omnidirectional slam and d structureyokoya.naist.jp/paper/datas/1150/springcolloquim.pdf · 2013....

8
1 Structure from motion Structure from motion for omnidirectional multi for omnidirectional multicamera camera system and its applications system and its applications Vision and Media Computing Lab. Vision and Media Computing Lab. Graduate Graduate School of Information Science School of Information Science Nara Institute of Science and Nara Institute of Science and Technology (NAIST) Technology (NAIST) Tomokazu Tomokazu Sato Sato Overview of this talk Overview of this talk SFM and PnP for multi-camera system SFM (Structure from motion) PnP (Perspective n point) problem GPS integration to SFM Applications of omnidirectional SFM Applications of omnidirectional Applications of omnidirectional video using 3 video using 3D structure D structure (1) (1) Omni Omni-directional directional tele tele- presence presence system system without without invisible invisible area area (2) (2) N l N l i th i i th i f (2) (2) Novel Novel-view synthesis view synthesis from from omni omni-directional video using a directional video using a deformable 3 deformable 3-D mesh model D mesh model (3) (3) Feature landmark based Feature landmark based marker marker-less less augmented reality augmented reality Visual VisualSLAM (online SFM) and SLAM (online SFM) and its application for video mosaic its application for video mosaic * T. Sato , A. Iketani, S. Ikeda, M. Kanbara, N. Nakajima, and N. Yokoya: ‘Video mosaicing for curved documents by structure from motion’, ACM SIGGRAPH2006, Sketches, Aug. 2006. SFM SFM and Reprojection error and Reprojection error 3D coordinate of feature point ) , , ( z y x p = S World coordinate system M Extrinsic camera parameter 2D projection of p S ) ' , ' ( ' v u p = x unknown unknown Detected Position of p Camera coordinate system ) , ( v u p = x min 2 | ' | = p p p E x x Sum of re-projection errors: Multiple images are necessary to solve this problem. PnP problem PnP problem and Reprojection error and Reprojection error 3D coordinate of feature point ) , , ( z y x p = S World coordinate system M Extrinsic camera parameter 2D projection of p S ) ' , ' ( ' v u p = x unknown known Detected Position of p Camera coordinate system ) , ( v u p = x min 2 | ' | = p p p E x x Sum of re-projection errors: Single images is sufficient to solve this problem.

Upload: others

Post on 11-Sep-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: omnidirectional SLAM and D structureyokoya.naist.jp/paper/datas/1150/SpringColloquim.pdf · 2013. 2. 14. · TomokazuTomokazu Sato Sato, Naokazu Yokoya * ‘Generation of an omnidirectional

1

Structure from motion Structure from motion for omnidirectional multifor omnidirectional multi‐‐camera camera 

system and its applicationssystem and its applications

Vision and Media Computing Lab.Vision and Media Computing Lab.Graduate Graduate School of Information ScienceSchool of Information Science

Nara Institute of Science and Nara Institute of Science and Technology (NAIST)Technology (NAIST)

TomokazuTomokazu SatoSato

Overview of this talkOverview of this talk

SFM and PnP for multi-camera systemSFM (Structure from motion)PnP (Perspective n point) problem

GPS integration to SFM

Applications of omnidirectional SFM

Applications of omnidirectional Applications of omnidirectional video using 3video using 3‐‐D structureD structure

(1)(1) OmniOmni--directional directional teletele--presence presence system system without without invisible invisible areaarea

(2)(2) N lN l i th ii th i ff(2) (2) NovelNovel--view synthesis view synthesis from from omniomni--directional video using a directional video using a deformable 3deformable 3--D mesh modelD mesh model

(3)(3) Feature landmark based Feature landmark based markermarker--less less augmented realityaugmented reality

VisualVisual‐‐SLAM (online SFM) and SLAM (online SFM) and its application for video mosaicits application for video mosaic

* T. Sato, A. Iketani, S. Ikeda, M. Kanbara, N. Nakajima, and N. Yokoya: ‘Video mosaicing for curved documents by structure from motion’, ACM SIGGRAPH2006, Sketches, Aug. 2006.

SFMSFM and Reprojection errorand Reprojection error

3D coordinate of feature point

),,( zyxp =S

World coordinate system

MExtrinsic camera parameter

2D projection of pS)','(' vup =x

unknown

unknown

Detected Position of p

Camera coordinate system

),( vup =x

→ min2|'|∑ −=

pppE xxSum of re-projection errors:

Multiple images are necessary to solve this problem.

PnP problem PnP problem and Reprojection errorand Reprojection error

3D coordinate of feature point

),,( zyxp =S

World coordinate system

MExtrinsic camera parameter

2D projection of pS)','(' vup =x

unknown

known

Detected Position of p

Camera coordinate system

),( vup =x

→ min2|'|∑ −=

pppE xxSum of re-projection errors:

Single images is sufficient to solve this problem.

Page 2: omnidirectional SLAM and D structureyokoya.naist.jp/paper/datas/1150/SpringColloquim.pdf · 2013. 2. 14. · TomokazuTomokazu Sato Sato, Naokazu Yokoya * ‘Generation of an omnidirectional

2

Extrinsic camera parameter estimationExtrinsic camera parameter estimation(PnP and SFM)(PnP and SFM)

• PnP problem (Perspective n Point problem)is for pairs of known 3-D positions and their 2-D observations.

• Algebraic solution with minimum features (P3P, P4P, etc)

• Linear solution for arbitral number of features (PnP)

• Non-linear minimization of reprojection errors(For final refinement it needs good initial guess)(For final refinement, it needs good initial guess)

• SfM (Structure from Motion)is for unknown 3-D positions and their 2-D observations.

• Factorization-based method (For video, batch processing)

• Visual-SLAM (For video, real-time)

• Ego-motion estimation (For sufficiently long baseline image pairs)

• Non-linear minimization of reprojection errors(For final refinement, it needs good initial guess)

• PnP problem (Perspective n Point problem)is for pairs of known 3-D positions and its 2-D observation.

• Algebraic solution with minimum features (P3P, P4P, etc)

• Linear solution for arbitral number of features (PnP)

• Non-linear minimization for reprojection errors(For final refinement it needs good initial guess)Solution for multi‐camera system

Extrinsic camera parameter estimationExtrinsic camera parameter estimation(PnP and SFM)(PnP and SFM)

(For final refinement, it needs good initial guess)

• SfM (Structure from Motion)is for unknown 3-D positions and its 2-D observation.

• Factorization-based method (For video, batch processing)

• Visual-SLAM (For video, real-time)

• Ego-motion estimation (For sufficiently long baseline image pairs)

• Non-linear minimization of reprojection errors(For final refinement, it needs good initial guess)

Solution for multi camera system

Extension with GPS

Basic strategy for visualBasic strategy for visual‐‐SLAMSLAMGiven 3-D positions of features(Reference points)

Feature Feature trackingtracking

Camera parameterCamera parameter

Camera positions and postures(Camera parameters)

9

33--D position D position updateupdatefor for image featuresimage features

Camera parameter Camera parameter estimation estimation solving solving PnPPnP

Iterate for each frame

Bundle adjustmentBundle adjustment

Linear Linear solution for PnP problemsolution for PnP problemin OMS (1/2)in OMS (1/2)

10

Camera unitsof OMS

We minimize distances We minimize distances between between projecting lines projecting lines and 3and 3‐‐D D position of position of features instead of reprojection errors.features instead of reprojection errors.

Linear Linear solution for PnP problemsolution for PnP problemin OMS (2/2)in OMS (2/2)

* Tomokazu Sato, S. Ikeda, and N. Yokoya ‘Extrinsic camera parameter recovery from multiple image sequences captured by an omni-directional multi-camera system’, Proc. ECCV, May. 2004.

They can be computed from observations

Tracking of image features with Tracking of image features with reference pointsreference points

Page 3: omnidirectional SLAM and D structureyokoya.naist.jp/paper/datas/1150/SpringColloquim.pdf · 2013. 2. 14. · TomokazuTomokazu Sato Sato, Naokazu Yokoya * ‘Generation of an omnidirectional

3

Estimated camera pathEstimated camera path In case In case 3D reference points3D reference pointsare are unavailableunavailable

Feature Feature trackingtracking

Camera parameter Camera parameter estimation estimation solving solving PnPPnP

14

33--D position D position updateupdatefor for image featuresimage features

gg

Iterate for each frame

Global bundle adjustmentGlobal bundle adjustment

Local bundle adjustmentLocal bundle adjustment3D positions of featuresare initialized as they are on the sphere.

Tracking of image features without Tracking of image features without reference pointsreference points

Estimated camera path Estimated camera path without 3D reference pointswithout 3D reference points

Overview of this talkOverview of this talk

SFM and PnP for multi-camera systemSFM (Structure from motion)PnP (Perspective n point) problem

GPS integration to SFM

Applications of omnidirectional SFM

Camera parameter estimation Camera parameter estimation from video images and from video images and

accuracy considered GPSaccuracy considered GPS

Extension of SFMExtension of SFM

Hideyuki Kume, Hideyuki Kume, TomokazuTomokazu SatoSato, Naokazu Yokoya, Naokazu Yokoya

yy

* ‘Extrinsic camera parameter estimation using video images and GPS considering GPS positioning accuracy’, Proc. ICPR2010, Aug. 2010 (accepted, to apper)

Page 4: omnidirectional SLAM and D structureyokoya.naist.jp/paper/datas/1150/SpringColloquim.pdf · 2013. 2. 14. · TomokazuTomokazu Sato Sato, Naokazu Yokoya * ‘Generation of an omnidirectional

4

Extension of objective functionExtension of objective function

∑∑∈∈

Ψ+Φ=gi

ii

iEFF

ω

Penalty term for Group of input frames:FGroup of frames in which:F

weight:ω

21 ∑Reprojection error

Penalty term for GPS positioning is added to objective function.

19

GPS positioning

Camera coordinate system

Feature

ijij qq ˆ−Detected position :

Projected position :

jijq̂

ijq

Group of frames in whichGPS data is acquired

:gF2)ˆ(1ijij

jj

ii

i

qqP P

−=Φ ∑∈

μ

:Group of feature points tracked in the -th frame i

:Confidence of feature jjμ

iP

How should we design How should we design the penalty term for GPS data?the penalty term for GPS data?

Red axis:East, Green axis:South, Blue axis:Vertical up

Positions are measured in fixed position using RTK‐GPS(TOPCON GR‐3) for 5 hours

20

Acquired positions in RTK-fix modeLength of axe:1 [m]

Acquired positions in RTK-float modeLength of axe:10 [m]

Assumption of normal distribution for GPS error in not effective for random walking errors for short time video streams. 

Penalty term for GPS positioningPenalty term for GPS positioning

Large given numberni

niii z

phyx

pr2222 )

)(1()

)(1( ++=Ψ

Confidence of GPS

Large number, if GPS is outside the cylinderAlmost 0 otherwiseiΨ

:p:n

iii

i

i

zyx

gdM −=

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

−1

1

=

, .

21GPS position in GPS coordinate system:

GPS position incamera coordinate system:

GPSGPS coordinate systemcoordinate system

(East)

(South)

Camera coordinate systemCamera coordinate systemAlmost 0, otherwise

)(2 ph

)(pr

x

yz

d

igii gdM −−1

iM

Estimated camera pathsEstimated camera paths

22

:Ground truth:RTK-fix:RTK-float

:Proposed method:Compared method [Anai et al., 09]:Camera posture:Acquired GPS positions

Pyramid

Quantitative evaluationQuantitative evaluation

Posi

tion

erro

r [m

]

A: Vision only

B: Vision + GPS [Yokochi 06]w/o confidence info.with normal distribution

C: Vision + GPS [Anai 09]with confidence info.

23

0.0 

500.0 

1000.0 

1500.0 

2000.0 

2500.0 

3000.0 

3500.0 

A B C D 提案手法

Frame number

Posi

tion

erro

r [m

m]

Methods

and normal distribution

D: Proposed method

Overview of this talkOverview of this talk

SFM and PnP for multi-camera systemSFM (Structure from motion)PnP (Perspective n point) problem

GPS integration to SFM

Applications of omnidirectional SFM

Page 5: omnidirectional SLAM and D structureyokoya.naist.jp/paper/datas/1150/SpringColloquim.pdf · 2013. 2. 14. · TomokazuTomokazu Sato Sato, Naokazu Yokoya * ‘Generation of an omnidirectional

5

OmniOmni--directional directional telepresencetelepresence system system without invisible area without invisible area by image completionby image completion

Application 1/3Application 1/3

KoutaroKoutaro MachikitaMachikita, Norihiko Kawai, , Norihiko Kawai, TomokazuTomokazu SatoSato, Naokazu Yokoya, Naokazu Yokoya

* ‘Generation of an omnidirectional video without invisible areas using image inpainting’, Proc. ACCV2009, Sep. 2009

Invisible area in OMSInvisible area in OMSComplete video capturing for all the direction by OMS is essentially difficult.

Invisible area in the video

26

Invisible area in the video decreases a reality

Image from Google’s street view

Image completion technique that relying only for geometric info.often generates unnatural images.

Omnidirectional telepresence system using video captured by OMS.

Result in telepresence systemResult in telepresence system Exemplar based image completion Exemplar based image completion (image (image inpaintinginpainting) methods) methods

[Wexler et al., 2004]

[Kawai et al., 2008]

28

Processes for image completionProcesses for image completion

2. Estimation of ground surfaceand image projection to it

1. Camera parameter estimation for omni-video

29

3. Determination of data regionusing geometric infomation

Reference frame

4. Image completion by using pattern similarity

Data region

Target Reference frameTarget

Image completion based on pattern similarityImage completion based on pattern similarity

( ){ }∑ ∑Ω∈ ∈

⎥⎦

⎤⎢⎣

⎡+−+=

'

2)()(i

iW

ikif tIIwEx p

x pxpx

Energy is defined as weighted sum of SSD. xw

)(xI : Pixel value for x: Corresponded pixel

position with )(xt

: Weight for xx

30Update for pixel valueSearching for similar pattern

Target frame Reference frame

Exemplar for each pixel

f k

Following two processes are repeated until energy convergence.

x

)(xt

Page 6: omnidirectional SLAM and D structureyokoya.naist.jp/paper/datas/1150/SpringColloquim.pdf · 2013. 2. 14. · TomokazuTomokazu Sato Sato, Naokazu Yokoya * ‘Generation of an omnidirectional

6

Completed result for projected imagesCompleted result for projected images

31

Our method The method that uses only geometric information

Before and after completion Before and after completion in panoramic imagein panoramic image

32

Result in telepresence systemResult in telepresence system

33

NovelNovel--view synthesisview synthesisfrom from omnidirectionalomnidirectional video video

using a deformable 3using a deformable 3--D mesh modelD mesh model

Application 2/3Application 2/3

Hiroyuki Hiroyuki KoshizawaKoshizawa, Takuya Ibuki, , Takuya Ibuki, TomokazuTomokazu SatoSato, Naokazu Yokoya, Naokazu Yokoya

* ‘Omnidirectional free-viewpoint rendering using a deformable 3-D mesh model’, Int. J. of Virtual Reality, Vol. 9, No. 1, pp. 37-44, March 2010.

Generated video imageGenerated video imagefor zigzag camera pathfor zigzag camera path

C

35

5m

S building

Original camera-path

Virtual camera

Flow diagram of proposed methodFlow diagram of proposed method

Video capturing

Camera parameter estimation

Acquisition of input data

Free-viewpoint Rendering

Depth map generation 

36

Selection of appropriate textures

Texture mapping

Mesh model initialization / deformation

Selection of depth maps

Generation of view-dependent 3-D model

View-dependent texture mapping

Viewpoint change by user

Free-viewpoint Rendering

Page 7: omnidirectional SLAM and D structureyokoya.naist.jp/paper/datas/1150/SpringColloquim.pdf · 2013. 2. 14. · TomokazuTomokazu Sato Sato, Naokazu Yokoya * ‘Generation of an omnidirectional

7

Flow diagram of proposed methodFlow diagram of proposed method

Free-viewpoint Rendering

Video capturing

Camera parameter estimation

Acquisition of input data

Depth map generation 

37

Selection of appropriate textures

Texture mapping

Mesh model initialization / deformationSelection of depth maps

Generation of view-dependent 3-D model

View-dependent texture mapping

Viewpoint change by user

Virtual viewpoint

Free-viewpoint Rendering

Flow diagram of proposed methodFlow diagram of proposed method

Free-viewpoint Rendering

Video capturing

Camera parameter estimation

Acquisition of input data

Depth map generation 

38

Texture mapping

Mesh model initialization / deformation

Selection of depth maps

Generation of view-dependent 3-D model

View-dependent texture mapping

Viewpoint change by user

Virtual viewpointSelection of appropriate textures

Free-viewpoint Rendering

Mesh deformation Mesh deformation using multiple depth mapsusing multiple depth maps

Each vertex on mesh is moved so as to minimize energy function that expresses consistency of the depth maps. 

Virtualviewpoint

Original camera path

Generated video for circular pathGenerated video for circular path1m Original

camera path

Virtual viewpoint

Route for virtual camera

Feature landmark based Feature landmark based augmented realityaugmented reality

Application 3/3Application 3/3

TakafumiTakafumi TaketomiTaketomi, , TomokazuTomokazu SatoSato, Naokazu Yokoya, Naokazu Yokoya

* ‘Real-time camera position and posture estimation using a feature landmark database with priorities’, Proc. ICPR2008, Dec. 2008.

Example of AR: Virtual sightseeingExample of AR: Virtual sightseeing

Page 8: omnidirectional SLAM and D structureyokoya.naist.jp/paper/datas/1150/SpringColloquim.pdf · 2013. 2. 14. · TomokazuTomokazu Sato Sato, Naokazu Yokoya * ‘Generation of an omnidirectional

8

Construction of landmark databaseConstruction of landmark database

Feature point

+3D position

(x, y, z)Landmark

Landmark database

Register

Visual information

3D position and image patterns of feature points are once stored to database.

Camera parameter estimation Camera parameter estimation using landmark databaseusing landmark database

Landmark database

Capture a imageCamera parameter

Feature points (2D)

Landmark (3D)

correspondences

Human navigation Human navigation using Augmented Realityusing Augmented Reality

Detected LandmarksDetected Landmarks Navigation informationNavigation informationshown to the usershown to the user

Intuitive navigation can be Intuitive navigation can be achieved in achieved in mobile phones.mobile phones.

Application for car AR navigationApplication for car AR navigation

Computational costComputational cost::59ms for 1 frame (17 fps)59ms for 1 frame (17 fps)((CPU: Core 2 Extreme 2.93GHz, Memory: 2GBCPU: Core 2 Extreme 2.93GHz, Memory: 2GB))

Application for PreApplication for Pre‐‐VisualizationVisualization SummarySummaryIntroduction of omnidirectional SFM

PnP Solution for OMSVisual SLAM for OMS

GPS integration to SFMCylinder whose size is changed depending on

t fid i d f lt tmeasurement confidence is used for penalty term.

Applications of omnidirectional SFMVideo generation without invisible areaNovel view synthesisLandmark based Augmented Reality

E‐mail: tomoka‐[email protected]: http://yokoya.naist.jp/~tomoka‐s/index‐e.html