on board computers - ltas-sdrg · ob processor: evolution mips 200 100 2 mips 50 14 4 2 16 bits cpu...

35
On Board Computers December 2012

Upload: lamxuyen

Post on 21-Jan-2019

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

On Board Computers

December 2012

Page 2: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

On Board Computer

December 2011 ULG - Avionics Overview 2

VEGA

ARIANE 5

GALILEO IOV OBC

© RUAG Aerospace Sweden AB

GAÏA

© RUAG Aerospace Sweden AB

Page 3: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

Payload Data Handling Unit

December 2011 ULG - Avionics Overview 3

© EADS Astrium

PDHU

© EADS Astrium

Page 4: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

Advanced Data & Power Mgt System

December 2011 ULG - Avionics Overview 4

The LEON processor board (unfolded)

ADPMS under test

1,5 Watt

300 gram

Page 5: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

Avionics

December 2011 ULG - Avionics Overview 5

Page 6: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 6

Avionics

• The Avionics Embedded System (AES) includes the hardware

(processor, communication buses, equipments, instruments) and software required for the command & control of the spacecraft, its telecommand and telemetry handling, its failure detection, isolation and recovery and all the mission and vehicle management functions including all functional chains. The AES is the brain of the spacecraft and therefore is a vital organ for the execution of onboard functions. It represents today between 30 and 70 % of the platform non-recurrent development costs (50% in average for an ESA mission).

Page 7: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

CCSDS

Avionics: Overview

Ground Segment

Platform Equipments

Payload Instruments

Command (CMD)

Control (CTRL)

PCDU

Telecommand (TC)

Telemetry (TM)

Downlink (DL)

Uplink (UL)

Spacelink

Reception (Rx)

Transmission (Tx)

Command (CMD) Control

(CTRL) Data (DAT)

•AOCS Sensors •PWR System •THERM System •RF System •…

•Optical •Scientific •Telecom •Radionavigation •…

OBC

OBSW

December 2011 7 ULG - Avionics Overview

Page 8: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 8

Avionics: Overview (cont.)

CDMU

Ground Segment

Platform Equipments

Payload Instruments

PCDU

MM

Low Throughput (e.g. S Band)

High Throughput (e.g. X Band)

PDHU/ MMFU

Remote Terminal

Unit

Page 9: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

Avionics: Redundancy

December 2011 ULG - Avionics Overview 9

Page 10: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 10

Avionics: Hostile Environment

• Temperature: extreme conditions

• Temperature range solar cells -150 +100 °C

• Packaging, isolation and heaters: reduction to -20 +50 °C

• Commercial electronics don’t fit the bill : 0 70 °C (mil range -55 +125 °C)

• Ion radiation : electron, proton, heavy ion (solar flare, van Allen belts)

• Cumulated Effect:

• Modification of the component characteristics

• Single Event Effects:

• SET: Single Event Transient (glitches) non destructive

• SEU: Single Event Upset (swap) non destructive

• SEL: Single Event Latchup (CMOS)

• SEB: Single Event Burnout (MOSFET) destructive

• SEGR: Single Event Gate Rupture destructive

Page 11: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 11

• Radiation Protections • Shielding • Box design • Positioning in the S/C • Technology choices • Build in electronic protection

• Fault Tolerance • Ability to support temporary or definitive modification or suppression of

functionality • Redondancy

• Processing: Spatial or Temporal Redundancy and Majority Voting • Duplicate the system: when a system is faulty, switch on the other one • Permit to eliminate the faulty system from the decision path (TMR technology) • Data Redundancy through coding, (RS, CRC, etc)

• Error Detection and Correction (EDAC) on memory • Memory scrubbing to “clean” changed memory

Avionics: Protection Means

Page 12: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 12

OB Processor: Evolution Mips

200

100

50

14

4

2

16 bits 2 MIPS

CPU Only Mil Std

32 bits 14 MIPS Sparc V7

32 bits 84 MIPS Sparc V8

Cache

32 bits Pipe Line Multi Core

Page 13: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

OB Processor: Frequency Increase

December 2011 ULG - Avionics Overview 13

Increase of the processor clock frequency is a method of achieving higher performance. This however leads to increase of processor power dissipation figure.

