 and B2.

At t = t2, Vc = VTL → VTL = A2 exp(−(t2 − t1)/τ) + B2 → find (t2 − t1)→ t2 → T = t2.

If L+ = L, L− = −L, VTH = VT , VTL = −VT , show that T = 2 RC ln

(L + VT

L− VT

).

M. B. Patil, IIT Bombay

Page 107: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

T

t

0

R

C

RL

VTH

VTL

L−

L+

t2

Vc

Vo

t1

Vi

Vo

Vc

Charging: Let Vc (t) = A1 exp(−t/τ) + B1, with τ = RC .

Using Vc (0) = VTL, Vc (∞) = L+, find A1 and B1.

At t = t1, Vc = VTH → VTH = A1 exp(−t1/τ) + B1 → find t1.

Discharging: Let Vc (t) = A2 exp(−(t − t1)/τ) + B2.

Using Vc (t1) = VTH , Vc (∞) = L−, find A2 and B2.

At t = t2, Vc = VTL → VTL = A2 exp(−(t2 − t1)/τ) + B2 → find (t2 − t1)→ t2 → T = t2.

If L+ = L, L− = −L, VTH = VT , VTL = −VT , show that T = 2 RC ln

(L + VT

L− VT

).

M. B. Patil, IIT Bombay

Page 108: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

T

t

0

R

C

RL

VTH

VTL

L−

L+

t2

Vc

Vo

t1

Vi

Vo

Vc

Charging: Let Vc (t) = A1 exp(−t/τ) + B1, with τ = RC .

Using Vc (0) = VTL, Vc (∞) = L+, find A1 and B1.

At t = t1, Vc = VTH → VTH = A1 exp(−t1/τ) + B1 → find t1.

Discharging: Let Vc (t) = A2 exp(−(t − t1)/τ) + B2.

Using Vc (t1) = VTH , Vc (∞) = L−, find A2 and B2.

At t = t2, Vc = VTL → VTL = A2 exp(−(t2 − t1)/τ) + B2 → find (t2 − t1)→ t2 → T = t2.

If L+ = L, L− = −L, VTH = VT , VTL = −VT , show that T = 2 RC ln

(L + VT

L− VT

).

M. B. Patil, IIT Bombay

Page 109: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0

R

C

10

5

0

−5

−10

−15

15

Op−Amp 411Op−Amp 741

t (msec)

t (msec)

RL

Vi

Vo

Vc

Vo

Vc

Vo

Vc

Note that Op-Amp 411 (slew rate: 10V /µs) gives sharper waveforms ascompared to Op-Amp 741 (slew rate: 0.5V /µs).

SEQUEL files: schmitt osc 741.sqproj, schmitt osc 411.sqproj

(Ref: J. M. Fiore, “Op-Amps and linear ICs”)

M. B. Patil, IIT Bombay

Page 110: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0

R

C

10

5

0

−5

−10

−15

15

Op−Amp 411Op−Amp 741

t (msec)

t (msec)

RL

Vi

Vo

Vc

Vo

Vc

Vo

Vc

Note that Op-Amp 411 (slew rate: 10V /µs) gives sharper waveforms ascompared to Op-Amp 741 (slew rate: 0.5V /µs).

SEQUEL files: schmitt osc 741.sqproj, schmitt osc 411.sqproj

(Ref: J. M. Fiore, “Op-Amps and linear ICs”)

M. B. Patil, IIT Bombay

Page 111: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0

R

C

10

5

0

−5

−10

−15

15

Op−Amp 411Op−Amp 741

t (msec)

t (msec)

RL

Vi

Vo

Vc

Vo

Vc

Vo

Vc

Note that Op-Amp 411 (slew rate: 10V /µs) gives sharper waveforms ascompared to Op-Amp 741 (slew rate: 0.5V /µs).

