on-line hev energy management using a fuzzy logichev with pcube - gafl 35 cycles – 87.6296% hev...

10
Yacine Gaoua 1,2,3 , Stéphane Caux 1 , Pierre Lopez 2,3 and Josep Domingo Salvany 4 1. Institut National Polytechnique de Toulouse, INPT 2. Laboratoire PLAsma et Conversion d'Energie, LAPLACE 3. Laboratoire d'Analyse et d'Architecture des Systemes, LAAS-CNRS 4. Nexter Electronics, NE [email protected] [email protected], [email protected], [email protected] On-Line HEV Energy Management Using a Fuzzy Logic

Upload: others

Post on 18-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On-Line HEV Energy Management Using a Fuzzy LogicHEV with PCube - GAFL 35 Cycles – 87.6296% HEV with PCube −IpOpt 39 Cycles – 88.7396% HEV with PCube Battery discharge (1 cycle)

Yacine Gaoua 1,2,3, Stéphane Caux 1, Pierre Lopez 2,3 and Josep Domingo Salvany 4

1. Institut National Polytechnique de Toulouse, INPT

2. Laboratoire PLAsma et Conversion d'Energie, LAPLACE

3. Laboratoire d'Analyse et d'Architecture des Systemes, LAAS-CNRS

4. Nexter Electronics, NE

[email protected]

[email protected],

[email protected],

[email protected]

On-Line HEV Energy Management Using a

Fuzzy Logic

Page 2: On-Line HEV Energy Management Using a Fuzzy LogicHEV with PCube - GAFL 35 Cycles – 87.6296% HEV with PCube −IpOpt 39 Cycles – 88.7396% HEV with PCube Battery discharge (1 cycle)

Outline of the presentation

I. Introduction to HEV energy chain

II. Sources characteristics

III. Modeling

IV. Solving method

V. Off-line optimization

VI. Results and performance

VII. Conclusion

Page 3: On-Line HEV Energy Management Using a Fuzzy LogicHEV with PCube - GAFL 35 Cycles – 87.6296% HEV with PCube −IpOpt 39 Cycles – 88.7396% HEV with PCube Battery discharge (1 cycle)

Hybrid Electrical Vehicle

Battery Super-capacitor Fuel cell

HEV energy chain

I. HEV energy chain

Page 4: On-Line HEV Energy Management Using a Fuzzy LogicHEV with PCube - GAFL 35 Cycles – 87.6296% HEV with PCube −IpOpt 39 Cycles – 88.7396% HEV with PCube Battery discharge (1 cycle)

Parameter Meaning

𝑰𝒄𝒉 Demand of the powertrain (A)

𝑰𝒂𝒎𝒊𝒏,𝑰𝒂

𝒎𝒂𝒙 Min/Max current exiting the PCube converter (A)

𝑰𝒔𝒄𝒎𝒊𝒏,𝑰𝒔𝒄

𝒎𝒂𝒙 Min/Max current provided by the super-capacitor (A)

𝑼𝒔𝒄𝒎𝒊𝒏,𝑼𝒔𝒄

𝒎𝒂𝒙, 𝑼𝒔𝒄(0) Min/Max/Initial voltage of the super-capacitor (V)

𝑺𝑶𝑪𝒃𝒂𝒕𝒎𝒊𝒏,𝑺𝑶𝑪𝒃𝒂𝒕

𝒎𝒂𝒙, 𝑺𝑶𝑪𝒃𝒂𝒕(0) Min/Max/Initial energy level in the battery pack (%)

𝑪𝒂𝒑𝒃𝒂𝒕 Battery capacity (Ah)

𝜟𝒕 Time stepsize (s)

𝑹𝒔𝒄 Super-capacitor internal resistance (Ω)

𝑪𝒔𝒄 Super-capacitor capacity (F)

𝑬𝑳𝒐𝒔𝒔𝒃𝒂𝒕 Battery energy losses (kW)

E𝑳𝒐𝒔𝒔𝒄𝒗𝒔 Energy losses of the PCube converter (kW)

Input parameters.

Battery efficiency. Convertor efficiency.

