ocean-scale modelling of calanus finmarchicus

30
Ocean-scale modelling of Calanus finmarchicus Douglas Speirs Acknowledgments: Bill Gurney (Strathclyde) Mike Heath (FRS Aberdeen) Simon Wood (Glasgow University) SOC, PML, SAHFOS, US- GLOBEC

Upload: patia

Post on 14-Jan-2016

22 views

Category:

Documents


2 download

DESCRIPTION

Ocean-scale modelling of Calanus finmarchicus. Douglas Speirs. Acknowledgments: Bill Gurney (Strathclyde) Mike Heath (FRS Aberdeen) Simon Wood (Glasgow University) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ocean-scale modelling  of  Calanus finmarchicus

Ocean-scale modelling of

Calanus finmarchicus

Douglas Speirs

Acknowledgments: Bill Gurney (Strathclyde)

Mike Heath (FRS Aberdeen)

Simon Wood (Glasgow University)

SOC, PML, SAHFOS, US-GLOBEC

Page 2: Ocean-scale modelling  of  Calanus finmarchicus

Calanus finmarchicus – a marine copepod

2 mm

• Up to 90% of copepod biomass throughout the sub-arctic North Atlantic.

• Important prey species for fish in both shelf and ocean ecosystems.

• Extensive database from field surveys and laboratory experiments.

Page 3: Ocean-scale modelling  of  Calanus finmarchicus

The life-cycle of Calanus finmarchicus

• Omnivorous, but feeds mainly on phytoplankton.

• x1000 difference in body weight between eggs and adults.

• Stage duration strongly dependent on temperature

• Naupliar survival strongly dependent on food.

• Reproduction & growth in upper layers (<200m).

• Overwinters in a resting state at depths of 500-2000m.

Page 4: Ocean-scale modelling  of  Calanus finmarchicus

Coupling Life-Cycle to Physical Oceanography

NORTH ATLANTIC OCEAN SHELF SEAS

Overwintering at depth

Export to shelf seas

Growth and reproductionin the upper ocean

In the ocean, Calanus switchesbetween surface and deepcirculation regimes during eachannual cycle.

Each spring, the shelf seas arere-colonised with Calanus fromthe ocean.

Page 5: Ocean-scale modelling  of  Calanus finmarchicus

Calanus abundance and Circulation

Page 6: Ocean-scale modelling  of  Calanus finmarchicus

The modelling challenge

The Challenge• Physiologically and spatially explicit demographic model

• Ocean-basin scale – advection plus diffusion

• Hypothesis tests require wide parameter exploration

• Need exceptional computational efficiency

The Solution• Focus on Calanus (physical and biotic environment as given)

• Separate computation of physical and biological components

• Discrete-time approach ( 104 speed-up relative to Lagrangian ensemble)

Page 7: Ocean-scale modelling  of  Calanus finmarchicus

A Calanus-focussed model

Page 8: Ocean-scale modelling  of  Calanus finmarchicus

The Biological Model

• Development rate a function of temperature and food

• Diapause entry from end C5

• Fixed fraction of each generation enter diapause

• Diapause exit photoperiod cued

• Surface mortality increases with biomass and temperature

Page 9: Ocean-scale modelling  of  Calanus finmarchicus

Yearly Population Cycle

Page 10: Ocean-scale modelling  of  Calanus finmarchicus

Continuous Plankton Recorder Surveys

Page 11: Ocean-scale modelling  of  Calanus finmarchicus

Test Data – Time Series & CPR

Page 12: Ocean-scale modelling  of  Calanus finmarchicus

Water column integrated abundance of overwintering C4 and C5 C. finmarchicus

-60 -50 -40 -30 -20 -10 0 10

Longitude

50

55

60

65

70L

atit

ud

e

0 10000 20000 30000 40000 50000

C alanus finm arch icus ( m - 2 , 0 - 3 0 0 0 m )C5

Page 13: Ocean-scale modelling  of  Calanus finmarchicus

Time Series Test

Gulf of Maine

OWS Mike

surfaceC5-C6

diapauseC5

Page 14: Ocean-scale modelling  of  Calanus finmarchicus

Diapauser Survey Test

Page 15: Ocean-scale modelling  of  Calanus finmarchicus

CPR Test

Jan./Feb.

May/Jun.

Jul./Aug.

observed predicted

Page 16: Ocean-scale modelling  of  Calanus finmarchicus

August Sea Temperature at 20m

Page 17: Ocean-scale modelling  of  Calanus finmarchicus

The Impact of Transport

Page 18: Ocean-scale modelling  of  Calanus finmarchicus

Domain Connectivity

Year 1

Year 3

Year 6

Page 19: Ocean-scale modelling  of  Calanus finmarchicus

Travels of the Great Salinity Anomaly

Page 20: Ocean-scale modelling  of  Calanus finmarchicus

Conclusions

•Ocean-scale population model feasible•Numerical efficiency is key

•Fractional diapause entry

•Diapause entry late in C5

•Photoperiod-cued diapause exit

•Temperature-dependent mortality

•Limited impact of transport

•High domain connectivity

Page 21: Ocean-scale modelling  of  Calanus finmarchicus

Washout of a non-developing population from Gulf of Maine

Page 22: Ocean-scale modelling  of  Calanus finmarchicus

Boundary effects on C5-C6 seasonal cycle

Page 23: Ocean-scale modelling  of  Calanus finmarchicus

Gulf of Maine Export

Page 24: Ocean-scale modelling  of  Calanus finmarchicus

Invasion of Gulf of Maine

Page 25: Ocean-scale modelling  of  Calanus finmarchicus

Future Prospects

• Tests on independent data sets (UK-GLOBEC Irminger Sea data)

• Automated parameter optimization

• Hindcasting of decadal trends

• Nested models for shelf regions

• Coupled target species - ecosystem models

Page 26: Ocean-scale modelling  of  Calanus finmarchicus

Calanus abundance map compiled from data supplied by SAHFOS toNERCMarine Productivity project GR2/2749 and the EU-TASC project

1958-1999 average surface abundance of C. finmarchicus (stage C5 and CVI)

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 3035

40

45

50

55

60

65

70

75

80

050100150200250300350400450500550600

Me

an

nu

mb

er

3m

-3

-1.5

-0.5

0.5

1.5

2.5

0 1 2 3 4 5 6 7 8 9 101112

Month

Av

era

ge

ab

un

da

nc

e

-1.5

-0.5

0.5

1.5

2.5

0 1 2 3 4 5 6 7 8 9 101112

Month

Av

era

ge

ab

un

da

nc

e

-1.5

-0.5

0.5

1.5

2.5

0 1 2 3 4 5 6 7 8 9 101112

Month

Av

era

ge

ab

un

da

nc

e

-2

-1

0

1

2

3

4

5

1950 1970 1990

Year

Av

era

ge

ab

un

da

nc

e

-2

-1

0

1

2

3

4

5

1950 1970 1990

Year

Av

era

ge

ab

un

da

nc

e

-2

-1

0

1

2

3

4

5

1950 1970 1990

Year

Av

era

ge

ab

un

da

nc

e

-6

-4

-2

0

2

4

6

1950 1970 1990

Year

NA

O in

dex

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6NAO index

No

rth

Se

a C

ala

nu

s

1996-onwards

Page 27: Ocean-scale modelling  of  Calanus finmarchicus

Annual Mean Temperature & Food

Page 28: Ocean-scale modelling  of  Calanus finmarchicus

Overwintering depths in various regions...

-3500

-2500

-1500

-500

Dep

th (m

)

LS MAR IrB IcB RB NEI FSC ENS NT

-60 -50 -40 -30 -20 -10 0 10

Longitude

50

55

60

65

70

La

titu

de

0 10000 20000 30000 40000 50000

C alanus finm arch icus ( m - 2 , 0 - 3 0 0 0 m )

C5

Page 29: Ocean-scale modelling  of  Calanus finmarchicus

Calanus abundance map compiled from data supplied by SAHFOS toNERCMarine Productivity project GR2/2749 and the EU-TASC project

Geographical focus of Marine Productivity and other Calanus-centric programmes during the 1990’s..

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 3035

40

45

50

55

60

65

70

75

80

050100150200250300350400450500550600

Me

an

nu

mb

er

3m

-3

Multi-nationalprogrammes:EU-ICOSEU-TASC

National programmes:UK, Norway, Germany, Denmark, Iceland, Canada, USA

NERC MarineProductivity

Page 30: Ocean-scale modelling  of  Calanus finmarchicus

C5’s & phytoplankton carbon at OWSM

•Diapause occurs at end of C5 stage

•Fixed fraction of each generation