Page 14: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

OB Processor: Multi Core

December 2011 ULG - Avionics Overview 14

Multi-core architecture is an alternative architectural solution that has the main advantage to increase the platform performance without increasing the power consumption

Page 15: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

OB Processor: Multi Processor

December 2011 ULG - Avionics Overview 15

Multi-processor architecture is yet another alternative architectural solution that allows for distributing the processing (e.g. image processing, complex gnc algorithms), on specialized, dedicated hardware (e.g. µp, dsp, fpga)

Page 16: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 16

On Board Processor : LEON2 • Synthesisable Open Source VHDL

model of a 32-bit SPARC V8

• Caches: 16 KB Data, 32 KB instructions

• Self standing computer: need only external clock and memory

• 2 timers + watchdog

• 2 UART, 32 parallel I/O

• Fault tolerant (parity, EDAC, TMR)

• Separate DSU (Debug Serial Unit) with normal serial line interface and transaction/instruction trace buffer with 512 entries

• Integrated PCI interface (50 % of chip)

• Virtual latchup free (70 MeV.cm2/mg)

• Radiation up to 300 Krads (Si)

SPARC = Scalable Processor ARChitecture = RISC (Reduced Instruction Set Computer) – 32 bit RISC = Simple instruction set, simple CPU, target = 1 instruction per cycle (without memory R/W)

simple compiler, but needs 40 % bigger code size, better code optimisation SUN SPARC strong points: One of the best performance & power figures per gate

SPARC architecture is no longer evolving but still holds up against other CPU designs

Page 17: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 17

On Board Computer Memory • Memory types

• PROM (Programmable Read Only Memory)

16 – 256 KB Board boot and init SW

• EEPROM (Electrically Erasable Programmable Read Only Memory)

2 – 8 MB the mission SW boot container, also used for safeguard

• SRAM (Static Random Access Memory)

4 – 16 MB; the workplace that contains executing SW and variables

• SDRAM (Synchronous Dynamic Random Access Memory) 16 to 512 MB slower RAM typically used for mass storage

SRAM: data bit is stored in the state of a flip-flop (transistor logic - No power for Data Retention)

DRAM: data bit is stored in the electric charge of a nano capacitor (Frequent Refresh Cycles, Volatile)

ROM: uses a metal mask to permanently enable/disable selected transistors instead of storing a charge in them FLASH: a kind of EEPROM erased and written in large blocks, read in a random access fashion (Non Volatile)

MRAM: Magnetoresistive Random Access Memory (non-volatile magnetic storage)

SDRAM, DDR SDRAM, FeRAM, MRAM, CRAM, PRAM

Page 18: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 18

On Board Data Storage

• Playing Tapes Storage (Till 2000) • Mass Memory based on back and forward magnetic tapes.

• Record in forward and play back in reverse (no time to rewind)

• Robust to power failures

• Solid State Mass Memory (Nowadays) • Processor board can have 512 MB SDRAM Mass memory

• Extra board could hold a GB (with battery back-up)

• Very big Mass Memory units with almost unlimited size can be made in a very compact way (SDRAM or flash EPROM)

• Interface through fast serial links (E.g. SpaceWire)

• Mostly used for high resolution image satellites (e.g. 12 TB at EOL for Sentinel 2)

Storage Capacity, Transfer Data Rate,

Power for Data Retention, Power for Data Access, Write Endurance, Sensitivity to Single Event Effects

High Speed Error Detection, High Speed Error Correction, File Management System, Hardware Software Partitioning, Simultaneous Accesses

Page 19: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 19

On Board Communications Budget Flow (Proba 2) From -> To Mbps

TC segments Ground Spacecraft 2

TM/TC CLCW protocol feedback TC/TM channels 0,01

TM Packets TM ground 2 x 66

AOCS control OBSW Eqts 0,1

AOCS telemetry Eqts OBSW 0,1

Payload control OBSW Payload 0,1

Payload Telemetry Payload OBSW 0,01

Spacecraft SW housekeeping Eqts OBSW 0,01

REM context writing OBSW REM 0,01

REM Watchdog kicking REM OBSW 0,01

PCM/PDM control OBSW PCM/PDM 0,01

PCM/PDM Telemetry PCM/PDM OBSW 0,01

Spacecraft HW housekeeping Eqts OBSW 0,01

REM housekeeping REM (TM) ground 0,01

Payload Data TM packets Payload TM 20

Page 20: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 20

On Board Communication On Board Communications

Digital Analog

Multi Drop Buses Point-to-Point Links Point-to-point

Spacewire* Mil-Bus*

Serial Line Digital Converter Switchable Outputs Statuses

I2C CanBus*

On going studies investigate on board wireless communications

Total harness weight (cables and connectors) may reach 6 to 10% of total satellite mass

Single Master Multi Master

OBDH RS-422 RS- 485

*may be redundant

PacketWire

Trade offs to be made: •Power consumption •Silicon surface, board surface •Connectors and wiring harness (6 to 10 % of weight of a satellite) •Performance (throughput, response time) •Isolation and fault propagation •Intelligence required at slave end •Required processing overhead

Page 21: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 21

MilBus Basics

Bus Controller

Remote Terminal

Remote Terminal

Equipment

Equipment Equipment Equipment

Nominal

Redundant • From aircraft industry • Mil-Std-1553-B Standard • Multi Drop Bus • Master/Slave • Single cable • Half Duplex • Asynchronous • Redundant (cross strapping) • 1 Mbps (650 Kbps effective) • Manchester Bi Phase Coding

Rx Cmd Data Word Data Word …………… Data Word Status Word BC RT Answer Time

12 µs Inter Msg

4 µs

Answer Time 12 µs Tx Cmd Data Word …………… Data Word RT BC

Inter Msg 4 µs Data Word Status Word

Answer Time 12 µs Tx Cmd …………… Data Word RT RT

Inter Msg 4 µs Data Word Rx Cmd Status Word Status Word

Answer Time 12 µs

1 Msg = 1 to 32 Words

1 Word = 16 Bits

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P

P Data

RT @ T/R Sub @ / Mode Code # Words

RT @ Err Inst Svc Reserved Bsy P

CMD

DAT

STS

Page 22: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 22

Spacewire Basics

• High Speed Serial Link • Fairly Simple • High data rate (up to 400 Mbps) • Low power consumption

• Promoted by ESA, based on IEEE 1533, DS

Link, Transputer Technology • Physical interface requires LVDS-tranceivers

• Packet based <Destination

Address><Cargo><End_of_Packet>

• SpaceWire Router connects a number of SpaceWire link interfaces (receiver to transmitter ports)

• Group Adaptive Routing: group of links may be configure to increase throughput (bandwidth sharing) or fault tolerance

• Allow for different topologies following use needs

Page 23: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 23

CAN Bus Basic

• Controller Area Network (CAN)

• Automotive

• Bosch / Intel

Page 24: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 24

Space Link Basic

• Radio Frequency

• L-Band, S-Band, X-Band (Science Data)

• Delay and Disruption Tolerant

• Tracking and Ranging

• Telecommand Uplink

• Telemetry Downlink

Page 25: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 25

TC Telecommands

• Receives TC bitstream from antenna/receiver • Hardware decoding of TC data streams:

• Decoding bitstreams, error detection and correction, de-randomisation, overrun detection

• Isolation of CLTU Command link Transmission Unit (which can contain several TC’s)

• Generate FAR Frame Analysis Report for CLCW, send to TM module (COP-1 protocol)

• Sends emergency TC’s directly to associated pulse generators

• Sending of TC’s to SW decoder

• Pulse generation (Pulse Distribution Unit) • Generates and distributes pulses without

software intervention (reliability, precision)

Page 26: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 26

TM Telemetry - Sources

• Sources of Telemetry allocated to separate VC Virtual Channels • Hardware generated TM’s:

• Emergency telemetry: reporting of essential Telemetry: SW independent – low bandwidth <0,2 Kbps

• Context memory (REM) dumps - < 6Kbps

• Processor generated TM • Event driven TM’s, housekeeping, off-line and Mass Memory

data… See SW design

• TM from other sources (payloads, instruments) that inject directly TM without OBSW intervention

• Idle packet generation: to keep the space link operational and synchronised if no real TM is available

• VCM (Virtual Channels Multiplexer): • Time multiplexes VC’s according to BAT (Bandwidth

Allocation Table) on a per frame basis

Page 27: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 27

Telemetry Encoder

• Handles the serialised TM frames:

• Addition of Reed-Solomon Error Detection and Correction symbols

• Pseudo-randomisation (to ensure bit transition density and avoid Tx DC components)

• Optional Non-Return-to-Zero Mark encoding

• Convolutional Encoding, such as Viterbi (doubles the bit rate)

• Optional Split-Phase Level modulator (doubles bit rate)

• Feed bitstream to radio amplifier/transmitter

Page 28: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 28

OBC: System on Chip • Saab Space, available in 2008 in Atmel ATC18RHA

radiation hard 180 nm standard cell ASIC technology

• LEON2-FT Fault Tolerant SPARC V8 processor, 86 MIPS@100 MHz + FPU

• SPARC V8 Reference Memory Management Unit (MMU)

• Caches: 32 KB instruction, 16 KB data cache

• Extended Debug Support Unit (E-DSU) with 4096 trace lines

• EDAC and automatic scrubbing on large SDRAM, Memory Copy Controller

• 3 High-Speed UART’s

• Three MIL-STD-1553B bus interfaces

• OBDH bus Central Terminal

• 3 PacketWire Receivers & Transmitters

• 8 ECSS-E-50-12A SpaceWire Interfaces capable up to 200 MHz/160 Mbps, Hardware support for Remote Memory Access Protocol.

• 2 Controller Area Network (CAN) interfaces supporting up to 1 Mbps

Page 29: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 29

Reconfiguration Module

• Manages:

• The watchdog and associated computer reset and switch-over logic • The active and cold standby computer • The OBSW version to be loaded at start-up

• It can as well contain:

• Context memory: • Serves as memory for time stamped logs of reconfiguration

module, boot and application SW • Is not reset by a computer boot and regularly transferred to

the ground. • Emergency TC hardware decoder and pulse generator • Central date and time system

Page 30: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 30

PROBA 1

DHS

AOCS I/F

Reaction Wheels

(4)

Magnetometers

(2)

Magnetotorquers

(4)

PCS

GPS Receiver

Star Tracker (2)

Head

Head

Receivers (2)Transmitters

(2)

SREM

DEBIE

PPU

CHRIS

Imagers

Other

Payloads

BatterySolar

Array

Power line

Digital Control line

Proba 1

•Centralized (star) architecture

+ Simple design, direct connection with the OBC

+ Well adapted to off the shelf equipment integration

- Modularity

- Harness

• Mass:

•Structure

•Instruments

•Power

•AOCS

•Avionic & data

processing

8.5kg8.5kg

• Harness

• RF6kg6kg

8kg8kg

29kg29kg

24kg24kg

9.5kg9.5kg

12kg12kg

Page 31: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 31

Bus architecture:

+ std protocol and communication schemes for all nodes

+ modularity/ testablity

+ Bus traffic solved with central arbitration (CAN, 1553) or protocal arbitration (CAN,

Ethernet)

-I/F component must be developped

- Bus redundancy

Page 32: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 32

PROBA 2 Architecture

Nominal PCI BUS

DATA

ACQUISITION

MODULE

TELEMETRY &

TELECOMMAND

MODULE

SPACECRAFT

INTERFACE

MODULE

MAIN

PROCESSOR

MODULE

CAMERA &

MASS MEMORY

MODULE

PCI

ARBITER

Redundant PCI BUS

DATA

ACQUISITION

MODULE

TELEMETRY &

TELECOMMAND

MODULE

SPACECRAFT

INTERFACE

MODULE

MAIN

PROCESSOR

MODULE

CAMERA &

MASS MEMORY

MODULE

PCI

ARBITER

I/O BUS

EMERGENCY

TELECOMMAND

MODULE

•Proba 2

• Internal busses (industrial standards)

• Main Boards/ generic communication (analog/

digital I/Os, serial lines)

Page 33: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 33

Backplane data throughput

up to 1 GBps

Multi processor support

Processor board - 100MIPS - 64 Mbyte SDRAM - 4 Mbyte SRAM - 4 Mbyte Flash - 256 kByte Prom Telecommand

- 2 Mbps uplink capability - 4 virtual channels or more - configurable N of MAP-ID

- 56 CPDU channels

Telemetry - 100 Mbps downlink - 5 virtual channels - 2 packetwire inputs - full encoding

Mass memory - 4 Gbit - with EDAC

Context memory - 128 kbyte - with EDAC

Communication Interfaces - Up to 25 UART channels - Up to 6 TTC-B-01 channels - a camera interface with frame grabber - 2 packetwires

Analogue Interfaces - Up to 80 analogue inputs - Up to 32 temperature inputs

Time interfaces - 8 programmable clock outputs - 3 clock datation inputs

Power conditioning - Up to 300W satellite peak power - Up to 6 solar sections

Power distribution - 24 outputs of 28V / 50W - current protected with auto restart - switchable or non-switchable - battery undervoltage protected with auto switch off

H/W generated emergency telemetry

Centralised time

synchronisation

H/W recovery

TC decoder

Budgets: Mass 13 kg Volume 455x160x267mm Power 17 W

1 failure tolerant system

Proba2: Main Facts & Figures

Page 34: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 34

Avionics : Proba 3 PROPULSION

Nominal

AOCS & FF ADPMS

DWI+FLS

ULLIS

Comms

Payload

Coronagraph

electronics

Primary Tx

Primary Rx

RF

DU

Redundant Tx

Redundant Rx

S-b

an

d a

nte

nn

as

Power

Li-ion Battery

Solar arrays

Umbilical to launcher

Umbilical to Occulter

Power & Data Test I/F

Mechanisms

Solar array release mechanism (primary)

SO 28V

SO 28V

TC I/F RS422 UART

NSO 28V

TC I/F RS422 UART

Clock RS422 UART

TM I/F RS422 UART

SO 28V

NSO 28V

Clock

TM I/F RS422 UART

ImageWire

RS422 UART (TBC)Coronagraph

optics & telescope

DMS

PMS

Primary

DMS

MPM

MCPM

TTM

SIM

DAM0

DAM1

REM

PSM

PDM0

PCM

Redundant

DMS

MPM

MCPM

TTM

SIM

DAM0

DAM1Temp sensors 1 to 12 (TBC) on optical bench

Heaters 1 to 6 (TBC) on optical bench

RS422 UART

MIL-STD-1553

SO 28V

SO 28V

ASC

CHU1

CHU2

CHU3

DPU

CPU1

Cro

ss c

ou

plin

g

CPU1SO 28V

RS422 UART

Clock

SO 28V

RS422 UART

Clock

SO 28V

RS422 UART

SO 28V

RS422 UART

RS422 UART

RS422 UART

SO 28V

Coronagraph spacecraft

initial date

C:\Documents and Settings\bja\Mina dokument\PROBA-3_Avionics_block_diagram.VSD

page 1 of 2

CSC Diagram

Avionics Concept for PROBA3

print date

last change07-11-08 09:25

07-11-08 09:25

07-11-08 09:25

dd.mm.yyAllA

datechangesissue EN PM PA

Alex Palacioscreator

Dump resistor

SO 28V

SO 28V

SO 28V

RS422 UART

Thermal

I/F boxSO 28V

RS422 UART

1N 3DOF - Monoprop (HPGP)

Valve 8

Valve 1

...

10mN 6DOF - Marotta

Valve 16

Valve 1

...

SO 28V

RS422 UART

SO 28V

RS422 UART

SO 28V

RS422 UART

Solar array release mechanism (redundant)Safe & Arm

Safe & Arm

Propulsion DAM

DAM2 DAM2

RS422 UART

PDM1

PDM2

PDM3

PDM4

PDM5

Body panel x 6X 6

RF Metrology

Primary RF metrology

BB

Tx

Rx

Rf s

witc

h

Redundant RF metrology

...

BB

Tx

Rx

Rf s

witc

h

7 S

-ba

nd

an

ten

na

s

RS422 UART

SO 28V

RS422 UART

RS422 UART

SO 28V

RS422 UART

X 3

X 3

X 4

X 4

X 3

X 3

PowerLow speed data linkHigh speed data linkAnalog signalDigital signalClock

Mission-Critical Item

X 2

X 2

500µN EP 2DOF - MiDGITS

RF Supply

PCCS XFCU

RF Supply

neutraliser

RS422 UART

X 4

X 6

Thermal control

Heater branches x 2 (for redundancy)

ASSG-RTU

Acc I/F

electronics

SAS I/F

electronics

SPS I/F

electronics

Redundant

Acc I/F

electronics

SAS I/F

electronics

SPS I/F

electronics

Accelerometers

Acc1

Acc5

...

Sun sensor 1*4

SPS

Sensors

1 to 4Amplifier

GRW-RTU

Nominal

Redundant

Gyros

Gyro1

Gyro5

...

Gyro I/F

electronics

Gyro I/F

electronics

RW1

RW4

...

RW I/F

electronics

RW I/F

electronics

RS422 UART

Nom GPS

receiverLNA

Red GPS

receiverLNA

PROP-RTU

Nominal

Redundant

I/F electronics

I/F electronics

PROP-RTU

Nominal

Redundant

I/F electronics

I/F electronics

EP-RTU

Nominal

Redundant

I/F electronics

I/F electronics

SO 28V

RS422 UART

PTC-RTU

Redundant

Quick-nut

Pyro

22 Thermistor

I/F electronics

4 LED drivers

18 Heaters

I/F electronics

Nominal

Quick-nut

Pyro

22 Thermistor

I/F electronics

4 LED drivers

18 Heaters

I/F electronics

SO 28V

RS422 UART

SO 28V

RS422 UART

Nom GPS PPS

RS422 UART

RS422 UART

Red GPS PPS

2 x 4 LEDs for

RDW

Courtesy Verhaert Space

Page 35: On Board Computers - LTAS-SDRG · OB Processor: Evolution Mips 200 100 2 MIPS 50 14 4 2 16 bits CPU Only Mil Std 32 bits 14 MIPS Sparc V7 ... REM context writing OBSW REM 0,01

December 2011 ULG - Avionics Overview 35

PROBA 3: PROPULSION

AOCS & FF ADPMS

Comms

Payload

DARA

Primary Tx

Primary Rx

RF

DU

Redundant Tx

Redundant Rx

S-b

an

d a

nte

nn

as

Umbilical to Coronagraph

Power & Data Test I/F

SO 28V

SO 28V

TC I/F RS422 UART

NSO 28V

TC I/F RS422 UART

Clock RS422 UART

TM I/F RS422 UART

SO 28V

NSO 28V

Clock

TM I/F RS422 UART

RS422 UART (TBC)

DMS

PMS

Primary

DMS

MPM

MCPM

TTM

SIM

DAM0

DAM1

REM

PSM

PDM0

PCM

Redundant

DMS

MPM

MCPM

TTM

SIM

DAM0

DAM1

Occulter spacecraft

initial date

C:\Documents and Settings\bja\Mina dokument\PROBA-3_Avionics_block_diagram.VSD

page 2 of 2

OSC Diagram

Avionics Concept for PROBA3

print date

last change07-11-08 09:25

07-11-08 09:25

07-11-08 09:26

dd.mm.yyAllA

datechangesissue EN PM PA

Alex Palacioscreator

10mN 6DOF - Marotta

Valve 8

Valve 1

...

Propulsion DAM

PDM1

PDM2

PDM3

PDM4

PDM5

RF Metrology

Primary RF metrology

BB

Tx

Rx

Rf s

witc

h

Redundant RF metrology

...

BB

Tx

Rx

Rf s

witc

h

7 S

-ba

nd

an

ten

na

s

RS422 UART

SO 28V

RS422 UART

RS422 UART

SO 28V

RS422 UART

X 4

X 4

X 3

X 3

X 2

X 2

NSO 28V (thermal)

2 x 4 LEDs for

OPS

10-1000µN 6DOF - Nanospace Coldgas

Pod 1

Pod 4

...

DAM2 DAM2

RS422 UART RS422 UART

Power

Li-ion Battery

Solar arrays

Dump resistor

X 3

X 3

X 6

Body panel x 6X 6 PowerLow speed data linkHigh speed data linkAnalog signalDigital signalClock

Mission-Critical Item

SO 28V

RS422 UART

SO 28V

RS422 UART

SO 28V

RS422 UART

SO 28V

RS422 UART

PROP-RTU

Nominal

Redundant

I/F electronics

I/F electronics

PROP-RTU

Nominal

Redundant

I/F electronics

I/F electronics

Thermal control

Heater branches x 2 (for redundancy)

PTC-RTU

Redundant

Quick-nut

Pyro

22 Thermistor

I/F electronics

4 LED drivers

18 Heaters

I/F electronics

Nominal

Quick-nut

Pyro

22 Thermistor

I/F electronics

4 LED drivers

18 Heaters

I/F electronics

ASC

CHU1

CHU2

CHU3

DPU

CPU1

Cro

ss c

ou

plin

g

CPU1SO 28V

RS422 UART

Clock

SO 28V

RS422 UART

Clock

RS422 UART

SO 28V

SO 28V

SO 28V

RS422 UART

ASSG-RTU

Nominal

Acc I/F

electronics

SAS I/F

electronics

SPS I/F

electronics

Redundant

Acc I/F

electronics

SAS I/F

electronics

SPS I/F

electronics

Accelerometers

Acc1

Acc5

...

Sun sensor 1*4

GRW-RTU

Nominal

Redundant

Gyros

Gyro1

Gyro5

...

Gyro I/F

electronics

Gyro I/F

electronics

RW1

RW4

...

RW I/F

electronics

RW I/F

electronics

RS422 UART

Nom GPS

receiverLNA

Red GPS

receiverLNA

RS422 UART

SO 28V

Nom GPS PPS

RS422 UART

RS422 UART

Red GPS PPS

SO 28V

RS422 UART

SO 28V

RS422 UART

Courtesy Verhaert Space