II. Sources characteristics

Page 5: On-Line HEV Energy Management Using a Fuzzy LogicHEV with PCube - GAFL 35 Cycles – 87.6296% HEV with PCube −IpOpt 39 Cycles – 88.7396% HEV with PCube Battery discharge (1 cycle)

• 𝑰𝒃𝒂𝒕𝑹: Real battery current

• 𝑰𝒃𝒂𝒕: battery current

• 𝑺𝑶𝑪𝒃𝒂𝒕: Battery State of charge

• 𝑼𝒃𝒂𝒕: Battery voltage

• 𝑰𝒔𝒄: Super-capacitor current

• 𝑼𝒔𝒄: Super-capacitor voltage

• 𝑰𝒂: Convertor current

(nlp)

𝐼𝑏𝑎𝑡 + 𝐼𝑎 = 𝐼𝑐ℎ 𝐼𝑐ℎ > 0

𝐼𝑐ℎ ≤ 𝐼𝑏𝑎𝑡 + 𝐼𝑎 ≤ 0 𝐼𝑐ℎ ≤ 0

𝐼𝑎𝑀𝑖𝑛 ≤ 𝐼𝑎≤ 𝐼𝑎

𝑀𝑎𝑥

𝐼𝑠𝑐𝑀𝑖𝑛 ≤ 𝐼𝑠𝑐 ≤ 𝐼𝑠𝑐

𝑀𝑎𝑥

𝑈𝑠𝑐𝑀𝑖𝑛 ≤ 𝑈𝑠𝑐≤ 𝑈𝑠𝑐

𝑀𝑎𝑥

𝑆𝑂𝐶𝑏𝑎𝑡𝑀𝑖𝑛 ≤ 𝑆𝑂𝐶𝑏𝑎𝑡 ≤ 𝑆𝑂𝐶𝑏𝑎𝑡

𝑀𝑎𝑥

𝑃𝑏𝑎𝑡𝑅 = 𝑃𝑏𝑎𝑡

+ 𝐸𝑙𝑜𝑠𝑠𝑏𝑎𝑡(𝑃𝑏𝑎𝑡 )

𝑃𝑠𝑐 = 𝑃𝑎

+ 𝐸𝑙𝑜𝑠𝑠𝑐𝑣𝑠 𝑃𝑎 + 𝑅𝑠𝑐

𝐼𝑠𝑐 2

𝑆𝑂𝐶𝑏𝑎𝑡 = 𝑆𝑂𝐶𝑏𝑎𝑡 0 +100.𝐸𝑏𝑎𝑡

𝐶𝑎𝑝𝑏𝑎𝑡∆𝑡

𝑈𝑠𝑐 = 𝑈𝑠𝑐 0 + 𝐼𝑠𝑐 + 𝑅𝑠𝑐 +∆𝑡

𝐶𝑠𝑐

𝑈𝑏𝑎𝑡 = 𝑓 𝑆𝑂𝐶𝑏𝑎𝑡 0

𝐸𝑏𝑎𝑡 = 𝑔 𝐼𝑏𝑎𝑡𝑅

Decision variables:

Mathematical modeling

Goal: Minimize battery discharge

Under constrains of (system functioning,

sources design, safety limitation),

𝒈: Computation of electrical quantity

𝒇: Computation of battery voltage

III. Modeling

Page 6: On-Line HEV Energy Management Using a Fuzzy LogicHEV with PCube - GAFL 35 Cycles – 87.6296% HEV with PCube −IpOpt 39 Cycles – 88.7396% HEV with PCube Battery discharge (1 cycle)

IV. Solving method using fuzzy logic

Powertrain demand. Super-capacitor voltage. Battery current.

Rules engine.

𝒊𝒇 𝑰𝒄𝒉 = . 𝒂𝒏𝒅 𝑼𝒔𝒄 = . 𝒕𝒉𝒆𝒏 𝑰𝒃𝒂𝒕 = . 𝒐𝒓

Rules generation. Decision surface (centroid method).

Parameters setting: Genetic algorithm (off-line - GPS)

Co

ntro

l an

d c

orre

ctio

n a

lgo

rithm

Page 7: On-Line HEV Energy Management Using a Fuzzy LogicHEV with PCube - GAFL 35 Cycles – 87.6296% HEV with PCube −IpOpt 39 Cycles – 88.7396% HEV with PCube Battery discharge (1 cycle)

V. Off-line optimization

Mission profile NE (176s).

