on hermitian, einstein 4-manifoldsaprofusionof compact complex manifolds now known to admit k...

249
On Hermitian, Einstein 4-Manifolds Claude LeBrun Stony Brook University

Upload: others

Post on 30-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

On

Hermitian, Einstein

4-Manifolds

Claude LeBrunStony Brook University

1

Page 2: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

For Roger Penrose

2

Page 3: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

For Roger Penrose

who has taught me so much

3

Page 4: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

For Roger Penrose

who has taught me so muchabout the magical links between

4

Page 5: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

For Roger Penrose

who has taught me so muchabout the magical links between

Einstein’s equations and complex geometry.

5

Page 6: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature. :

6

Page 7: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature. :

Which compact C∞ manifolds admit such metrics?

7

Page 8: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature. :

Which compact C∞ manifolds admit such metrics?

“Geometrization problem”

8

Page 9: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature. :

Which compact C∞ manifolds admit such metrics?

“Geometrization problem”

For smooth topology, dimension 4 is sui generis.

9

Page 10: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature. :

Which compact C∞ manifolds admit such metrics?

“Geometrization problem”

For smooth topology, dimension 4 is sui generis.

Manifestly special for Einstein metrics, too.

10

Page 11: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Ricci curvature measuresvolume distortion by exponential map:

.......

.......

.......

.......

.......

.......

.......

.......

......................................................................................................................................................................................................................................................................................................................

..................................

................................................

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................................................

..........................................

......................................................................

.....................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

p v

exp(v)r

11

Page 12: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Ricci curvature measuresvolume distortion by exponential map:

.......

.......

.......

.......

.......

.......

.......

.......

......................................................................................................................................................................................................................................................................................................................

..................................

................................................

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................................................

..........................................

......................................................................

.....................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

p v

exp(v)r

In “geodesic normal coordinates”metric volume measure is

dµg =[1− 1

6 rjk xjxk + O(|x|3)

]dµEuclidean,

where r is the Ricci tensor rjk = Rijik.

12

Page 13: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

13

Page 14: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

14

Page 15: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

“. . . the greatest blunder of my life!”

— A. Einstein, to G. Gamow

15

Page 16: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

16

Page 17: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

As punishment . . .

17

Page 18: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

λ called Einstein constant.

18

Page 19: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

λ called Einstein constant.

Has same sign as the scalar curvature

s = rjj = Rijij.

19

Page 20: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

λ called Einstein constant.

Has same sign as the scalar curvature

s = rjj = Rijij.

volh(Bε(p))

cnεn= 1− s ε2

6(n+2)+ O(ε4)

r......................................................................................... ε

.....................................................................................................................................................................................................................................................................................................................................................................................................................................

............................

.......................

..........................................................................................................................................................

....... .............

.......................................................................

20

Page 21: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

21

Page 22: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

22

Page 23: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).

23

Page 24: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

24

Page 25: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

Equivalently:

25

Page 26: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

Equivalently:

In local complex coordinates (z1, . . . , zm),

26

Page 27: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

Equivalently:

In local complex coordinates (z1, . . . , zm),

h =

m∑j,k=1

hjk

[dzj ⊗ dzk + dzk ⊗ dzj

]

27

Page 28: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

Equivalently:

In local complex coordinates (z1, . . . , zm),

h =

m∑j,k=1

hjk

[dzj ⊗ dzk + dzk ⊗ dzj

]where [hjk] Hermitian matrix at each point.

28

Page 29: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

Equivalently:

29

Page 30: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

Equivalently:

T 1,0M ⊂ TCM isotropic w.r.t. C-bilinear h.

30

Page 31: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

Equivalently:

T 1,0M ⊂ TCM isotropic w.r.t. C-bilinear h.

T 1,0M ⊂ TCM also involutive (because J -integrable).

31

Page 32: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

Equivalently:

T 1,0M ⊂ TCM isotropic w.r.t. C-bilinear h.

T 1,0M ⊂ TCM also involutive (because J -integrable).

Lorentzian analogue: shear-free null congruence.

32

Page 33: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

Equivalently:

T 1,0M ⊂ TCM isotropic w.r.t. C-bilinear h.

T 1,0M ⊂ TCM also involutive (because J -integrable).

Lorentzian analogue: shear-free null congruence.

Complexified analogue: foliation by α-surfaces.

33

Page 34: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If M2m endowed with complex structure J ,

a Riemannian metric h called Hermitian if

h(J ·, J ·) = h(·, ·).Here J = integrable almost-complex structure.

Equivalently:

In local complex coordinates (z1, . . . , zm),

h =

m∑j,k=1

hjk

[dzj ⊗ dzk + dzk ⊗ dzj

]where [hjk] Hermitian matrix at each point.

34

Page 35: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If (M2m, h, J) is Hermitian, then

35

Page 36: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If (M2m, h, J) is Hermitian, then

ω(·, ·) = h(J ·, ·)

36

Page 37: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If (M2m, h, J) is Hermitian, then

ω(·, ·) = h(J ·, ·)is a non-degenerate 2-form.

37

Page 38: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If (M2m, h, J) is Hermitian, then

ω(·, ·) = h(J ·, ·)is a non-degenerate 2-form.

In local complex coordinates,

38

Page 39: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If (M2m, h, J) is Hermitian, then

ω(·, ·) = h(J ·, ·)is a non-degenerate 2-form.

In local complex coordinates,

ω = i

m∑j,k=1

hjk dzj ∧ dzk

39

Page 40: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If (M2m, h, J) is Hermitian, then

ω(·, ·) = h(J ·, ·)is a non-degenerate 2-form.

In local complex coordinates,

ω = i

m∑j,k=1

hjk dzj ∧ dzk

If dω = 0, (M2m, h, J) is called Kahler.

40

Page 41: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If (M2m, h, J) is Hermitian, then

ω(·, ·) = h(J ·, ·)is a non-degenerate 2-form.

In local complex coordinates,

ω = i

m∑j,k=1

hjk dzj ∧ dzk

If dω = 0, (M2m, h, J) is called Kahler.

⇐⇒ locally, ∃f s.t. hjk =∂2f

∂zj∂zk

41

Page 42: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If (M2m, h, J) is Hermitian, then

ω(·, ·) = h(J ·, ·)is a non-degenerate 2-form.

In local complex coordinates,

ω = i

m∑j,k=1

hjk dzj ∧ dzk

If dω = 0, (M2m, h, J) is called Kahler.

⇐⇒ locally, ∃f s.t. hjk =∂2f

∂zj∂zk

42

Page 43: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If (M2m, h, J) is Hermitian, then

ω(·, ·) = h(J ·, ·)is a non-degenerate 2-form.

In local complex coordinates,

ω = i

m∑j,k=1

hjk dzj ∧ dzk

If dω = 0, (M2m, h, J) is called Kahler,

and ω called the Kahler form. while

43

Page 44: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If (M2m, h, J) is Hermitian, then

ω(·, ·) = h(J ·, ·)is a non-degenerate 2-form.

In local complex coordinates,

ω = i

m∑j,k=1

hjk dzj ∧ dzk

If dω = 0, (M2m, h, J) is called Kahler,

and ω called the Kahler form, while

[ω] ∈ H2(M,R) called the Kahler class.

44

Page 45: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

45

Page 46: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

46

Page 47: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

47

Page 48: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

48

Page 49: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

49

Page 50: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

............................................

.........................................

..............

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

50

Page 51: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

............................................

.........................................

..............

........................................

..........................................

..................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

51

Page 52: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

............................................

.........................................

..............

........................................

..........................................

..................

..............................................................................

...................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

52

Page 53: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

............................................

.........................................

..............

........................................

..........................................

..................

..............................................................................

...................

.........................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

53

Page 54: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

............................................

.........................................

..............

........................................

..........................................

..................

..............................................................................

...................

.........................................................................................................................

................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

54

Page 55: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

............................................

.........................................

..............

........................................

..........................................

..................

..............................................................................

...................

.........................................................................................................................

................................................................................................

....................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

55

Page 56: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

............................................

.........................................

..............

........................................

..........................................

..................

..............................................................................

...................

.........................................................................................................................

................................................................................................

....................................................................................................

...................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

56

Page 57: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

............................................

.........................................

..............

........................................

..........................................

..................

..............................................................................

...................

.........................................................................................................................

................................................................................................

....................................................................................................

...................................................................................................

..................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

57

Page 58: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

............................................

.........................................

..............

........................................

..........................................

..................

..............................................................................

...................

.........................................................................................................................

................................................................................................

....................................................................................................

...................................................................................................

..................................................................................................

......................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

58

Page 59: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................

..........................................

..................

............................................

.........................................

..............

................................................

........................................................

............................................

.........................................

..............

........................................

..........................................

..................

..............................................................................

...................

.........................................................................................................................

................................................................................................

....................................................................................................

...................................................................................................

..................................................................................................

......................................................................................................

.....................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

59

Page 60: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................................

........................................

........................................

.....................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

60

Page 61: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(Mn, g): Kahler ⇐⇒ holonomy ⊂ O(n)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................................

........................................

........................................

.....................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

61

Page 62: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(M2m, g): Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................................

........................................

........................................

.....................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

62

Page 63: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(M2m, g) Kahler ⇐⇒ holonomy ⊂ U(m)

s

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

...................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

...................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................................

........................................

........................................

.....................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................

63

Page 64: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(M2m, g) Kahler ⇐⇒ holonomy ⊂ U(m)

64

Page 65: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(M2m, g) Kahler ⇐⇒ holonomy ⊂ U(m)

Kahler magic:

65

Page 66: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(M2m, g) Kahler ⇐⇒ holonomy ⊂ U(m)

Kahler magic:

The 2-form

ir(J ·, ·)

66

Page 67: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(M2m, g) Kahler ⇐⇒ holonomy ⊂ U(m)

Kahler magic:

The 2-form

ir(J ·, ·)is curvature of canonical line bundle K = Λm,0.

67

Page 68: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(M2m, g) Kahler ⇐⇒ holonomy ⊂ U(m)

Kahler magic:

The 2-form

ρ = r(J ·, ·)is called the Ricci form.

68

Page 69: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler metrics:

(M2m, g) Kahler ⇐⇒ holonomy ⊂ U(m)

Kahler magic:

The 2-form

ρ = r(J ·, ·)is called the Ricci form.

In local complex coordinates

rjk = − ∂2

∂zj∂zklog det[h`m]

69

Page 70: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If h is both an Einstein metric and Kahler,

70

Page 71: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If h is both an Einstein metric and Kahler,it is called a Kahler-Einstein metric.

71

Page 72: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If h is both an Einstein metric and Kahler,it is called a Kahler-Einstein metric.

A profusion of compact complex manifoldsnow known to admit Kahler-Einstein metrics.

72

Page 73: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If h is both an Einstein metric and Kahler,it is called a Kahler-Einstein metric.

A profusion of compact complex manifoldsnow known to admit Kahler-Einstein metrics.

Very few compact Einstein 4-manifoldsknown which are not Kahler-Einstein!

73

Page 74: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If h is both an Einstein metric and Kahler,it is called a Kahler-Einstein metric.

A profusion of compact complex manifoldsnow known to admit Kahler-Einstein metrics.

Very few compact Einstein 4-manifoldsknown which are not Kahler-Einstein!

Two such non-Kahler examples:

74

Page 75: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If h is both an Einstein metric and Kahler,it is called a Kahler-Einstein metric.

A profusion of compact complex manifoldsnow known to admit Kahler-Einstein metrics.

Very few compact Einstein 4-manifoldsknown which are not Kahler-Einstein!

Two such non-Kahler examples:

• Page metric on CP2#CP2. (1979)

75

Page 76: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If h is both an Einstein metric and Kahler,it is called a Kahler-Einstein metric.

A profusion of compact complex manifoldsnow known to admit Kahler-Einstein metrics.

Very few compact Einstein 4-manifoldsknown which are not Kahler-Einstein!

Two such non-Kahler examples:

• Page metric on CP2#CP2. (1979)

76

Page 77: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If h is both an Einstein metric and Kahler,it is called a Kahler-Einstein metric.

A profusion of compact complex manifoldsnow known to admit Kahler-Einstein metrics.

Very few compact Einstein 4-manifoldsknown which are not Kahler-Einstein!

Two such non-Kahler examples:

• Page metric on CP2#CP2. (1979)

• Chen-LeBrun-Weber metric on CP2#2CP2. (2008)

77

Page 78: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If h is both an Einstein metric and Kahler,it is called a Kahler-Einstein metric.

A profusion of compact complex manifoldsnow known to admit Kahler-Einstein metrics.

Very few compact Einstein 4-manifoldsknown which are not Kahler-Einstein!

Two such non-Kahler examples:

• Page metric on CP2#CP2. (1979)

• Chen-LeBrun-Weber metric on CP2#2CP2. (2008)

78

Page 79: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

If h is both an Einstein metric and Kahler,it is called a Kahler-Einstein metric.

A profusion of compact complex manifoldsnow known to admit Kahler-Einstein metrics.

Very few compact Einstein 4-manifoldsknown which are not Kahler-Einstein!

Two such non-Kahler examples:

• Page metric on CP2#CP2. (1979)

• Chen-LeBrun-Weber metric on CP2#2CP2. (2008)

Both are actually Hermitian.

79

Page 80: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

80

Page 81: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

81

Page 82: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

82

Page 83: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

83

Page 84: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

84

Page 85: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then either

85

Page 86: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then either

• (M,J, h) is Kahler-Einstein; or

86

Page 87: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then either

• (M,J, h) is Kahler-Einstein; or

•M ≈ CP2#CP2, and h is a constant times thePage metric; or

87

Page 88: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then either

• (M,J, h) is Kahler-Einstein; or

•M ≈ CP2#CP2, and h is a constant times thePage metric; or

•M ≈ CP2#2CP2 and h is a constant timesthe Chen-LeBrun-Weber metric.

88

Page 89: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

89

Page 90: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

...........................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

................... ...........................

................................................................................................................................................................................................................................................................................................................................................................................

.........................

..................................................

...

................................................................................. .....................................................

......................................................................................................................................

90

Page 91: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

................................................................. ..................................

................................

................................

................................

................................

91

Page 92: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

..................................

..................................

................................

................................

92

Page 93: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

................................................................. ..................................

................................

................................

................................

................................

93

Page 94: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

...........................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

................... ...........................

................................................................................................................................................................................................................................................................................................................................................................................

.........................

..................................................

...

................................................................................. .....................................................

......................................................................................................................................

94

Page 95: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

................................................................. ..................................

................................

................................

................................

................................

95

Page 96: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

..................................

..................................

................................

................................

96

Page 97: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

..................................

..................................

................................

................................

Blowing up:

97

Page 98: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

..................................

..................................

................................

................................

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

rN

M............................................................................................................... ..........

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

........

.......

.........................................

98

Page 99: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

..................................

..................................

................................

................................

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

rN

M............................................................................................................... ..........

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

........

.......

.........................................

99

Page 100: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

..................................

..................................

................................

................................

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

rN

M............................................................................................................... ..........

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

........

.......

.........................................

100

Page 101: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

..................................

..................................

................................

................................

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

M ≈ N#CP2

101

Page 102: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Recall:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

..................................

..................................

................................

................................

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

M ≈ N#CP2

in which new CP1 has self-intersection −1.

102

Page 103: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then either

• (M,J, h) is Kahler-Einstein; or

•M ≈ CP2#CP2, and h is a constant times thePage metric; or

•M ≈ CP2#2CP2 and h is a constant timesthe Chen-LeBrun-Weber metric.

103

Page 104: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem A. Let (M4, J) be a compact complexsurface, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then either

• (M,J, h) is Kahler-Einstein; or

•M ≈ CP2#CP2, and h is a constant times thePage metric; or

•M ≈ CP2#2CP2 and h is a constant timesthe Chen-LeBrun-Weber metric.

Exceptional cases: CP2 blown up at 1 or 2 points.

104

Page 105: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem B. Let (M4, J) be a compact complexsurface. Then there is an Einstein metric h onM which is Hermitian with respect to J ⇐⇒c1(M) “has a sign.”

105

Page 106: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem B. Let (M4, J) be a compact complexsurface. Then there is an Einstein metric h onM which is Hermitian with respect to J ⇐⇒c1(M) “has a sign.”

More precisely, there is a Hermitian, Einsteinmetric h with Einstein constant λ ⇐⇒ (M,J)carries a Kahler class [ω] such that

c1(M) = λ[ω].

106

Page 107: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem B. Let (M4, J) be a compact complexsurface. Then there is an Einstein metric h onM which is Hermitian with respect to J ⇐⇒c1(M) “has a sign.”

More precisely, there is a Hermitian, Einsteinmetric h with Einstein constant λ ⇐⇒ (M,J)carries a Kahler class [ω] such that

c1(M) = λ[ω].

For fixed λ 6= 0, this h is moreover unique mod-ulo biholomorphisms of (M,J).

107

Page 108: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem B. Let (M4, J) be a compact complexsurface. Then there is an Einstein metric h onM which is Hermitian with respect to J ⇐⇒c1(M) “has a sign.”

More precisely, there is a Hermitian, Einsteinmetric h with Einstein constant λ ⇐⇒ (M,J)carries a Kahler class [ω] such that

c1(M) = λ[ω].

For fixed λ 6= 0, this h is moreover unique mod-ulo biholomorphisms of (M,J).

Kahler case: Calabi, Aubin, Yau, Siu, Tian, . . .

108

Page 109: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem B. Let (M4, J) be a compact complexsurface. Then there is an Einstein metric h onM which is Hermitian with respect to J ⇐⇒c1(M) “has a sign.”

More precisely, there is a Hermitian, Einsteinmetric h with Einstein constant λ ⇐⇒ (M,J)carries a Kahler class [ω] such that

c1(M) = λ[ω].

For fixed λ 6= 0, this h is moreover unique mod-ulo biholomorphisms of (M,J).

Kahler case: Calabi, Aubin, Yau, Siu, Tian, . . .

Non-Kahler case: Chen, LeBrun, Weber, . . .

109

Page 110: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem B. Let (M4, J) be a compact complexsurface. Then there is an Einstein metric h onM which is Hermitian with respect to J ⇐⇒c1(M) “has a sign.”

More precisely, there is a Hermitian, Einsteinmetric h with Einstein constant λ ⇐⇒ (M,J)carries a Kahler class [ω] such that

c1(M) = λ[ω].

For fixed λ 6= 0, this h is moreover unique mod-ulo biholomorphisms of (M,J).

Warning: when h is non-Kahler, its relation to ω issurprisingly complicated!

110

Page 111: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

111

Page 112: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].

112

Page 113: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

113

Page 114: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Fano manifolds of complex dimension 2.

114

Page 115: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

115

Page 116: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

116

Page 117: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

CP2

••

....................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................

.......................................................................................................................

..................................................................................................................................................................................................................................................

.....................................................................................................

.....................................................................................................

117

Page 118: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

118

Page 119: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

M≈

CP2#kCP2, 0 ≤ k ≤ 8,

or

S2 × S2

119

Page 120: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

M≈

CP2#kCP2, 0 ≤ k ≤ 8,

or

S2 × S2

k 6= 1, 2 =⇒ admit Kahler-Einstein metrics.

120

Page 121: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

M≈

CP2#kCP2, 0 ≤ k ≤ 8,

or

S2 × S2

k 6= 1, 2 =⇒ admit Kahler-Einstein metrics.

Siu, Tian-Yau, Tian, Chen-Wang. . .

121

Page 122: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

M≈

CP2#kCP2, 0 ≤ k ≤ 8,

or

S2 × S2

k 6= 1, 2 =⇒ admit Kahler-Einstein metrics.

Siu, Tian-Yau, Tian, Chen-Wang. . .

Exceptions: CP2 blown up at 1 or 2 points.

122

Page 123: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem B. Let (M4, J) be a compact complexsurface. Then there is an Einstein metric h onM which is Hermitian with respect to J ⇐⇒c1(M) “has a sign.”

123

Page 124: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem B. Let (M4, J) be a compact complexsurface. Then there is an Einstein metric h onM which is Hermitian with respect to J ⇐⇒c1(M) “has a sign.”

For fixed λ 6= 0, this h is moreover unique mod-ulo biholomorphisms of (M,J).

124

Page 125: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem B. Let (M4, J) be a compact complexsurface. Then there is an Einstein metric h onM which is Hermitian with respect to J ⇐⇒c1(M) “has a sign.”

For fixed λ 6= 0, this h is moreover unique mod-ulo biholomorphisms of (M,J).

Non-Kahler cases: CP2 blown up at 1 or 2 points.

125

Page 126: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

126

Page 127: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

127

Page 128: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

In other words,h = fg

∃ Kahler metric g, smooth function f : M → R+.

128

Page 129: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

Strictly four-dimensional phenomenon.

129

Page 130: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

130

Page 131: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on S3 × S3.

131

Page 132: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on S3 × S3.

Product metric is Einstein and Hermitian.

132

Page 133: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on S3 × S3.

Product metric is Einstein and Hermitian.

But S3×S3 has no Kahler metric because H2 = 0.

133

Page 134: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

Strictly four-dimensional phenomenon.

134

Page 135: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

Strictly four-dimensional phenomenon:

What’s so special about dimension four?

135

Page 136: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Special character of dimension 4:

136

Page 137: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Special character of dimension 4:

On oriented (M4, g),

Λ2 = Λ+ ⊕ Λ−

137

Page 138: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Special character of dimension 4:

On oriented (M4, g),

Λ2 = Λ+ ⊕ Λ−

where Λ± are (±1)-eigenspaces of

? : Λ2→ Λ2,

?2 = 1.

138

Page 139: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Special character of dimension 4:

On oriented (M4, g),

Λ2 = Λ+ ⊕ Λ−

where Λ± are (±1)-eigenspaces of

? : Λ2→ Λ2,

?2 = 1.

Λ+ self-dual 2-forms.Λ− anti-self-dual 2-forms.

139

Page 140: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Riemann curvature of g

R : Λ2→ Λ2

140

Page 141: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Riemann curvature of g

R : Λ2→ Λ2

splits into 4 irreducible pieces:

R =

W+ + s

12 r

r W− + s12

.

141

Page 142: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Riemann curvature of g

R : Λ2→ Λ2

splits into 4 irreducible pieces:

Λ+∗ Λ−∗

Λ+ W+ + s12 r

Λ− r W− + s12

142

Page 143: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Riemann curvature of g

R : Λ2→ Λ2

splits into 4 irreducible pieces:

Λ+∗ Λ−∗

Λ+ W+ + s12 r

Λ− r W− + s12

where

s = scalar curvature

r = trace-free Ricci curvature

W+ = self-dual Weyl curvature (conformally invariant)

W− = anti-self-dual Weyl curvature

143

Page 144: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Riemann curvature of g

R : Λ2→ Λ2

splits into 4 irreducible pieces:

Λ+∗ Λ−∗

Λ+ W+ + s12 r

Λ− r W− + s12

where

s = scalar curvature

r = trace-free Ricci curvature

W+ = self-dual Weyl curvature (conformally invariant)

W− = anti-self-dual Weyl curvature ′′

144

Page 145: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Local spinors:

145

Page 146: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Local spinors:

SO(4) ∼= SU(2)× SU(2)

146

Page 147: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Local spinors:

SO(4) ∼= SU(2)× SU(2)

TCM ∼= S+ ⊗ S−

147

Page 148: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Local spinors:

SO(4) ∼= SU(2)× SU(2)

TCM ∼= S+ ⊗ S−

Λ+ ⊗ C ∼= �2S+, Λ− ⊗ C ∼= �2S−

148

Page 149: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Local spinors:

SO(4) ∼= SU(2)× SU(2)

TCM ∼= S+ ⊗ S−

Λ+ ⊗ C ∼= �2S+, Λ− ⊗ C ∼= �2S−

Conjugation: βA→ βA anti-linear, ¯βA = −βA.

149

Page 150: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Local spinors:

SO(4) ∼= SU(2)× SU(2)

TCM ∼= S+ ⊗ S−

Λ+ ⊗ C ∼= �2S+, Λ− ⊗ C ∼= �2S−

Conjugation: βA→ βA anti-linear, ¯βA = −βA.

Rabcd = (W+)ABCDεA′B′εC ′D′ + (W−)A′B′C ′D′εABεCD−1

2 rABC ′D′εA′B′εCD −12 rA′B′CDεABεC ′D′

+s

12(εACεBDεA′C ′εB′D′ − εADεBCεA′D′εB′C ′)

150

Page 151: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Local spinors:

SO(4) ∼= SU(2)× SU(2)

TCM ∼= S+ ⊗ S−

Λ+ ⊗ C ∼= �2S+, Λ− ⊗ C ∼= �2S−

Conjugation: βA→ βA anti-linear, ¯βA = −βA.

Rabcd = (W+)ABCDεA′B′εC ′D′ + (W−)A′B′C ′D′εABεCD−1

2 rABC ′D′εA′B′εCD −12 rA′B′CDεABεC ′D′

+s

12(εACεBDεA′C ′εB′D′ − εADεBCεA′D′εB′C ′)

Zeroes of ξA 7→ (W+)ABCDξAξBξCξD conj. inv.

=⇒ Petrov form {1111}, {22}, or {−}.

151

Page 152: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler case:

Λ1,1 = Rω ⊕ Λ−

152

Page 153: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler case:

Λ1,1 = Rω ⊕ Λ−

Λ+ = Rω ⊕<e(Λ2,0)

153

Page 154: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler case:

Λ1,1 = Rω ⊕ Λ−

Λ+ = Rω ⊕<e(Λ2,0)

∇J = 0 =⇒ R ∈ End(Λ1,1)

154

Page 155: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler case:

Λ1,1 = Rω ⊕ Λ−

Λ+ = Rω ⊕<e(Λ2,0)

∇J = 0 =⇒ R ∈ End(Λ1,1) =⇒

W+ +s

12=

00∗

155

Page 156: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler case:

Λ1,1 = Rω ⊕ Λ−

Λ+ = Rω ⊕<e(Λ2,0)

∇J = 0 =⇒ R ∈ End(Λ1,1) =⇒

W+ +s

12=

00s4

156

Page 157: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler case:

Λ1,1 = Rω ⊕ Λ−

Λ+ = Rω ⊕<e(Λ2,0)

∇J = 0 =⇒ R ∈ End(Λ1,1) =⇒

W+ =

− s12− s

12s6

157

Page 158: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler case:

Λ1,1 = Rω ⊕ Λ−

Λ+ = Rω ⊕<e(Λ2,0)

∇J = 0 =⇒ R ∈ End(Λ1,1) =⇒

W+ =

− s12− s

12s6

Notice that W+ has a repeated eigenvalue.

158

Page 159: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Kahler case:

Λ1,1 = Rω ⊕ Λ−

Λ+ = Rω ⊕<e(Λ2,0)

∇J = 0 =⇒ R ∈ End(Λ1,1) =⇒

W+ =

− s12− s

12s6

Notice that W+ has a repeated eigenvalue:

(W+)ABCD = s8 ω(AB ωCD) type {22} or {−}.

159

Page 160: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

160

Page 161: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

First step: show W+ has a repeated eigenvalue.

161

Page 162: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

First step: show W+ has a repeated eigenvalue.

Riemannian analog of Goldberg-Sachs theorem.

162

Page 163: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

First step: show W+ has a repeated eigenvalue.

Riemannian analog of Goldberg-Sachs theorem.

∇ ·W+ = 0, while T 1,0M isotropic & involutive.

163

Page 164: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

Next step: ∇AA′(W+)ABCD = 0

conformally invariant with conformal weight.

164

Page 165: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

∇AA′f−1(W+)ABCD = 0 for h = f2h.

165

Page 166: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

∇AA′f−1(W+)ABCD = 0 for h = f2h.

=⇒ ∇AA′ω(ABωCD) = 0 for g = h = |W+|2/3h h.

166

Page 167: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

∇AA′f−1(W+)ABCD = 0 for h = f2h.

=⇒ ∇AA′ω(ABωCD) = 0 for g = h = |W+|2/3h h.

=⇒ ∇ω = 0 for g with h = s−2g.

167

Page 168: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

∇AA′f−1(W+)ABCD = 0 for h = f2h.

=⇒ ∇AA′ω(ABωCD) = 0 for g = h = |W+|2/3h h.

=⇒ ∇ω = 0 for g with h = s−2g.

=⇒ h conformally Kahler, or else W+ ≡ 0.

168

Page 169: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

∇AA′f−1(W+)ABCD = 0 for h = f2h.

=⇒ ∇AA′ω(ABωCD) = 0 for g = h = |W+|2/3h h.

=⇒ ∇ω = 0 for g with h = s−2g.

=⇒ h conformally Kahler, or else W+ ≡ 0.

Derdzinski. ASD only when hyper-Kahler: Boyer.

169

Page 170: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

170

Page 171: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Let (M4, J) be a compact complex sur-face, and suppose that h is an Einstein metricon M which is Hermitian with respect to J :

h(J ·, J ·) = h.

Then (M4, h, J) is conformally Kahler!

Conformally related g must actually be be anextremal Kahler metric in sense of Calabi!

171

Page 172: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Calabi:

172

Page 173: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Calabi:

Extremal Kahler metrics = critical points of

g 7→∫Ms2dµg

173

Page 174: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Calabi:

Extremal Kahler metrics = critical points of

g 7→∫Ms2dµg

where g = gω for J and [ω] ∈ H2(M,R) fixed.

174

Page 175: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Calabi:

Extremal Kahler metrics = critical points of

g 7→∫Ms2dµg

where g = gω for J and [ω] ∈ H2(M,R) fixed.

Euler-Lagrange equations

175

Page 176: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Calabi:

Extremal Kahler metrics = critical points of

g 7→∫Ms2dµg

where g = gω for J and [ω] ∈ H2(M,R) fixed.

Euler-Lagrange equations ⇐⇒

∇1,0s is a holomorphic vector field.

176

Page 177: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Calabi:

Extremal Kahler metrics = critical points of

g 7→∫Ms2dµg

where g = gω for J and [ω] ∈ H2(M,R) fixed.

Euler-Lagrange equations ⇐⇒

∇∇s = (∇∇s)(J ·, J ·).

177

Page 178: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Calabi:

Extremal Kahler metrics = critical points of

g 7→∫Ms2dµg

where g = gω for J and [ω] ∈ H2(M,R) fixed.

Euler-Lagrange equations ⇐⇒

J∇s is a Killing field.

178

Page 179: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Calabi:

Extremal Kahler metrics = critical points of

g 7→∫Ms2dµg

where g = gω for J and [ω] ∈ H2(M,R) fixed.

Euler-Lagrange equations ⇐⇒

J∇s is a Killing field.

X.X. Chen: always minimizers.

179

Page 180: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Calabi:

Extremal Kahler metrics = critical points of

g 7→∫Ms2dµg

where g = gω for J and [ω] ∈ H2(M,R) fixed.

Euler-Lagrange equations ⇐⇒

J∇s is a Killing field.

Donaldson/Mabuchi/Chen-Tian:unique in Kahler class, modulo bihomorphisms.

180

Page 181: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

The Bach Tensor

181

Page 182: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

The Bach Tensor

Conformally invariant Riemannian functional:

W+(g) = 2

∫M|W+|2g dµg.

182

Page 183: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

The Bach Tensor

Conformally invariant Riemannian functional:

W+(g) = 2

∫M|W+|2g dµg.

1-parameter family of metrics

gt := g + tg + O(t2)

First variationd

dtW+(gt)

∣∣∣∣t=0

= −∫gabBab dµg

183

Page 184: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

The Bach Tensor

Conformally invariant Riemannian functional:

W+(g) = 2

∫M|W+|2g dµg.

1-parameter family of metrics

gt := g + tg + O(t2)

First variationd

dtW+(gt)

∣∣∣∣t=0

= −∫gabBab dµg

where

Bab := (2∇c∇d + rcd)(W+)acbd .

is the Bach tensor of g. Symmetric, trace-free.

184

Page 185: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

The Bach Tensor

Conformally invariant Riemannian functional:

W+(g) = 2

∫M|W+|2g dµg.

1-parameter family of metrics

gt := g + tg + O(t2)

First variationd

dtW+(gt)

∣∣∣∣t=0

= −∫gabBab dµg

where

Bab := (2∇c∇d + rcd)(W+)acbd .

is the Bach tensor of g. Symmetric, trace-free.

∇aBab = 0

185

Page 186: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

The Bach Tensor

Conformally invariant Riemannian functional:

W+(g) = 2

∫M|W+|2g dµg.

1-parameter family of metrics

gt := g + tg + O(t2)

First variationd

dtW+(gt)

∣∣∣∣t=0

= −∫gabBab dµg

where

Bab := (2∇c∇d + rcd)(W+)acbd .

is the Bach tensor of g. Symmetric, trace-free.∫Conformally Einstein =⇒ B = 0

186

Page 187: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

187

Page 188: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

On Kahler metrics,

W+ =

− s12− s

12s6

188

Page 189: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

On Kahler metrics,

|W+|2 =s2

24

189

Page 190: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

On Kahler metrics,∫|W+|2dµ =

∫s2

24dµ

190

Page 191: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

On Kahler metrics,∫|W+|2dµ =

∫s2

24dµ

so any critical point of restriction must beextremal in sense of Calabi.

191

Page 192: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

On Kahler metrics,∫|W+|2dµ =

∫s2

24dµ

so any critical point of restriction must beextremal in sense of Calabi.

In fact, for Kahler metrics,

B =1

12

[2sr + Hess0(s) + 3J∗Hess0(s)

]where Hess0 denotes trace-free part of ∇∇.

192

Page 193: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

On Kahler metrics,∫|W+|2dµ =

∫s2

24dµ

so any critical point of restriction must beextremal in sense of Calabi.

Lemma. If g is a Kahler metric on a complexsurface (M4, J), the following are equivalent:

193

Page 194: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

On Kahler metrics,∫|W+|2dµ =

∫s2

24dµ

so any critical point of restriction must beextremal in sense of Calabi.

Lemma. If g is a Kahler metric on a complexsurface (M4, J), the following are equivalent:

• g is an extremal Kahler metric;

194

Page 195: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

On Kahler metrics,∫|W+|2dµ =

∫s2

24dµ

so any critical point of restriction must beextremal in sense of Calabi.

Lemma. If g is a Kahler metric on a complexsurface (M4, J), the following are equivalent:

• g is an extremal Kahler metric;

•B = B(J ·, J ·);

195

Page 196: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

On Kahler metrics,∫|W+|2dµ =

∫s2

24dµ

so any critical point of restriction must beextremal in sense of Calabi.

Lemma. If g is a Kahler metric on a complexsurface (M4, J), the following are equivalent:

• g is an extremal Kahler metric;

•B = B(J ·, J ·);• ψ = B(J ·, ·) is a closed 2-form;

196

Page 197: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics?

On Kahler metrics,∫|W+|2dµ =

∫s2

24dµ

so any critical point of restriction must beextremal in sense of Calabi.

Lemma. If g is a Kahler metric on a complexsurface (M4, J), the following are equivalent:

• g is an extremal Kahler metric;

•B = B(J ·, J ·);• ψ = B(J ·, ·) is a closed 2-form;

• gt = g + tB is Kahler metric for small t.

197

Page 198: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics.

Hence if g is extremal Kahler metric,

gt = g + tB

is a family of Kahler metrics,

198

Page 199: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics.

Hence if g is extremal Kahler metric,

gt = g + tB

is a family of Kahler metrics, corresponding to

199

Page 200: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics.

Hence if g is extremal Kahler metric,

gt = g + tB

is a family of Kahler metrics, corresponding to

ωt = ω + tψ

and first variation isd

dtW+(gt)

∣∣∣∣t=0

=

∫gabBab dµg

= −∫|B|2 dµg

200

Page 201: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Restriction of W+ to Kahler metrics.

Hence if g is extremal Kahler metric,

gt = g + tB

is a family of Kahler metrics, corresponding to

ωt = ω + tψ

and first variation isd

dtW+(gt)

∣∣∣∣t=0

=

∫gabBab dµg

= −∫|B|2 dµg

So the critical metrics of restriction of W+ to{Kahler metrics} are Bach-flat Kahler metrics.

201

Page 202: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

202

Page 203: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

For any extremal Kahler (M4, g, J),

203

Page 204: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

For any extremal Kahler (M4, g, J),

1

32π2

∫s2dµg =

(c1 · [ω])2

[ω]2+

1

32π2‖F [ω]‖

2

=: A([ω])

204

Page 205: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

For any extremal Kahler (M4, g, J),

1

32π2

∫s2dµg =

(c1 · [ω])2

[ω]2+

1

32π2‖F [ω]‖

2

=: A([ω])

where F is Futaki invariant.

205

Page 206: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

For any extremal Kahler (M4, g, J),

1

32π2

∫s2dµg =

(c1 · [ω])2

[ω]2+

1

32π2‖F [ω]‖

2

=: A([ω])

where F is Futaki invariant.

206

Page 207: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

For any extremal Kahler (M4, g, J),

1

32π2

∫s2dµg =

(c1 · [ω])2

[ω]2+

1

32π2‖F [ω]‖

2

=: A([ω])

where F is Futaki invariant.

A is function on Kahler cone K ⊂ H2(M,R).

207

Page 208: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

c1

A

K

............................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................

.............................................................................................

................................

...................................................

.................................................................................................................................................

.....

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ........... R

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

.......

.......

.......

.......

.......

.......

.......

.............

...........

K ⊂ H1,1(M,R) = H2(M,R)

(M Del Pezzo)

208

Page 209: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

c1

A

K

............................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................

.............................................................................................

................................

...................................................

.................................................................................................................................................

.....

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ........... R

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

.......

.......

.......

.......

.......

.......

.......

.............

...........

K ⊂ H1,1(M,R) = H2(M,R)

(M Del Pezzo)

209

Page 210: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

For any extremal Kahler (M4, g, J),

1

32π2

∫s2dµg =

(c1 · [ω])2

[ω]2+

1

32π2‖F [ω]‖

2

=: A([ω])

where F is Futaki invariant.

A is function on Kahler cone K ⊂ H2(M,R).

210

Page 211: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

For any extremal Kahler (M4, g, J),

1

32π2

∫s2dµg =

(c1 · [ω])2

[ω]2+

1

32π2‖F [ω]‖

2

=: A([ω])

where F is Futaki invariant.

A is function on Kahler cone K ⊂ H2(M,R).

Lemma. If g is a Kahler metric on a compactcomplex surface (M4, J), with Kahler class [ω],

211

Page 212: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

For any extremal Kahler (M4, g, J),

1

32π2

∫s2dµg =

(c1 · [ω])2

[ω]2+

1

32π2‖F [ω]‖

2

=: A([ω])

where F is Futaki invariant.

A is function on Kahler cone K ⊂ H2(M,R).

Lemma. If g is a Kahler metric on a compactcomplex surface (M4, J), with Kahler class [ω],then g satisfies B = 0 ⇐⇒

212

Page 213: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

For any extremal Kahler (M4, g, J),

1

32π2

∫s2dµg =

(c1 · [ω])2

[ω]2+

1

32π2‖F [ω]‖

2

=: A([ω])

where F is Futaki invariant.

A is function on Kahler cone K ⊂ H2(M,R).

Lemma. If g is a Kahler metric on a compactcomplex surface (M4, J), with Kahler class [ω],then g satisfies B = 0 ⇐⇒• g is an extremal Kahler metric; and

213

Page 214: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Action Function on Kahler Cone

For any extremal Kahler (M4, g, J),

1

32π2

∫s2dµg =

(c1 · [ω])2

[ω]2+

1

32π2‖F [ω]‖

2

=: A([ω])

where F is Futaki invariant.

A is function on Kahler cone K ⊂ H2(M,R).

Lemma. If g is a Kahler metric on a compactcomplex surface (M4, J), with Kahler class [ω],then g satisfies B = 0 ⇐⇒• g is an extremal Kahler metric; and

• [ω] is a critical point of A : K → R.

214

Page 215: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Suppose compact complex surface (M4, J)admits a Hermitian h which is Einstein, but notKahler. Then (M4, J) is a Del Pezzo surface.

215

Page 216: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Suppose compact complex surface (M4, J)admits a Hermitian h which is Einstein, but notKahler. Then (M4, J) is a Del Pezzo surface.

Lemma. If (M4, J) is a Del Pezzo surface, anyextremal Kahler metric g on M has scalar cur-vature s > 0.

216

Page 217: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Suppose compact complex surface (M4, J)admits a Hermitian h which is Einstein, but notKahler. Then (M4, J) is a Del Pezzo surface.

Lemma. If (M4, J) is a Del Pezzo surface, anyextremal Kahler metric g on M has scalar cur-vature s > 0.

Lemma. Suppose that g is a Bach-flat Kahlermetric on a Del Pezzo surface (M4, J). Thenthe Hermitian metric h = s−2g is Einstein, withpositive Einstein constant.

217

Page 218: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Suppose compact complex surface (M4, J)admits a Hermitian h which is Einstein, but notKahler. Then (M4, J) is a Del Pezzo surface.

Lemma. If (M4, J) is a Del Pezzo surface, anyextremal Kahler metric g on M has scalar cur-vature s > 0.

Lemma. Suppose that g is a Bach-flat Kahlermetric on a Del Pezzo surface (M4, J). Thenthe Hermitian metric h = s−2g is Einstein, withpositive Einstein constant.

Lemma. Conversely, any Hermitian, Einsteinmetric on a Del Pezzo surface arises in this way.

218

Page 219: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Suppose compact complex surface (M4, J)admits a Hermitian h which is Einstein, but notKahler. Then (M4, J) is a Del Pezzo surface.

Lemma. If (M4, J) is a Del Pezzo surface, anyextremal Kahler metric g on M has scalar cur-vature s > 0.

Lemma. Suppose that g is a Bach-flat Kahlermetric on a Del Pezzo surface (M4, J). Thenthe Hermitian metric h = s−2g is Einstein, withpositive Einstein constant.

0 = 6s−1B = r + 2s−1Hess0(s)

219

Page 220: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Suppose compact complex surface (M4, J)admits a Hermitian h which is Einstein, but notKahler. Then (M4, J) is a Del Pezzo surface.

ρ + 2i∂∂logs > 0.

220

Page 221: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Lemma. Suppose compact complex surface (M4, J)admits a Hermitian h which is Einstein, but notKahler. Then (M4, J) is a Del Pezzo surface.

Lemma. If (M4, J) is a Del Pezzo surface, anyextremal Kahler metric g on M has scalar cur-vature s > 0.

Lemma. Suppose that g is a Bach-flat Kahlermetric on a Del Pezzo surface (M4, J). Thenthe Hermitian metric h = s−2g is Einstein, withpositive Einstein constant.

Lemma. Conversely, any Hermitian, Einsteinmetric on a Del Pezzo surface arises in this way.

221

Page 222: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem. Let (M4, J) be a Del Pezzo surface.Then, up to automorphisms and rescaling, thereis a unique Bach-flat Kahler metric g on M .This metric is characterized by the fact that itminimizes the Calabi functional

C =

∫Ms2dµ

among all Kahler metrics on (M4, J).

222

Page 223: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem. Let (M4, J) be a Del Pezzo surface.Then, up to automorphisms and rescaling, thereis a unique Bach-flat Kahler metric g on M .This metric is characterized by the fact that itminimizes the Calabi functional

C =

∫Ms2dµ

among all Kahler metrics on (M4, J).

