oliver bauer, moritz sokolowski institute for physical and theoretical chemistry university of bonn...

19
Oliver Bauer , Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany [email protected] X-Ray Standing Waves experiments and their evaluation XSWAVES, version 2.x 4286 4288 4290 4292 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 su b stra te / n o m ina lB ra g g en e rg y: A g(110) / 4 2 9 4 .5 9 7 e V X S W sig n a l: A g3d R eflectivity d a ta file : E scan83_C C 193_A g3d_Irefl.txt X S W a b so rp tio n p ro file d a ta file: E sca n 8 3 _ C C 1 9 3 _ A g 3 d _ ra w .txt C F = 0 .994 + /- 0.0 01 6 C P = 0 .03 2 + /- 0.0 00 5 Q = 0 .0 0 0 + /- 0 .0 0 0 0 D elta = 0.0 00 + /- 0.0 000 G a u ssia n w id th w G = 0 .2 5 1 + /- 0 .0 0 1 0 eV G a u ssia n cen te r xcG = -5 .4 3 7 + /- 0 .0 0 1 5 e V reduced chi-square = 1.747077e+001 d ate: M on Feb 21 18:37:50 2011 no rm .R e fle ctivity /re l.ab so rp tion yie ld p h oto n e ne rg y (e V ) norm .R eflectivity norm .R eflectivity fitresult norm .XS W absorption profile norm .XS W P rofile fitresult

Upload: elijah-ramsey

Post on 26-Mar-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

Oliver Bauer, Moritz Sokolowski

Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstrasse 12, 53115 Bonn, [email protected]

X-Ray Standing Waves experimentsand their evaluation

XSWAVES, version 2.x

4286 4288 4290 4292

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

substrate / nominal Bragg energy: Ag(110) / 4294.597 eV XSW signal: Ag3d Reflectivity data file: Escan83_CC193_Ag3d_Irefl.txt XSW absorption profile data file: Escan83_CC193_Ag3d_raw.txt CF = 0.994 +/- 0.0016 CP = 0.032 +/- 0.0005 Q = 0.000 +/- 0.0000 Delta = 0.000 +/- 0.0000 Gaussian width wG = 0.251 +/- 0.0010 eV Gaussian center xcG = -5.437 +/- 0.0015 eV reduced chi-square = 1.747077e+001 date: Mon Feb 21 18:37:50 2011

no

rm. R

efle

ctiv

ity /

rel.

ab

sorp

tion

yie

ld

photon energy (eV)

norm. Reflectivity norm. Reflectivity fit result norm. XSW absorption profile norm. XSW Profile fit result

Page 2: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

1) Introduction to X-Ray Standing Waves

2) Computation of XSW Data - XSWAVES

Outline

Page 3: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

Introduction to XSW –

the Physics behind…

Literature:

(1) B.W. Batterman, H. Cole, Reviews of Modern Physics 36 (1964) 681-717.(2) J. Zegenhagen, Surface Science Reports 18 (1993) 199-271.(3) D.P. Woodruff, Progress in Surface Science 57 (1998) 1-60.(4) D.P. Woodruff, Reports on Progress in Physics 68 (2005) 743-798.

Page 4: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

Introduction to XSW

• (NI)XSW = (Normal Incidence) X-ray Standing Waves– Absorption spectroscopy based on diffraction /

Photoemission spectroscopy at photon energies EBragg

– Determination of adsorption heights and adsorption geometries(molecular distortions upon adsorption?)

single-crystalline substrate

Page 5: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

Introduction to XSW

• Within the finite width of the Bragg reflectionthere is interference between the incoming andthe Bragg-reflected wave standing wave field (phase (E)).

Bragg-reflectedx-ray plane wave

incoming x-rayplane wave

wavefronts

z

IXSW

dH

B

max IXSW

H

0k

Hk

dH

crystalsurface

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) zero absorption

(b) with absorption

refle

ctiv

ity R

(E)

relative photon energy (eV)

Ag - (200) reflection

J. Zegenhagen, Surf. Sci. Rep. 18 (1993) 199. / D.P. Woodruff, Rep. Prog. Phys. 68 (2005) 743. / B.W. Batterman, H. Cole, Rev. Mod. Phys. 36 (1964) 681.

Page 6: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(d) 0.75

(c) 0.50

(b) 0.25

rela

tive

abso

rptio

n

relative photon energy (eV)

Ag - (200) reflection

(a) 0.00

• Typical NIXSW profiles

Bragg-reflectedwave

incomingwave

interference of incoming and reflected wave

FH: coherent fractionPH: coherent positionSR, |SI|, : non-dipolar parameters

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) zero absorption

(b) with absorption

refle

ctiv

ity R

(E)

relative photon energy (eV)

Ag - (200) reflection

Introduction to XSW

Page 7: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

• Non-dipolar contributions

Introduction to XSW

Bragg-reflectedwave

incomingwave

interference of incoming and reflected wave

FH: coherent fractionPH: coherent positionSR, |SI|, : non-dipolar parameters

Page 8: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

The Physics behind XSW…

• The XSW absorption profile as a function of coherent fraction and coherent position is taken as (3,4):

• where and are :

p and l are the partial phase shifts for the outgoing p- and d-waves, respectively (photoemission from an s-state).

