on the security of the “free-xor” technique ranjit kumaresan joint work with seung geol choi,...

32
On the Security of the “Free-XOR” Technique Ranjit Kumaresan Joint work with Seung Geol Choi, Jonathan Katz, and Hong-Sheng Zhou (UMD)

Upload: cory-fitzgerald

Post on 17-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

On the Security of the “Free-XOR” TechniqueRanjit Kumaresan

Joint work with Seung Geol Choi, Jonathan Katz, and Hong-Sheng Zhou

(UMD)

Research in Secure Two-party Computation (2PC)

• Generic protocols [Yao86, GMW87]• “Tailored” protocols for specific applications

[FNP04,HL08,KO97,…]• Fairplay [MNPS04]: Implemented generic protocols

– Hope for practicality

Research in Secure Two-party Computation (2PC)

• Active research improving concrete efficiency of generic protocols– Garbled circuit approach [PSSW09,HEKM11,KM11,LP07,LP11,

…]– GMW approach [NNOB11, CHKMR12,...]

• Moving secure computation from theory to practice

Talk Outline

• Background on Yao GC & the Free-XOR technique [KS08]– Description in the random oracle (RO) model– Replacing RO with correlation robust hash functions?

• Sufficient assumptions on the hash function– Why correlation robust hash functions are not enough– New notion: Circular correlation robust hash functions– Security of the Free-XOR technique

• Conclusions

Yao Garbled Circuit (GC) [Yao86]

• Generic secure computation protocol• Constant round solution• Mostly symmetric-key operations • Popular choice for efficient 2PC

Yao Garbled Circuit

u v

w

AND

u

u

v

v

u v

vu

u

v

XOR

Credit: V. Kolesnikov

Yao Garbled Circuit

AND

XOR

u0

u1

v0

v1

w0

w1

H(u0,v0,g) ⊕ w0

H(u0,v1,g) ⊕ w0

H(u1,v0,g) ⊕ w0

H(u1,v1,g) ⊕ w1

x0

x1

y0

y1

H(w0,x0,g’) ⊕ y0

H(w0,x1,g’) ⊕ y1

H(w1,x0,g’) ⊕ y1

H(w1,x1,g’) ⊕ y0

g,g’: gate indicesH: hash function

….

GC

GC Based Semi-Honest 2PC [Yao86]

Alice input keys

OTBob input keys

GC

….

input bitsBob keys

Evaluate GC usingreceived input keys

Efficiency Improvements to Yao GC

• Garbled row reduction [NPS99,PSSW09]– Just 3 entries per garbled table

• Point-and-permute [MNPS04]– Decrypt only one entry

• Free-XOR technique [KS08]– No garbled table for XOR gates

Free-XOR Technique [KS08]

• Idea: XOR gates evaluated for “free” – No cryptographic operations or communication (like [Kol05,GMW87])– GC based 2PC in the semi-honest setting

• Gains in practice?– 40% improvement for “typical” circuits– 300% improvement for universal circuits

• Impact– All recent implementations use Free-XOR technique [PSSW09,

SS11,…]– Efforts to minimize #non-XOR gates in circuit [KS08, KSS09,

PSSW09]

Free-XOR Technique [KS08]

AND

XOR

u0

u1

v0

v1

w0

w1

H(u0,v0,g) ⊕ w0

H(u0,v1,g) ⊕ w0

H(u1,v0,g) ⊕ w0

H(u1,v1,g) ⊕ w1

x0

x1

y0

y1

H(w0,x0,g’) ⊕ y0

H(w0,x1,g’) ⊕ y1

H(w1,x0,g’) ⊕ y1

H(w1,x1,g’) ⊕ y0

AND

XOR

u0 v0

w0 x0

u1 = u0 R⊕ v1 = v0 R⊕

w1 = w0 R⊕ x1 = x0 R⊕

y1 = y0 R⊕

y0 = w0 ⊕ x0

Free-XOR Technique [KS08]