(nlp)

𝑴𝒊𝒏 𝟏𝟎𝟎 − 𝑺𝑶𝑪𝒃𝒂𝒕 𝑻 = 𝑴𝒂𝒙 𝑺𝑶𝑪𝒃𝒂𝒕 𝑻

𝐼𝑏𝑎𝑡(𝑡) + 𝐼𝑎(𝑡) = 𝐼𝑐ℎ(𝑡) 𝐼𝑐ℎ(𝑡) > 0

𝐼𝑐ℎ ≤ 𝐼𝑏𝑎𝑡 + 𝐼𝑎 ≤ 0 𝐼𝑐ℎ(𝑡) ≤ 0

𝐼𝑎𝑀𝑖𝑛 ≤ 𝐼𝑎 (𝑡) ≤ 𝐼𝑎

𝑀𝑎𝑥

𝐼𝑠𝑐𝑀𝑖𝑛 ≤ 𝐼𝑠𝑐(𝑡) ≤ 𝐼𝑠𝑐

𝑀𝑎𝑥

𝑈𝑠𝑐𝑀𝑖𝑛 ≤ 𝑈𝑠𝑐 𝑡 ≤ 𝑈𝑠𝑐

𝑀𝑎𝑥

𝑆𝑂𝐶𝑏𝑎𝑡𝑀𝑖𝑛 ≤ 𝑆𝑂𝐶𝑏𝑎𝑡(𝑡) ≤ 𝑆𝑂𝐶𝑏𝑎𝑡

𝑀𝑎𝑥

𝑃𝑏𝑎𝑡𝑅 𝑡 = 𝑃𝑏𝑎𝑡

𝑡 + 𝐸𝑙𝑜𝑠𝑠𝑏𝑎𝑡 𝑃𝑏𝑎𝑡 𝑡

𝑃𝑠𝑐 (𝑡) = 𝑃𝑎

(𝑡) + 𝐸𝑙𝑜𝑠𝑠𝑐𝑣𝑠 𝑃𝑎 (𝑡) + 𝑅𝑠𝑐

𝐼𝑠𝑐(𝑡) 2

𝑆𝑂𝐶𝑏𝑎𝑡 𝑡 = 𝑆𝑂𝐶𝑏𝑎𝑡 𝑡 − 1 +100.𝐸𝑏𝑎𝑡 𝑡

𝐶𝑎𝑝𝑏𝑎𝑡∆𝑡

𝑈𝑠𝑐(𝑡) = 𝑈𝑠𝑐 𝑡 − 1 + 𝐼𝑠𝑐(𝑡) + 𝑅𝑠𝑐 +∆𝑡

𝐶𝑠𝑐

𝑈𝑏𝑎𝑡 = 𝑓 𝑆𝑂𝐶𝑏𝑎𝑡 𝑡 − 1

𝐸𝑏𝑎𝑡 = 𝑔 𝐼𝑏𝑎𝑡𝑅(𝑡)

Global optimization

Optimization using Operations

Research methods:

AMPL+ IpOpt algorithm (Interior

Points)

Page 8: On-Line HEV Energy Management Using a Fuzzy LogicHEV with PCube - GAFL 35 Cycles – 87.6296% HEV with PCube −IpOpt 39 Cycles – 88.7396% HEV with PCube Battery discharge (1 cycle)

VI. Results and performance

HEV sources/

Method

Number of cycles / Battery discharge

HEV battery alone 30 Cycles – 88.3143%

HEV with PCube - FL 34 Cycles – 88.8872%

HEV with PCube - GAFL 35 Cycles – 87.6296%

HEV with PCube − IpOpt 39 Cycles – 88.7396%

HEV with PCube Battery discharge (1 cycle)

GAFL 2.546%

IpOpt 2.29315%

NE Mission profile 176s. Mission profile 3h 50min.

HEV sources/

Method

Number of cycles / Battery discharge

HEV battery alone 1 Cycle – 52.3566%

HEV with PCube - FL 2 Cycles – 85.7596%

HEV with PCube - GAFL 2 Cycles – 71.9029%

HEV with PCube − IpOpt 3 Cycles – 89.896%

HEV with PCube Battery discharge (1 cycle)

GAFL 36.1712%

IpOpt 30.49%

Page 9: On-Line HEV Energy Management Using a Fuzzy LogicHEV with PCube - GAFL 35 Cycles – 87.6296% HEV with PCube −IpOpt 39 Cycles – 88.7396% HEV with PCube Battery discharge (1 cycle)

VII. Conclusions and perspectives

• Genetic algorithm improve the solution by setting FL parameters off-line,

• Good quality of the results (in regard to the global optimization),

• Development of decision support tool in C + + (implementation in a dsp target).

• Validation of results on a real prototype.

Conclusions:

Perspectives: