observer’dependent-entropy-in- blackhole-thermodynamics?...kerr-newman adsblack hole Γ(θ)= l2 2...

30
ObserverDependent Entropy in Black Hole Thermodynamics? Robert Mann

Upload: others

Post on 26-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Observer-‐Dependent  Entropy  in  Black  Hole  Thermodynamics?

    Robert  Mann

  • Area  Law

    What  happens  if  you  pour  a  cup  of  tea  into  a  black  hole?

    • Tea  is  hot  – has  entropy• Black  hole  absorbs  everything  and  has  no  structure• Where  does  the  entropy  go?Bekenstein:  Tea  has  mass  à will  increase  mass  of  black  hole

    à area  must  increase

    A(area) S (entropy)

    Bekenstein PRD  7 (1973)  2333    

  • Energy E↔ M Mass

    Black  Holes  as  Chemical  Systems?

    Thermodynamics Gravity

    Entropy S↔ A4!

    Horizon Area Temperature T ↔ !κ

    2π Surface gravity

    dE = TdS +VdP + work terms ↔ dM = κ8π

    dA +ΩdJ +ΦdQ

    First Law First Law

    Dolan  CQG  28 (2011)  125020;  235017    

    Kubiznak/Mann/Teo CQG  34  (2017)  063001

  • Scaling  Arguments

    f α px,α qy( ) =α r f x, y( )Suppose

    rf x, y( ) = p ∂ f∂x

    x + q ∂ f∂y

    y

    M = M A,Λ( )AdS Black Holes M ∝ LD−3 A ∝ LD−2 Λ ∝ L−2

    D − 3( )M = D − 2( ) ∂M∂A

    A − 2 ∂M∂Λ

    Λ

    M = D − 2( )D − 3( )TS −

    2D − 3( )VP

    S = A4G

    T = κ2π

    = 4G ∂M∂A

    P = − Λ8π

    =D − 2( ) D −1( )16π l2

    V = −8π ∂M∂Λ

    Caldarelli/Cognola/Klemm,  CQG  17 (2000)  399

    Creighton/Mann,  PRD53 (1995)  4569Padmanabhan,  CQG  19 (2002)  5387    

    Kastor/Ray/Traschen CQG  26 (2009)  195011          Dolan  CQG  28 (2011)  125020;  235017    

  • Enthalpy H ↔ M Mass

    Pressure  from  the  Cosmic  VacuumThermodynamics Gravity

    Entropy S↔ A

    4! Horizon Area

    Temperature T ↔ κ

    2π Surface gravity

    dH = TdS +VdP + !↔ dM = κ8π

    dA +VdP + !

    First Law First Law

    H = E + PV + ↔ M = E − ρVMass

    = Total Energy- Vacuum

    Contribution (infinite)

    Pressure P↔− Λ8πG

    Cosmological Constant

    C.  Teitelboim PLB  158  (1984)  293    J.  Creighton  and  R.B.  Mann,  PRD  52 (1995)  4569  Caldarelli/Cognola/Klemm CQG  17 (2000)  399;          T.  Padmanabhan,  CQG  19 (2002)  5387    

    Kastor/Ray/TraschenCQG  26 (2009)  195001

  • Cosmological  constant:  Einstein’s  biggest  blunder?  In  order  to  obtain  static  Universe  Einstein  introduced:

    Dark Energy: Λ > 0 (cosmic tension)String Theory: Λ < 0 (cosmic pressure)

    Λ

  • R = (D −1)VωD−2

    ⎛⎝⎜

    ⎞⎠⎟

    1 D−1ωD−2A

    ⎛⎝⎜

    ⎞⎠⎟1 D−2

    ≤1V

    A

    Q:  What  is  the  smallest  area  that  encloses  a  given  Euclidean  volume  V?

    A:  A  spherical  surface

    Cvetic/Gibbons/Kubiznak/Pope  PRD84 (2011)  024037  RBH ≥1Conjecture:  All  black  holes  obey  theReverse  Isoperimetric  Inequality  

    ωD−2 =2π

    D−12

    Γ D −12

    ⎛⎝⎜

    ⎞⎠⎟

    à For  a  given  thermodynamic  volume,  the  entropy  of  a  black  hole  is  maximized  by  the  Schwarzschild-‐AdS sol’n

    Meaning  of  Thermodynamic  Volume?

    RBH ≡(D −1)VBH

    ωD−2

    ⎛⎝⎜

    ⎞⎠⎟

    1 D−1ωD−2ABH

    ⎛⎝⎜

    ⎞⎠⎟

    1 D−2

    Black  Holes:

    4D Kerr-AdS BH

    RBH ≡3V4π

    ⎛⎝⎜

    ⎞⎠⎟1 3 4π

    A⎛⎝⎜

    ⎞⎠⎟1 2

    = r+lr+2 + a2

    l2 − a21+

    a2 r+2 + l2( )

    2r+2 (l2 − a2 )

    ⎝⎜

    ⎠⎟3

    l2 − a2

    r+2 + a2

    ≥1 →1a = 0

  • The  Chemistry  of  AdS Black  Holes

    D − 3D − 2

    M = ThSh + (Ωhi −Ω∞

    i )i∑ J i + D − 3D − 2ΦhQ −

    2D − 2

    PVh

    δM = ThδSh + (Ωhi −Ω∞

    i )i∑ δ J i +ΦhδQ +VhδP

    First Law

    Smarr Relation

    Thermodynamic Potential: Gibbs Free Energy

    G = M −TS = G(T ,P, Ji ,Q)• Equilibrium: Global minimum of Gibbs Free Energy• Local Stability: Positivity of the Specific Heat

    CP = T∂S∂T

    ⎛⎝⎜

    ⎞⎠⎟ P,Ji ,Q

    > 0

  • Results  from  Black  Hole  Chemistry• Hawking  Page  Transition

    – solid/liquid  phase  transition  with  infinite  coexistence  line• Black  Holes  as  Van  der  Waals  Fluids

    – Complete  correspondence  between  intrinsic  and  extrinsic  variables  

    • Reentrant  Phase  Transitions– Change  from  one  phase  to  another  and  back  again  as  one  parameter  (eg.  temperature)  monotonically  changes

    • Black  Hole  Triple  Points  ßà Solid/Liquid/Gas

    N.  Altimirano,  D.  Kubiznak,  Z.  Sherkatgnad,  R.B.  Mann  

    Galaxies 2 (2014)  89

    N. Altimirano, D. Kubiznak, Z. Sherkatgnad, R.B. Mann

    CQG 31 (2104) 042001

    Kubiznak/Mann CJP 93 999 (2016)

    Kubiznak/MannJHEP  1207  (2012)  033  

  • • Multiple  re-‐entrant  phase  transitions– Higher  curvature  gravity

    • Reverse  VdW phase  transitions– Exhibit  similar  phenomena  but  in  lower  dimensions

    • Isolated  Critical  Points– Isotherms  cross  at  a  particular  value  of  the  volume  V– Some  black  holes  are  like  polymers:  they  do  not  have  standard  critical  exponents

    • Heat  Engines– Can  compare  black  hole  efficiencies  through  various  engine  cycles

    Frassino/Kubiznak/Mann/SimovicJHEP  1409 (2014)  080

    Brenna/Hennigar/MannJHEP  1507 (2015)  077  

    B.  Dolan,  A.  Kostouki,  D.Kubiznak,  R.B.  Mann,  CQG  

    31 (2014)  242001

    Hennigar JHEP  1710 (2017)  082

    Johnson  CQG  31 (2014)  205002    Henningar/McCarthy/Ballon/Mann

    CQG  34 (2017)  175005

  • • Van  der  Waals  black  holes– Black  holes  +  exotic  matter  yield  exact  VdW equation

    • Lifshitz Black  Holes– Standard  Smarr Formula  holds  in  all  cases– Can  use  this  to  define  mass  (otherwise  intractable)

    • Holographic  Smarr Relation– Higher  curvature  è non-‐planar  loops

    • Superfluid  Black  Holes– Black  holes  with  scalar  “hair”                                                                              can  exhibit  a  superfluid  phase                                                            transition  analogous  to  4He

    A.Rajagopal,  D.  Kubinzank,  R.B.  Mann,  PLB  B737  (2014)  277  

    T.  Delsate,  ,  R.B.  Mann,    JHEP  1502(2015)  070  

    W.G.  Brenna,  M.  Park,  R.B.  Mann,  PRD  92 (2015)  044015  

    E.  Tjoa,  R.  Hennigar,  R.B.  Mann PRL  118 (2017)  021301  E.  Tjoa,  R.  Hennigar,  R.B.  Mann    JHEP  1702 (2017)  040H.  Dykaar,  R.  Hennigar,  R.B.  Mann  JHEP  1705 (2017  )  045      

    Karch/Robinson JHEP  1512 (2015)  073  Sinamuli/Mann      PRD  96 (2017)  068008

  • Van  der Waals  fluid

    Parameter  a measures  the  attraction between  particles  (a>0)  and  b  corresponds  to  “volume  of  fluid  particles”.  

    Critical  point:

    Chamblin/Emparan/Johnson/Myers  Phys.Rev.  D60 (1999)  064018Cvetic/Gubser-‐JHEP  9904 (1999)  024  

    Kubiznak/Mann  JHEP  1207 (2012)  033Gunasekaran/Kubiznak/Mann  JHEP  1112  (2012)  110  

    Charged  AdS black  holes  as  Van  der  Waals  fluids  

  • Charged  AdS Black  Hole

    Critical  point:

    Kubiznak/Mann  JHEP  1207 (2012)  033Gunasekaran/Kubiznak/Mann  JHEP  1112  (2012)  110  

    Charged  AdS black  holes  as  Van  der  Waals  fluids  

  • Phase  diagrams

    Coexistence  line  

    • MFT  critical  exponents

    govern  specific  heat,  volume,  compressibility  and  pressure  at  the  vicinity  of  critical  point.

    • Clausius-Clapeyron and Ehrenfest equations  are  satisfied

    Kubiznak/Mann  JHEP  1207 (2012)  033Gunasekaran/Kubiznak/Mann  JHEP  1112  (2012)  110  

  • Phase  diagrams

    Coexistence  line  

    • MFT  critical  exponents

    govern  specific  heat,  volume,  compressibility  and  pressure  at  the  vicinity  of  critical  point.

    • Clausius-Clapeyron and Ehrenfest equations  are  satisfied

    Small/large  black  hole  phase  transition

  • A  system  undergoes  an  RPT  if  a  monotonic variation  of  any  thermodynamic  quantity  results  in  two  (or  more)  phase  transitions  such  that  the  final  state  is  macroscopically  similar  to  the  initial  state. C. Hudson

    Z. Phys. Chem. 47 (1904) 113.First  observed  in  nicotine/water  

    T. Narayanan and A. Kumar Physics Reports 249 (1994) 135

    • multicomponent  fluid  systems

    • gels• ferroelectrics• liquid  crystals• binary  gases

    And  later  in  many  other  systems:

    And    recently  in  Black  Holes!

    Reentrant  Phase  Transitions

  • Coexistence Lines

    N.  AltimiranoD.  KubiznakR.B.  Mann  

    PRD  88 (2013)  101502  

    Example:  Re-‐entrant  Phase  Transition  in  Rotating  AdS Black  Holes

  • P

    T

    Pz

    Tz

    Pt

    Tt

    INTERMEDIATE BH

    SMALL BH

    LARGE BH

    0.054

    0.056

    0.058

    0.06

    0.23 0.235 0.24

    Low T Medium T High T mixed ⇒ water/nicotine ⇒ mixedIntermediate BH ⇒ Small BH ⇒ Large BH

    P

    T

    large/small/large  black  hole  phase  transition

    Altimirano/Kubiznak/Sherkatgnad/Mann  Galaxies 2 (2014)  89

    Takes  place  in  many  examples

  • Surprises  in  Black  Hole  Entropy

    • Super-‐entropic  Black  holes– Entropy  exceeding  the  reverse  isoperimetric  inequality

    • Entropy  of  de  Sitter  Black  Holes–With  and  without  a  cavity

    • Accelerating  Black  Holes– Thermodynamics  with  Radiation?

  • R = (D −1)VωD−2

    ⎛⎝⎜

    ⎞⎠⎟

    1 D−1ωD−2A

    ⎛⎝⎜

    ⎞⎠⎟1 D−2

    Cvetic/Gibbons/Kubiznak/Pope  PRD84 (2011)  024037  R ≥1

    Conjecture:  All  black  holes  obey  theReverse  Isoperimetric  Inequality  

    ωD−2 =2π

    D−12

    Γ D −12

    ⎛⎝⎜

    ⎞⎠⎟

    Implication:  For  a  given  thermodynamic  volume,  the  entropy  of  a  black  hole  is  maximized  by  the  Schwarzschild-‐AdS sol’n

    Utility?    Works  for  most  (charged,  rotating)  black  holes

    Counterexample!    Super-‐entropic  Black  Holes

    Black  Hole  Volume  and  EntropyRecall:  Isoperimetric  ratio

  • Super-‐Entropic  Black  Holes• New  ultraspinning limit  to  the  class  of  Kerr  black  hole  metrics• Non-‐compact  horizons  with  finite  area  • Asymptotically  AdS,  but  with  boundary  rotating  at  the  speed  of  light• Obtained  in  the  context  of  Black  Hole  Chemistry• First  counterexamples  to  the  Reverse  Isoperimetric  Inequality

    à Super-‐entropic!• Many  other  examples  exist

    ds2 = − ΔΣ

    dt − l sin2θdψ⎡⎣ ⎤⎦2+ ΣΔdr2 + Σ

    sin2θdθ 2 + sin

    4θΣ

    ldt − (r2 + l2 )dψ⎡⎣ ⎤⎦2

    A − qrΣ

    dt − l sin2θdψ( )Σ = r2 + l2 cos2θ

    Δ = (l + r2

    l)2 − 2mr + q2

    D.  Klemm PRD  89(2014)    048007  

    Hennigar/Kubiznak/MannPhys Rev  Lett 115

    (2015)  031101

    Hennigar/Kubiznak,   /Muskoe/Mann  JHEP  1506 (2015)  096  

    Entropy Volume

    S = µω d−24

    (l2 + r+2 )r+

    d−4 = A4

    V = r+Ad −1

    R =d −1( )Vµω d−2

    ⎛⎝⎜

    ⎞⎠⎟

    1d−1 µω d−2

    A⎛⎝⎜

    ⎞⎠⎟

    1d−2

    = r+2

    l2 + r+2

    ⎛⎝⎜

    ⎞⎠⎟

    1(d−1)(d−2)

  • Kerr-‐CFT  Correspondence

    Kerr-‐AdS Black  Hole

    Super-‐Entropic  Black  Hole

    Kerr-‐CFT  Limit

    Super-‐Entropic  Kerr-‐CFT

    1) ψ = φ /Ξ 2) a→ l3) Compactify ψ ~ψ + µ

    1) ψ = φ /Ξ 2) a→ l3) Compactify ψ ~ψ + µ

    t = r0tε

    r = r+ + εr0r

    φ = φ +Ξω hr0t / ε

    t = r0tε

    r = r+ + εr0r

    φ =ψ

    C.M.  Sinamuli,  R.B.  Mann  JHEP  1608 (2016)  148  arXiv:1512.07597  

  • ds2 = − ΔaΣa

    dt − asin2θ

    Ξdφ⎡

    ⎣⎢

    ⎦⎥

    2

    + ΣaΔa

    dr2 + ΣaSdθ 2 + S sin

    2θΣa

    adt − r2 + a2

    Ξdφ⎡

    ⎣⎢

    ⎦⎥

    2

    A = − qrΣa

    dt − asin2θ

    Ξdφ⎛

    ⎝⎜⎞⎠⎟

    Σa = r2 + a2 cos2θ , Ξ = 1− a

    2

    l2,

    S = 1− a2

    l2cos2θ Δa = (r

    2 + a2 )(1+ r2

    l2)− 2mr + q2

    Kerr-Newman AdS Black Hole

    Γ(θ ) = l2

    2x2 + cos2θ

    1+ 3x2 α (θ ) = 2

    sin2θ(1+ 3x2 ) γ (θ ) = l2 sin4θ (1+ x

    2 )2

    x2 + cos2θ

    r02 = l

    2

    21+ x2

    1+ 3x2 k = x

    (1+ x2 )(1+ 3x2 ) f (θ ) = q (1+ x

    2 )x

    x2 − cos2θx2 + cos2θ

    x = r+l

    ds2 = Γ(θ )[−r2dt 2 + dr2

    r2+α (θ )dθ 2 + γ (θ )