H(u0,v0,g) ⊕ w0

H(u0,v1,g) ⊕ w0

H(u1,v0,g) ⊕ w0

H(u1,v1,g) ⊕ w1

H(w0,x0,g’) ⊕ y0

H(w0,x1,g’) ⊕ y1

H(w1,x0,g’) ⊕ y1

H(w1,x1,g’) ⊕ y0

R : hidden global parameter

Free-XOR Technique [KS08]

AND

XOR

u v

w x

Set y = w x⊕y

H(u0,v0,g) ⊕ w0

H(u0,v1,g) ⊕ w0

H(u1,v0,g) ⊕ w0

H(u1,v1,g) ⊕ w1

H(w0,x0,g’) ⊕ y0

H(w0,x1,g’) ⊕ y1

H(w1,x0,g’) ⊕ y1

H(w1,x1,g’) ⊕ y0

R : hidden global parameter

Use H(u,v,g) to recover w

Proof in the RO Model [KS08]

• Corrupt Alice: Trivial• Corrupt Bob:

– Sim creates a fake garbled circuit whose output is always correct– Intuitively, security reduces to proving R is completely hidden– Indistinguishability proved by induction on topological ordering of gates

H(u,v,g) w⊕

H(u,v R,g) w⊕ ⊕

H(u R,v,g) w⊕ ⊕

H(u R,v R,g) (w R)⊕ ⊕ ⊕ ⊕

By induction, known input keys: u, v

Only w is recovered Except with negl. prob., all other

values are hidden

H(u,v,g) w⊕

random1

random2

random3

Real table Simulated table

Proof in the Standard Model?

• RO is not programmed• Can RO be replaced by a suitable hash function?

– [KS08]: a variant of correlation robust hash functions (CorRHF) works– Repeated wherever Free-XOR is used [PSSW09,SS11,AHI11,NO09,…]

• Our contributions

Specify variant of CorRHF that is sufficient

“Natural” variant of CorRHF is NOT sufficient

Proof in the Standard Model?

• Main issue is circularity [BK03,BRS03, HK07, …]– H(u⊕R,v⊕R,g) (w⊕ ⊕R)– CorRHF does not capture circularity

Specify variant of CorRHF that is sufficient

“Natural” variant of CorRHF is NOT sufficient

H(u,v,g) w⊕

H(u,v R,g) w⊕ ⊕

H(u R,v,g) w⊕ ⊕

H(u R,v R,g) ⊕ ⊕ ⊕(w R)⊕

• Circular Correlation Robust Hash Functions– Captures circularity– Security proof for the Free-XOR technique

Why is this important?

• Implementors happy with RO…• In theory, RO methodology is inherently flawed [CGH04]

– Want precise formulation of concrete properties required by RO• “Natural” variant of CorRHF used in other contexts [AHI11,NO09]• “CorRHF is sufficient for Free-XOR technique” claimed in several

works [PSSW09,SS11, AHI11,…]• Assumptions required for Free-XOR tech. in Yao GC?

– Free-XOR in [GMW87, Kol05] with no other assumptions

Correlation Robust Hash Functions [IKNP03]

• Proposed by [IKNP03] for removing RO in OT extension• Definition: (CorRHF) H is CorRHF if for randomly chosen u1,…,

up, the following two distributions are comp. indistinguishable– (u1,…, up, H(u1 R), …, H(u⊕ p R))⊕ where R is chosen uniformly

– (u1,…, up, w1,…, wp) where each wi is chosen uniformly

• (Arithmetic variant) realized under PDH assumption [AHI11]

• [KS08]: Variant can replace RO in Free-XOR– Use of hidden off-set in both [KS08] and [IKNP03]

“Natural” Variant of CorRHF

• Definition: (weak 2-CorRHF) H is weakly 2-CorRHF if for given u1,…, up, v1,…, vp, the following two distributions are comp. indistinguishable– .