SEQUEL files: schmitt osc 741.sqproj, schmitt osc 411.sqproj

(Ref: J. M. Fiore, “Op-Amps and linear ICs”)

M. B. Patil, IIT Bombay

Page 112: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

t

Schmitt triggerIntegrator

C

R VTL VTH

T1

Vo1

Vo2

Vo2Vo1

T2

Vo2

Vo1

L+

L−

VTH

VTL

L−

L+

For the integrator, Vo1 = −1

RC

∫Vo2dt ≡ −

1

τ

∫Vo2dt

Vo2 = L+ → Vo2 decreases linearly, Vo2 = L− → Vo2 increases linearly.

dVo1

dt= −

Vo2

τ. If Vo2 is constant,

∣∣∣∣∆Vo1

∆t

∣∣∣∣ =|Vo2|τ→ ∆t = τ

∣∣∣∣∆Vo1

Vo2

∣∣∣∣T1 = τ

VTH − VTL

L+.

T2 = τVTH − VTL

−L− .

M. B. Patil, IIT Bombay

Page 113: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

t

Schmitt triggerIntegrator

C

R VTL VTH

T1

Vo1

Vo2

Vo2Vo1

T2

Vo2

Vo1

L+

L−

VTH

VTL

L−

L+

For the integrator, Vo1 = −1

RC

∫Vo2dt ≡ −

1

τ

∫Vo2dt

Vo2 = L+ → Vo2 decreases linearly, Vo2 = L− → Vo2 increases linearly.

dVo1

dt= −

Vo2

τ. If Vo2 is constant,

∣∣∣∣∆Vo1

∆t

∣∣∣∣ =|Vo2|τ→ ∆t = τ

∣∣∣∣∆Vo1

Vo2

∣∣∣∣T1 = τ

VTH − VTL

L+.

T2 = τVTH − VTL

−L− .

M. B. Patil, IIT Bombay

Page 114: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

t

Schmitt triggerIntegrator

C

R VTL VTH

T1

Vo1

Vo2

Vo2Vo1

T2

Vo2

Vo1

L+

L−

VTH

VTL

L−

L+

For the integrator, Vo1 = −1

RC

∫Vo2dt ≡ −

1

τ

∫Vo2dt

Vo2 = L+ → Vo2 decreases linearly, Vo2 = L− → Vo2 increases linearly.

dVo1

dt= −

Vo2

τ. If Vo2 is constant,

∣∣∣∣∆Vo1

∆t

∣∣∣∣ =|Vo2|τ→ ∆t = τ

∣∣∣∣∆Vo1

Vo2

∣∣∣∣T1 = τ

VTH − VTL

L+.

T2 = τVTH − VTL

−L− .

M. B. Patil, IIT Bombay

Page 115: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

t

Schmitt triggerIntegrator

C

R VTL VTH

T1

Vo1

Vo2

Vo2Vo1

T2

Vo2

Vo1

L+

L−

VTH

VTL

L−

L+

For the integrator, Vo1 = −1

RC

∫Vo2dt ≡ −

1

τ

∫Vo2dt

Vo2 = L+ → Vo2 decreases linearly, Vo2 = L− → Vo2 increases linearly.

dVo1

dt= −

Vo2

τ. If Vo2 is constant,

∣∣∣∣∆Vo1

∆t

∣∣∣∣ =|Vo2|τ→ ∆t = τ

∣∣∣∣∆Vo1

Vo2

∣∣∣∣

T1 = τVTH − VTL

L+.

T2 = τVTH − VTL

−L− .

M. B. Patil, IIT Bombay

Page 116: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

t

Schmitt triggerIntegrator

C

R VTL VTH

T1

Vo1

Vo2

Vo2Vo1

T2

Vo2

Vo1

L+

L−

VTH

VTL

L−

L+

For the integrator, Vo1 = −1

RC

∫Vo2dt ≡ −

1

τ

∫Vo2dt

Vo2 = L+ → Vo2 decreases linearly, Vo2 = L− → Vo2 increases linearly.

dVo1

dt= −

Vo2

τ. If Vo2 is constant,

∣∣∣∣∆Vo1

∆t

∣∣∣∣ =|Vo2|τ→ ∆t = τ

∣∣∣∣∆Vo1

Vo2

∣∣∣∣T1 = τ

VTH − VTL

L+.

T2 = τVTH − VTL

−L− .

M. B. Patil, IIT Bombay

Page 117: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Waveform generation using a Schmitt trigger

t

Schmitt triggerIntegrator

C

R VTL VTH

T1

Vo1

Vo2

Vo2Vo1

T2

Vo2

Vo1

L+

L−

VTH

VTL

L−

L+

For the integrator, Vo1 = −1

RC

∫Vo2dt ≡ −

1

τ

∫Vo2dt

Vo2 = L+ → Vo2 decreases linearly, Vo2 = L− → Vo2 increases linearly.

dVo1

dt= −

Vo2

τ. If Vo2 is constant,

∣∣∣∣∆Vo1

∆t

∣∣∣∣ =|Vo2|τ→ ∆t = τ

∣∣∣∣∆Vo1

Vo2

∣∣∣∣T1 = τ

VTH − VTL

L+.

T2 = τVTH − VTL

−L− .

M. B. Patil, IIT Bombay

Page 118: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Limiting the output voltage

Integrator Schmitt trigger Limiter

OA1

OA2

0.10

10

−10

−20

0

20

t (msec)

R2

C

D2

R3

D1

R1

R

Vo1

Vo2

Vo3

Vo2

Vo3

* When Vo2 = +Vsat, D1 is forward-biased (with a voltage drop of Von), and D2 is reverse-biased. TheZener breakdown voltage (VZ ) is chosen so that D2 operates under breakdown condition.→ Vo3 = Von + VZ .

* When Vo2 = −Vsat, D2 is forward-biased (with a voltage drop of Von), and D1 is reverse-biased.→ Vo3 = −Von − VZ .

* R3 serves to limit the output current for OA2.

SEQUEL file: opamp osc 1.sqproj

M. B. Patil, IIT Bombay

Page 119: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Limiting the output voltage

Integrator Schmitt trigger Limiter

OA1

OA2

0.10

10

−10

−20

0

20

t (msec)

R2

C

D2

R3

D1

R1

R

Vo1

Vo2

Vo3

Vo2

Vo3

* When Vo2 = +Vsat, D1 is forward-biased (with a voltage drop of Von), and D2 is reverse-biased. TheZener breakdown voltage (VZ ) is chosen so that D2 operates under breakdown condition.→ Vo3 = Von + VZ .

* When Vo2 = −Vsat, D2 is forward-biased (with a voltage drop of Von), and D1 is reverse-biased.→ Vo3 = −Von − VZ .

* R3 serves to limit the output current for OA2.

SEQUEL file: opamp osc 1.sqproj

M. B. Patil, IIT Bombay

Page 120: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Limiting the output voltage

Integrator Schmitt trigger Limiter

OA1

OA2

0.10

10

−10

−20

0

20

t (msec)

R2

C

D2

R3

D1

R1

R

Vo1

Vo2

Vo3

Vo2

Vo3

* When Vo2 = +Vsat, D1 is forward-biased (with a voltage drop of Von), and D2 is reverse-biased. TheZener breakdown voltage (VZ ) is chosen so that D2 operates under breakdown condition.→ Vo3 = Von + VZ .

* When Vo2 = −Vsat, D2 is forward-biased (with a voltage drop of Von), and D1 is reverse-biased.→ Vo3 = −Von − VZ .

* R3 serves to limit the output current for OA2.

