onequestion

Upload: tedwong314

Post on 08-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 OneQuestion

    1/3

    1. Given that tan is, where i = 1, 2, . . . , n, are n zeros ofxn a1x

    n1 + a2xn2 + . . .+ (1)nan = 0.

    Prove that

    tan

    n

    i=1i

    =

    a1a3+a5...+(1)ka(2k+1)

    1a2+a4...(1)k1a(2k), ifn = 2k + 1

    a1a3+a5...+(1)k1a(2k1)

    1a2+a4...(1)k1a2k , ifn = 2k

    Solution We need to find tan (n

    i=1 i). Start with a polynomial x2 a1x + a2 = 0 with roots tan 1

    and tan 2:

    tan(1 + 2) =tan 1 + tan 2

    1 tan 1 tan 2=

    a1

    1 a2,

    and a polynomial x3 a1x2 + a2x a3 = 0 with roots tan 1, tan 2 and tan 3:

    tan(1 + 2 + 3) =

    tan 1+tan 21tan 1 tan 2

    + tan 3

    1 tan 1+tan 21tan 1 tan 2 tan 3

    =tan 1 + tan 2 + tan 3(1 tan 1 tan 2)

    1 tan 1 tan 2 (tan 1 + tan 2)tan 3

    =

    3i=1 tan i

    3i=1 tan i

    1

    1i

  • 8/7/2019 OneQuestion

    2/3

    Notice that for u + 1 v 1, we have

    Au+1(v 1) + tan vAu(v 1)

    = (tan 1 tan 2 . . . tan u tan u+1 u+1) + . . . + (tan 1 tan 2 . . . tan u tan v1 u+1

    ) + . . .

    +(tan1 tan vu . . . tan v2 tan v1 u+1

    ) + . . . + (tan vu1 tan vu . . . tan v2 tan v1 u+1

    )

    +tan v

    (tan 1 tan 2 . . . tan u1 tan u

    u

    ) + . . . + (tan 1 tan 2 . . . tan u1 tan v1 u

    ) + . . .

    +(tan1 tan vu+1 . . . tan v2 tan v1 u

    ) + . . . + (tan vu tan vu+1 . . . tan v2 tan v1 u

    )

    =( vu+1)

    1t1

  • 8/7/2019 OneQuestion

    3/3

    This indicates that the identity is true when m is odd. Notice that we use the result 2 except thelast term in the denominator in which we use 3.

    2. m = 2k

    For n = m + 1, i.e. n = 2k + 1. then

    tan(m+1 +m

    i=1 i)

    =tan 2k+1+

    A1(2k)A3(2k)+A5(2k)...+(1)k2

    A(2k3)(2k)+(1)k1

    A(2k1)(2k)

    1A2(2k)+A4(2k)...(1)k2A(2k2)(2k)(1)

    k1A(2k)(2k)

    1tan 2k+1A1(2k)A3(2k)+A5(2k)...+(1)

    k2A(2k3)(2k)+(1)k1A(2k1)(2k)

    1A2(2k)+A4(2k)...(1)k2A(2k2)(2k)(1)

    k1A(2k)(2k)

    =tan 2k+1[1A2(2k)+A4(2k)...(1)k2A(2k2)(2k)(1)k1A(2k)(2k)]

    1A2(2k)+A4(2k)...(1)k2A(2k2)(2k)(1)k1A(2k)(2k)to be continued

    +A1(2k)A3(2k)+A5(2k)...+(1)k2A(2k3)(2k)+(1)

    k1A(2k1)(2k)

    tan 2k+1[A1(2k)A3(2k)+A5(2k)...+(1)k2A(2k3)(2k)+(1)k1A(2k1)(2k)]

    =A1(2k+1)A3(2k+1)+A5(2k+1)...+(1)

    k2A(2k1)(2k+1)+(1)k1A(2k+1)(2k+1)

    1A2(2k+1)+A4(2k+1)...(1)k2A(2k2)(2k+1)(1)k1A(2k)(2k+1)

    One may compare this to the identity and found it matching exactly. It is indeed this proves theidentity as the degree increases by one and becomes the case of odd m.

    Email: [email protected]