– `

where R is chosen uniformly– (w1,…, w3p) where each wi is chosen uniformly

H(u1 R,v⊕ 1,1), H(u1,v1 R,1), H(u⊕ 1 R,v⊕ 1 R,1)⊕

H(up R,v⊕ p,p), H(up,vp R,p), H(u⊕ p R,v⊕ p R,p)⊕

.

.

.

Our Working Definition of 2-CorRHF

• Oracle based– CorR(u,v,g): output H(u,v R,g), H(u R,v,g), H(u R,v R,g)⊕ ⊕ ⊕ ⊕

– Rand(u,v,g): if input was queried before then output answer given previously, else output a uniformly chosen string

• Definition: (2-CorRHF) H is 2-CorRHF if every non-uniform PPT adversary A with oracle access to O (either CorR or Rand) cannot tell whether O is CorR or Rand except with negligible advantage

• Stronger than previous definition– Oracle queries can be adaptive

2-CorRHF and Free-XOR technique

Reduction adversary B for 2-CorRHF Given O (either CorR or Rand) How to create garbled table?

Choose random u,v,w Query O(u,v,g) to get h1, h2, h3

First 3 entries can be set How to obtain fourth entry using h3?

Unclear how to complete reduction

Reduction Table

H(u,v,g) w⊕

H(u,v R,g) w⊕ ⊕

H(u R,v,g) w⊕ ⊕

H(u R,v R,g) (w R)⊕ ⊕ ⊕ ⊕

H(u,v,g) w⊕

random1

random2

random3

Real table Simulated table

H(u,v,g) w⊕

h1 w⊕

h2 w⊕

?

Counterexample

• Rule out fully black-box reduction using two oracles H and Break

• H is 2-CorRHF even if A has oracle access to H and Break• Free-XOR technique is insecure when A has access to H and

Break

H(u,v,g) Random function

Break(u,v,g,z1,z2,z3) Output r when

z1 = H(u,v r,g) ⊕

z2 = H(u r,v,g)⊕

z3 = H(u r,v r,g) r⊕ ⊕ ⊕ Else output nothing

H is 2-CorRHF against AH, Break

• O = Rand: uniform, independent of A’s view• O = CorR: uniform, independent of A’s view unless A queries

O(u,v,g) &– O(u’,v’,g) with u’ u = R or v’ v = R, or⊕ ⊕– H(u’,v’,g) with u’ u⊕ = R or v’ v⊕ = R, or

– Break(u,v,g,z1,z2,z3) with z3 H(u R,v R,g) = R⊕ ⊕ ⊕

Happens withnegligible prob.

H(u,v,g) Random function

Break(u,v,g,z1,z2,z3) Output r when

z1 = H(u,v r,g) ⊕

z2 = H(u r,v,g)⊕

z3 = H(u r,v r,g) r⊕ ⊕ ⊕ Else output nothing

Insecurity of Free-XOR Tech.: AH, Break

Attack: A acting as Bob recovers R• Recover w from gate g using H(u,v,g)

– z1 = c1 w⊕

– z2 = c2 w⊕

– z3 = c3 w⊕

• Query Break(u,v,g,z1,z2,z3) to get R

H(u,v,g) w⊕

H(u,v R,g) w⊕ ⊕

H(u R,v,g) w⊕ ⊕

H(u R,v R,g) (w R)⊕ ⊕ ⊕ ⊕

AND gate g

c1

c3

c2

H(u,v,g) Random function

Break(u,v,g,z1,z2,z3) Output r when

z1 = H(u,v r,g) ⊕

z2 = H(u r,v,g)⊕

z3 = H(u r,v r,g) r⊕ ⊕ ⊕ Else output nothing

Capturing Circularity: Circular 2-CorRHF

• Recall indistinguishable oracles in 2-CorRHF– CorR(u,v,g): output H(u,v R,g), H(u R,v,g), H(u R,v R,g)⊕ ⊕ ⊕ ⊕