SEQUEL file: opamp osc 1.sqproj

M. B. Patil, IIT Bombay

Page 121: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Limiting the output voltage

Integrator Schmitt trigger Limiter

OA1

OA2

0.10

10

−10

−20

0

20

t (msec)

R2

C

D2

R3

D1

R1

R

Vo1

Vo2

Vo3

Vo2

Vo3

* When Vo2 = +Vsat, D1 is forward-biased (with a voltage drop of Von), and D2 is reverse-biased. TheZener breakdown voltage (VZ ) is chosen so that D2 operates under breakdown condition.→ Vo3 = Von + VZ .

* When Vo2 = −Vsat, D2 is forward-biased (with a voltage drop of Von), and D1 is reverse-biased.→ Vo3 = −Von − VZ .

* R3 serves to limit the output current for OA2.

SEQUEL file: opamp osc 1.sqproj

M. B. Patil, IIT Bombay

Page 122: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Limiting the output voltage

Integrator Schmitt trigger Limiter

OA1

OA2

0.10

10

−10

−20

0

20

t (msec)

R2

C

D2

R3

D1

R1

R

Vo1

Vo2

Vo3

Vo2

Vo3

* When Vo2 = +Vsat, D1 is forward-biased (with a voltage drop of Von), and D2 is reverse-biased. TheZener breakdown voltage (VZ ) is chosen so that D2 operates under breakdown condition.→ Vo3 = Von + VZ .

* When Vo2 = −Vsat, D2 is forward-biased (with a voltage drop of Von), and D1 is reverse-biased.→ Vo3 = −Von − VZ .

* R3 serves to limit the output current for OA2.

SEQUEL file: opamp osc 1.sqprojM. B. Patil, IIT Bombay

Page 123: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt trigger

R1

R2

Vo

Vi

VR

R3

Vm

−Vm

Vi

V0

VTHVTL

Vo

A Schmitt trigger circuit is shown in the figure along with its Vo -Vi relationship. Assume that Vsat≈ 14 V forthe op-amp. The reference voltage VR can be adjusted using a pot (not shown in the figure).

* Design the circuit to obtain V0 = 2.5 V and ∆VT =VTH − VTL = 0.4 V.

* Verify your design with simulation (and in the lab).

M. B. Patil, IIT Bombay

Page 124: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt trigger

R1

R2

Vo

Vi

VR

R3

Vm

−Vm

Vi

V0

VTHVTL

Vo

A Schmitt trigger circuit is shown in the figure along with its Vo -Vi relationship. Assume that Vsat≈ 14 V forthe op-amp. The reference voltage VR can be adjusted using a pot (not shown in the figure).

* Design the circuit to obtain V0 = 2.5 V and ∆VT =VTH − VTL = 0.4 V.

* Verify your design with simulation (and in the lab).

M. B. Patil, IIT Bombay

Page 125: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt trigger

R1

R2

Vo

Vi

VR

R3

Vm

−Vm

Vi

V0

VTHVTL

Vo

A Schmitt trigger circuit is shown in the figure along with its Vo -Vi relationship. Assume that Vsat≈ 14 V forthe op-amp. The reference voltage VR can be adjusted using a pot (not shown in the figure).

* Design the circuit to obtain V0 = 2.5 V and ∆VT =VTH − VTL = 0.4 V.

* Verify your design with simulation (and in the lab).

M. B. Patil, IIT Bombay

Page 126: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt trigger

R1

R2

Vo

Vi

VR

R3

Vm

−Vm

Vi

V0

VTHVTL

Vo

V+ = VR(R2 ‖ R3)

(R2 ‖ R3) + R1± Vm

(R1 ‖ R2)

(R1 ‖ R2) + R3.

∆VT = 0.4 V → 2Vm(R1 ‖ R2)

(R1 ‖ R2) + R3= 0.4 V.

V0 = 2.5 V → VR(R2 ‖ R3)

(R2 ‖ R3) + R1= 2.5 V.

M. B. Patil, IIT Bombay

Page 127: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt trigger

R1

R2

Vo

Vi

VR

R3

Vm

−Vm

Vi

V0

VTHVTL

Vo

V+ = VR(R2 ‖ R3)

(R2 ‖ R3) + R1± Vm

(R1 ‖ R2)

(R1 ‖ R2) + R3.