Hermitian, Einstein metric then given by

h = s−2g

and uniqueness Theorem A follows.

223

Page 224: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem. Let (M4, J) be a Del Pezzo surface.Then, up to automorphisms and rescaling, thereis a unique Bach-flat Kahler metric g on M .This metric is characterized by the fact that itminimizes the Calabi functional

C =

∫Ms2dµ

among all Kahler metrics on (M4, J).

Only three cases are non-trivial:

CP2#kCP2, k = 1, 2, 3.

224

Page 225: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

The non-trivial cases are toric, and the action Acan be directly computed from moment polygon.Formula involves barycenters, moments of inertia.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....................

x1

x2

. . . . . . . . . . .. . . . . . . . . . .

. . . . . . . . . . . .. . . . . . . . . . . .

. . . . . . . . . . . . .. . . . . . . . . . . . .

. . . . . . . . . . . . . .. . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .. . . . . . . . . . . . . .

. . . . . . . . . . . . . .. . . . . . . . . . . . .

. . . . . . . . . . . . .. . . . . . . . . . . .

. . . . . . . . . . . .. . . . . . . . . . .

. . . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .. . . . . . . . .

. . . . . . . . .

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................

..................

..................

..................

..................

..................

..................

..................

..................

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

225

Page 226: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

The non-trivial cases are toric, and the action Acan be directly computed from moment polygon.Formula involves barycenters, moments of inertia.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....................

............................................

x1

x2

. . . . . . . . . . .. . . . . . . . . . .

. . . . . . . . . . . .. . . . . . . . . . . .

. . . . . . . . . . . . .. . . . . . . . . . . . .

. . . . . . . . . . . . . .. . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .. . . . . . . . . . . . . .

. . . . . . . . . . . . . .. . . . . . . . . . . . .

. . . . . . . . . . . . .. . . . . . . . . . . .

. . . . . . . . . . . .. . . . . . . . . . .

. . . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .. . . . . . . . .

. . . . . . . . .

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................

..................

..................

..................

..................

..................

..................

..................

..................

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

A([ω]) =|∂P |2

2

( 1

|P |+ ~D · Π−1~D

)

226

Page 227: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

To prove Theorem, show that

A : K → Rhas unique critical point for relevant M .

227

Page 228: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

To prove Theorem, show that

A : K → Rhas unique critical point for relevant M .

Here K = K /R+.

228

Page 229: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

To prove Theorem, show that

A : K → Rhas unique critical point for relevant M .

Here K = K /R+.

A is explicit rational function —

229

Page 230: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

3[3+28γ+96γ

2+168γ

3+164γ

4+80γ

5+16γ

6+16β

6(1+γ)

4+16α

6(1+β+γ)

4+16β

5(5+24γ+43γ

2+37γ

3+15γ

4+2γ

5)+4β

4(41+228γ+478γ

2+496γ

3+263γ

4+

60γ5

+ 4γ6)+ 8β

3(21+ 135γ +326γ

2+ 392γ

3+ 248γ

4+ 74γ

5+ 8γ

6)+ 4β(7+ 58γ +176γ

2+ 270γ

3+ 228γ

4+ 96γ

5+ 16γ

6)+ 4β

2(24+ 176γ +479γ

2+ 652γ

3+ 478γ

4+

172γ5

+ 24γ6) + 16α

5(5 + 2β

5+ 24γ + 43γ

2+ 37γ

3+ 15γ

4+ 2γ

5+ β

4(15 + 14γ) + β

3(37 + 70γ + 30γ

2) + β

2(43 + 123γ + 108γ

2+ 30γ

3) + β(24 + 92γ + 123γ

2+ 70γ

3+

14γ4))+4α

4(41+4β

6+228γ+478γ

2+496γ

3+263γ

4+60γ

5+4γ

6+β

5(60+56γ)+β

4(263+476γ+196γ

2)+8β

3(62+169γ+139γ

2+35γ

3)+2β

2(239+876γ+1089γ

2+

556γ3+98γ

4)+4β(57+263γ +438γ

2+338γ

3+119γ

4+14γ

5))+8α

3(21+135γ +326γ

2+392γ

3+248γ

4+74γ

5+8γ

6+8β

6(1+γ)+2β

5(37+70γ +30γ

2)+4β

4(62+

169γ +139γ2+35γ

3)+4β

3(98+353γ +428γ

2+210γ

3+35γ

4)+2β

2(163+735γ +1179γ

2+856γ

3+278γ

4+30γ

5)+β(135+736γ +1470γ

2+1412γ

3+676γ

4+140γ

5+

8γ6)) + 4α(7 + 58γ +176γ

2+ 270γ

3+ 228γ

4+ 96γ

5+ 16γ

6+ 16β

6(1+ γ)

3+ 4β

5(24+ 92γ +123γ

2+ 70γ

3+ 14γ

4) + 4β

4(57+ 263γ +438γ

2+ 338γ

3+ 119γ

4+ 14γ

5) +

2β3(135+736γ +1470γ

2+1412γ

3+676γ

4+140γ

5+8γ

6)+4β

2(44+278γ +645γ

2+735γ

3+438γ

4+123γ

5+12γ

6)+2β(29+210γ +556γ

2+736γ

3+526γ

4+184γ

5+

24γ6))+4α

2(24+176γ +479γ

2+652γ

3+478γ

4+172γ

5+24γ

6+24β

6(1+γ)

2+4β

5(43+123γ +108γ

2+30γ

3)+2β

4(239+876γ +1089γ

2+556γ

3+98γ

4)+4β

3(163+

735γ + 1179γ2

+ 856γ3

+ 278γ4

+ 30γ5) + 4β(44 + 278γ + 645γ

2+ 735γ

3+ 438γ

4+ 123γ

5+ 12γ

6) + β

2(479 + 2580γ + 5058γ

2+ 4716γ

3+ 2178γ

4+ 432γ

5+ 24γ

6))

]/

[1 + 10γ + 36γ

2+ 64γ

3+ 60γ

4+ 24γ

5+ 24β

5(1 + γ)

5+ 24α

5(1 + β + γ)

5+ 12β

4(1 + γ)

2(5 + 20γ + 23γ

2+ 10γ

3) + 16β

3(4 + 28γ + 72γ

2+ 90γ

3+ 57γ

4+ 15γ

5) +

12β2(3 + 24γ + 69γ

2+ 96γ

3+ 68γ

4+ 20γ

5) + 2β(5 + 45γ + 144γ

2+ 224γ

3+ 180γ

4+ 60γ

5) + 12α

4(1 + β + γ)

2(5 + 20γ + 23γ

2+ 10γ

3+ 10β

3(1 + γ) + β

2(23 + 46γ +

16γ2) + 2β(10 + 30γ + 23γ

2+ 5γ

3)) + 16α

3(4 + 28γ + 72γ

2+ 90γ

3+ 57γ

4+ 15γ

5+ 15β

5(1 + γ)

2+ 3β

4(19 + 57γ + 50γ

2+ 13γ

3) + 3β

3(30 + 120γ + 155γ

2+ 78γ

3+

13γ4) + 3β

2(24 + 120γ + 206γ

2+ 155γ

3+ 50γ

4+ 5γ

5) + β(28 + 168γ + 360γ

2+ 360γ

3+ 171γ

4+ 30γ

5)) + 12α

2(3 + 24γ + 69γ

2+ 96γ

3+ 68γ

4+ 20γ

5+ 20β

5(1 + γ)