• Q and are tabulated.

= SR = |SI|

M.B. Trzhaskovskaya et al. , Atomic Data and Nuclear Data Tables 77 (2001) 97 and 82 (2002) 257.NIST Electron Elastic-Scattering Cross-Section Database 3.1 (June 2003)

Page 9: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

• The reflectivity curve R is calculated as (1-4):

• where is (in terms of photon energy):

• is a complex number since the structure factors are complex.

• Polarisation factor P is taken as cos(2 * Bragg)(normal incidence => polarisation, P = 1).

• The above formula is only valid for centrosymmetric crystals since the pre-factor FH / F-H is omitted

= 1 for centrosymmetric crystals

The Physics behind XSW…

Page 10: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

• The phase shift (or …) between the incoming and the outgoing X-ray plane wave is computed as (1-4):

• where is :

• and

The Physics behind XSW…

conditions inverted in XSWAVESsource code:

() → (E)

J. Zegenhagen, Surf. Sci. Rep. 18 (1993) 199. / D.P. Woodruff, Rep. Prog. Phys. 68 (2005) 743. / B.W. Batterman, H. Cole, Rev. Mod. Phys. 36 (1964) 681.

Page 11: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

Computation of XSW data:

XSWAVES –

an XSW data evaluation routine for ORIGIN® 8

XSWAVES (open-source):

http://www.thch.uni-bonn.de/pctc/sokolowski/XSWAVES/XSWAVES_index.html

ORIGIN (commercial):

http://originlab.com/

Page 12: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

• Requirements:– Open-source routine– Sophisticated, reliable fitting engine– Full access to fit parameters– Batch processing– User-friendly interface

Computation of XSW data

*.txt file input:• parameters• reflectivity• exp. XSW profile

NLSFfitting engine

numerical and graphicalresults output

Page 13: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

XSWAVES

• Exemplary fit result

4286 4288 4290 4292

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

substrate / nominal Bragg energy: Ag(110) / 4294.597 eV XSW signal: Ag3d Reflectivity data file: Escan83_CC193_Ag3d_Irefl.txt XSW absorption profile data file: Escan83_CC193_Ag3d_raw.txt CF = 0.994 +/- 0.0016 CP = 0.032 +/- 0.0005 Q = 0.000 +/- 0.0000 Delta = 0.000 +/- 0.0000 Gaussian width wG = 0.251 +/- 0.0010 eV Gaussian center xcG = -5.437 +/- 0.0015 eV reduced chi-square = 1.747077e+001 date: Mon Feb 21 18:37:50 2011

no

rm. R

efle

ctiv

ity /

rel.

ab

sorp

tion

yie

ld

photon energy (eV)

norm. Reflectivity norm. Reflectivity fit result norm. XSW absorption profile norm. XSW Profile fit result

Page 14: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

Computation of XSW data

• Experimental broadening

Si(111) double-crystalmonochromator

alinstrumentmono GRidealII

II 2

00)(.exp

Page 15: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

XSWAVES source code

alinstrumentmono GRidealII

II 2

00)(.exp

FFT convolution→ funtion F(E)

“step-wise“ convolution:trapezoidal rule

dttEGtFEGEFII

alinstrument

t

t

alinstrument

final

initial

.exp0

Page 16: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

fitresult

Page 17: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

XSWAVES benchmarking

• Fit of synthetic data sets for Ag(111):

– Exemplary data sets were created with EXCEL simulation sheet by Bruce Cowie.

– Neither error weighting for reflectivity fit nor for XSW absorption profile fit.

– Non-dipolar parameters : Q = 0, = 0.

– Modification of the response function is NOT enabled during XSW profile fit.

  simulation XSWAVES ver. 2.0

Data set CF CP CF CP

Test 1 0.5 0.5 0.513 0.496

Test 2 1.0 0.7 1.000 0.698

Test 3 0.3 0.7 0.300 0.696

Test 4 0.8 0.1 0.812 0.099

Test 5 0.8  0.8 0.809 0.799

Test 6 0.6 0.3 0.615 0.299

Page 18: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

XSWAVES benchmarking

• Ag(111), Test 2:– Simulation: CF = 1.0 CP = 0.7– Fit: CF = 1.000 CP = 0.698

Page 19: Oliver Bauer, Moritz Sokolowski Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstrasse 12, 53115 Bonn, Germany bauer@pc.uni-bonn.de

Summary

• XSWAVES – an XSW data evaluation routine for ORIGIN® 8:

– Open-source routine with user-friendly interface

http://www.thch.uni-bonn.de/pctc/sokolowski/XSWAVES/XSWAVES_index.html