∆VT = 0.4 V → 2Vm(R1 ‖ R2)

(R1 ‖ R2) + R3= 0.4 V.

V0 = 2.5 V → VR(R2 ‖ R3)

(R2 ‖ R3) + R1= 2.5 V.

M. B. Patil, IIT Bombay

Page 128: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt trigger

R1

R2

Vo

Vi

VR

R3

Vm

−Vm

Vi

V0

VTHVTL

Vo

V+ = VR(R2 ‖ R3)

(R2 ‖ R3) + R1± Vm

(R1 ‖ R2)

(R1 ‖ R2) + R3.

∆VT = 0.4 V → 2Vm(R1 ‖ R2)

(R1 ‖ R2) + R3= 0.4 V.

V0 = 2.5 V → VR(R2 ‖ R3)

(R2 ‖ R3) + R1= 2.5 V.

M. B. Patil, IIT Bombay

Page 129: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt trigger

R1

R2

Vo

Vi

VR

R3

Vm

−Vm

Vi

V0

VTHVTL

Vo

∆VT = 0.4 V → 2Vm(R1 ‖ R2)

(R1 ‖ R2) + R3= 0.4 V.

Let R1 =R2 = 5 k → 2Vsat(R/2)

(R/2) + R3= 0.4 V → R3 = 172.5 k.

V0 = 2.5 V → VR(R2 ‖ R3)

(R2 ‖ R3) + R1= 2.5 V → VR = 5.07 V.

(SEQUEL file: schmitt 1.sqproj)

M. B. Patil, IIT Bombay

Page 130: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt trigger

R1

R2

Vo

Vi

VR

R3

Vm

−Vm

Vi

V0

VTHVTL

Vo

∆VT = 0.4 V → 2Vm(R1 ‖ R2)

(R1 ‖ R2) + R3= 0.4 V.

Let R1 =R2 = 5 k → 2Vsat(R/2)

(R/2) + R3= 0.4 V → R3 = 172.5 k.

V0 = 2.5 V → VR(R2 ‖ R3)

(R2 ‖ R3) + R1= 2.5 V → VR = 5.07 V.

(SEQUEL file: schmitt 1.sqproj)

M. B. Patil, IIT Bombay

Page 131: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt trigger

R1

R2

Vo

Vi

VR

R3

Vm

−Vm

Vi

V0

VTHVTL

Vo

∆VT = 0.4 V → 2Vm(R1 ‖ R2)

(R1 ‖ R2) + R3= 0.4 V.

Let R1 =R2 = 5 k → 2Vsat(R/2)

(R/2) + R3= 0.4 V → R3 = 172.5 k.

V0 = 2.5 V → VR(R2 ‖ R3)

(R2 ‖ R3) + R1= 2.5 V → VR = 5.07 V.

(SEQUEL file: schmitt 1.sqproj)

M. B. Patil, IIT Bombay

Page 132: Op-Amp Circuits: Part 5sequel/ee101/mc_opamp_5.pdf · Since the Op Amp has a high input resistance, V o =A V(V + V) (1) i R1 =i R2, and we get, V =V o R 1 R 1 +R 2 (2) Eq. 1 Eq. 2

Schmitt trigger

R1

R2

Vo

Vi

VR

R3

Vm

−Vm

Vi

V0

VTHVTL

Vo

∆VT = 0.4 V → 2Vm(R1 ‖ R2)

(R1 ‖ R2) + R3= 0.4 V.

Let R1 =R2 = 5 k → 2Vsat(R/2)

(R/2) + R3= 0.4 V → R3 = 172.5 k.

V0 = 2.5 V → VR(R2 ‖ R3)

(R2 ‖ R3) + R1= 2.5 V → VR = 5.07 V.

(SEQUEL file: schmitt 1.sqproj)

M. B. Patil, IIT Bombay