– Rand(u,v,g): if input was queried before then output answer given previously, else output uniformly chosen

• Oracles for Circular 2-CorRHF– CircR(u,v,g,b1,b2,b3): output H(u b⊕ 1R, v b⊕ 2R, g) b⊕ 3R

– Rand(u,v,g,b1,b2,b3): same as before

bR = 0 when b=0bR = R when b=1

Capturing Circularity: Circular 2-CorRHF

• Recall indistinguishable oracles in 2-CorRHF– CorR(u,v,g): output H(u,v R,g), H(u R,v,g), H(u R,v R,g)⊕ ⊕ ⊕ ⊕

– Rand(u,v,g): if input was queried before then output answer given previously, else output uniformly chosen

• Oracles for Circular 2-CorRHF– CircR(u,v,g,b1,b2,b3): output H(u b⊕ 1R, v b⊕ 2R, g) ⊕ b3R

– Rand(u,v,g,b1,b2,b3): same as before

Allowing b3 = 1 captures circularity

Circular 2-CorRHF

• Oracles for Circular 2-CorRHF– CircR(u,v,g,b1,b2,b3): output H(u b⊕ 1R, v b⊕ 2R, g) b⊕ 3R

– Rand(u,v,g,b1,b2,b3): same as before

• Indistinguishability conditioned on restricted queries to CircR

– No queries of the form (u,v,g,0,0,b3)

– No queries on both (u,v,g,b1,b2,0) and (u,v,g,b1,b2,1)

• Definition: (Circular 2-CorRHF) H is circular 2-CorRHF if every non-uniform PPT adversary A making legal queries to oracle O cannot tell whether O is CircR or Rand except with negligible advantage

Proof of Security for the Free-XOR Tech.

• Corrupt Alice: Trivial• Corrupt Bob: Sim creates a fake garbled circuit

AND

XOR

u v

w x

y = w x⊕ Choose random key for all wires except output wires of XOR gates

XOR chosen keys for input wires to get key for output wire of XOR gate

Populate unknown values in non-XOR gate table with random values

Set output garbled table to give correct output z

H(u,v,g) w⊕

random1

random2

random3

Simulated table

.

.

.

Reduction to Circular 2-CorRHF• Reduction adversary B for Circular 2-CorRHF • B given access to O (either CircR or Rand) & real inputs for

both parties

AND

XOR

u v

w x

y = w x⊕

H(u,v,g) w⊕

O(u,v,g,0,1,0) w⊕

O(u,v,g,1,0,0) w⊕

O(u,v,g,1,1,1) w⊕

Reduction Table

.

.

. Choose random key for all wires except output wires of XOR gates

XOR chosen keys for input wires to get key for output wire of XOR gate

Populate unknown values in non-XOR gate table using O

Set output garbled table to give correct output z

Circular 2-CorRHF & Free-XOR technique

Recall CircR(u,v,g,b1,b2,b3): output H(u b⊕ 1R, v b⊕ 2R, g) b⊕ 3R

Reduction Table

H(u,v,g) w⊕

H(u,v R,g) w⊕ ⊕

H(u R,v,g) w⊕ ⊕

H(u R,v R,g) (w R)⊕ ⊕ ⊕ ⊕

H(u,v,g) w⊕

random1

random2

random3

Real table Simulated table

H(u,v,g) w⊕

O(u,v,g,0,1,0) w⊕

O(u,v,g,1,0,0) w⊕

O(u,v,g,1,1,1) w⊕

O = RandO = CircR

Conclusions & Open Questions

• Free-XOR technique extremely influential– Used in all Yao GC implementations

• Secure in the random oracle model• “Natural” variant of 2-CorRHF is not sufficient

– Circularity• Stronger notion of 2-CorRHF: Circular 2-CorRHF

– Security proof for the Free-XOR technique• “Free” gate evaluation under OWF?• Realize Circular 2-CorRHF from standard crypto assumptions?

Thank You!