3+

β4(68 + 272γ + 366γ

2+ 200γ

3+ 36γ

4) + 4β

3(24 + 120γ + 206γ

2+ 155γ

3+ 50γ

4+ 5γ

5) + 2β(12 + 84γ + 207γ

2+ 240γ

3+ 136γ

4+ 30γ

5) + β

2(69 + 414γ + 864γ

2+

824γ3

+ 366γ4

+ 60γ5)) + 2α(5 + 45γ + 144γ

2+ 224γ

3+ 180γ

4+ 60γ

5+ 60β

5(1 + γ)

4+ 12β

4(15 + 75γ + 136γ

2+ 114γ

3+ 43γ

4+ 5γ

5) + 12β

2(12 + 84γ + 207γ

2+

240γ3

+ 136γ4

+ 30γ5) + 8β

3(28 + 168γ + 360γ

2+ 360γ

3+ 171γ

4+ 30γ

5) + 3β(15 + 120γ + 336γ

2+ 448γ

3+ 300γ

4+ 80γ

5))

]

230

Page 231: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

To prove Theorem, show that

A : K → Rhas unique critical point for relevant M .

Here K = K /R+.

A is explicit rational function —but quite complicated!

231

Page 232: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

To prove Theorem, show that

A : K → Rhas unique critical point for relevant M .

Here K = K /R+.

A is explicit rational function —but quite complicated!

Proof proceeds by showing critical point invariantunder certain discrete automorphisms of M .

232

Page 233: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

M

••

....................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................

.......................................................................................................................

..................................................................................................................................................................................................................................................

.....................................................................................................

.....................................................................................................

233

Page 234: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

M

••

....................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................

.......................................................................................................................

..................................................................................................................................................................................................................................................

.....................................................................................................

.....................................................................................................

c1

A

K

............................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................

.............................................................................................

................................

...................................................

.................................................................................................................................................

.....

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ........... R

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

.......

.......

.......

.......

.......

.......

.......

.............

...........

234

Page 235: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

M

••

....................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................

.......................................................................................................................

..................................................................................................................................................................................................................................................

.....................................................................................................

.....................................................................................................

............................................................................................................................................................................................................................................

...........................................

..

................................. ...........

c1

A

K

............................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................

.............................................................................................

................................

...................................................

.................................................................................................................................................

.....

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ........... R

................................................................

....................................................................................................................................... ••

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

.......

.......

.......

.......

.......

.......

.......

.............

...........

....................................... ...........

.....................................................

235

Page 236: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

M

••

....................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................

.......................................................................................................................

..................................................................................................................................................................................................................................................

.....................................................................................................

.....................................................................................................

............................................................................................................................................................................................................................................

...........................................

..

................................. ...........

c1

A

K

............................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................

.............................................................................................

................................

...................................................

.................................................................................................................................................

.....

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ........... R

................................................................

....................................................................................................................................... ••

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................

................................................

................................................

................................................

................................................

................................................

................................................

.......................................

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

236

Page 237: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

M

••

....................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................

.......................................................................................................................

..................................................................................................................................................................................................................................................

.....................................................................................................

.....................................................................................................

............................................................................................................................................................................................................................................

...........................................

..

................................. ...........

c1

A

K

............................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................

.............................................................................................

................................

...................................................

.................................................................................................................................................

.....

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ........... R

................................................................

....................................................................................................................................... ••

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................

................................................

................................................

................................................

................................................

................................................

................................................

.......................................

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

237

Page 238: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

To prove Theorem, show that

A : K → Rhas unique critical point for relevant M .

Here K = K /R+.

A is explicit rational function —but quite complicated!

Proof proceeds by showing critical point invariantunder certain discrete automorphisms of M .

Done by showing A convex on appropriate lines.

238

Page 239: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

To prove Theorem, show that

A : K → Rhas unique critical point for relevant M .

Here K = K /R+.

A is explicit rational function —but quite complicated!

Proof proceeds by showing critical point invariantunder certain discrete automorphisms of M .

Done by showing A convex on appropriate lines.

Final step then just calculus in one variable. . .

239

Page 240: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

To prove Theorem, show that

A : K → Rhas unique critical point for relevant M .

Here K = K /R+.

A is explicit rational function —but quite complicated!

Proof proceeds by showing critical point invariantunder certain discrete automorphisms of M .

Done by showing A convex on appropriate lines.

Similar calculations also led to new existence proof. . .

240

Page 241: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem C. There is a Kahler metric g onCP2#2CP2 which is conformal to an Einsteinmetric. Moreover, there is a 1-parameter family

241

Page 242: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem C. There is a Kahler metric g onCP2#2CP2 which is conformal to an Einsteinmetric. Moreover, there is a 1-parameter family

242

Page 243: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem C. There is a Kahler metric g onCP2#2CP2 which is conformal to an Einsteinmetric. Moreover, there is a 1-parameter family

[0, 1) 3 t 7−→ gt

243

Page 244: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem C. There is a Kahler metric g onCP2#2CP2 which is conformal to an Einsteinmetric. Moreover, there is a 1-parameter family

[0, 1) 3 t 7−→ gt

of extremal Kahler metrics on CP2#3CP2 s.t.

244

Page 245: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem C. There is a Kahler metric g onCP2#2CP2 which is conformal to an Einsteinmetric. Moreover, there is a 1-parameter family

[0, 1) 3 t 7−→ gt

of extremal Kahler metrics on CP2#3CP2 s.t.

• g0 is Kahler-Einstein, and such that

245

Page 246: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem C. There is a Kahler metric g onCP2#2CP2 which is conformal to an Einsteinmetric. Moreover, there is a 1-parameter family

[0, 1) 3 t 7−→ gt

of extremal Kahler metrics on CP2#3CP2 s.t.

• g0 is Kahler-Einstein, and such that

• gtj→g in the Gromov-Hausdorff sense

246

Page 247: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem C. There is a Kahler metric g onCP2#2CP2 which is conformal to an Einsteinmetric. Moreover, there is a 1-parameter family

[0, 1) 3 t 7−→ gt

of extremal Kahler metrics on CP2#3CP2 s.t.

• g0 is Kahler-Einstein, and such that

• gtj→g in the Gromov-Hausdorff sense

for some tj ↗ 1.

247

Page 248: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem C. There is a Kahler metric g onCP2#2CP2 which is conformal to an Einsteinmetric. Moreover, there is a 1-parameter family

[0, 1) 3 t 7−→ gt

of extremal Kahler metrics on CP2#3CP2 s.t.

• g0 is Kahler-Einstein, and such that

• gtj→g in the Gromov-Hausdorff sense

for some tj ↗ 1.

This reconstructs Chen-LeBrun-Weber metric.

248

Page 249: On Hermitian, Einstein 4-ManifoldsAprofusionof compact complex manifolds now known to admit K ahler-Einstein metrics. VeryfewcompactEinstein4-manifolds known which arenotK ahler-Einstein!

Theorem C. There is a Kahler metric g onCP2#2CP2 which is conformal to an Einsteinmetric. Moreover, there is a 1-parameter family

[0, 1) 3 t 7−→ gt

of extremal Kahler metrics on CP2#3CP2 s.t.

• g0 is Kahler-Einstein, and such that

• gtj→g in the Gromov-Hausdorff sense

for some tj ↗ 1.

This reconstructs Chen-LeBrun-Weber metric.

Could also reconstruct Page metric this way. . .

249