    Γ(θ )(dψ + krdt)2 ]

    Super-‐Entropic  Kerr-‐CFT  Limit

    A = f (θ )(dψ + krdt)

    c = 3kµ2π

    Γ(θ )γ (θ )α (θ )∫ dθ =3kµπ

    l2 (1+ x2 )Central  Charge

    CardyFormula SCFT =

    π 2

    3cLTL S=

    µπ2(l2 + r+

    2 )

    TR = 0

    TL =1

    2πk

    CFT  TemperaturesWorks  in  any  

    dimension  and  for  Gauged-‐SUGRA

  • • What  is  the  significance  of  the  Reverse  Isoperimetric  Inequality  Under  what  conditions  does  it  hold?

    • What  are  the  underlying  degrees  of  freedom  of  super-‐entropic  black  holes?    Are  there  “more”  degrees  of  freedom  than  we  expect?

    • Not  all  super-‐entropic  black  holes  violate  the  Reverse  Isoperimetric  Inequality  

    à What  is  the  meaning  of  the  transition?

    x = r+l

    y = bl

    R

    NOT  Super-‐entropicReverse  Isoperimetric  Inequality  obeyed

    Super-‐entropicExample:  Doubly-‐spinning  super-‐entropic  Black  Hole    

    horizon  sizeorthogonalspin

    Entropic  Questions

    Rq=0

    12 = 127

    ⎛⎝⎜

    ⎞⎠⎟

    (3x2 + y2 − 2x2y2 )3

    x2 (1− y2 )2 (x2 +1)(x2 + y2 )

  • Thermodynamics  of  de  Sitter  Black  Holes

    P = − Λ

    8π= − 3

    8π1ℓ2

    Negative Pressure (tension) in de Sitter Spacetime?

    δM = ThδSh + (Ωhi −Ω∞

    i )i∑ δ J i +VhδP

    D − 3D − 2

    M = ThSh + (Ωhi −Ω∞

    i )i∑ J i − 2D − 2 PVh

    SmarrRelation

    First Law

    Black Holes

    δM = −TcδSc + (Ωci −Ω∞

    i )i∑ δ J i +VcδP

    D − 3D − 2

    M = −TcSh + (Ωci −Ω∞

    i )i∑ J i − 2D − 2 PVc

    SmarrRelation

    First Law

    dS Horizon

  • Thermodynamics  of  Kerr  de  Sitter  Black  Holes

    ds2 = −W (1− r2

    ℓ2)dt 2 + 2m

    UWdt − aiµi

    2dϕiΞii=1

    N∑

    ⎛⎝⎜

    ⎞⎠⎟

    2

    + r2 + ai

    2

    Ξii=1N∑ µi

    2dϕi2 + dµi

    2( )

    + Udr2

    X − 2m+ εr2dν 2 + 1

    W (ℓ2 − r2 )r2+ai

    2

    Ξii=1N∑ µidµi+εr

    2νdν⎛⎝⎜

    ⎞⎠⎟

    2

    W = µi

    2

    Ξii=1N∑ + ν 2

    X = rε−2 (1− r

    2

    ℓ2) (r2 + ai

    2 )i=1

    N∏

    2Λ = (D −1)(D − 2)

    ℓ2

    U = Zℓ

    2

    ℓ2 − r21− ai

    2µi2

    r2 + ai2

    i=1

    N∑

    ⎛⎝⎜

    ⎞⎠⎟

    Ξi = 1+

    ai2

    ℓ2

    = 1 D=even

    0 D=odd ⎧⎨⎩

    µi2

    i=1

    N∑ + ν 2 = 1

    • Multiply-‐rotating  Kerr  de  Sitter  Black  hole  in  D  dimensions• 2  horizons  at  different  temperatures

  • Cosmological Horizon Black Hole Horizon

    Even  Dim’l Kerr-‐dS Black  HolesM = mωD−2

    4π Ξ jj∏

    1Ξii

    ∑ , Ji =maiωD−24πΞi Ξ j

    j∏

    Sc =ωD−24

    rc2 + ai

    2

    Ξii∏ =

    Ac4

    Sh =ωD−24

    rh2 + ai

    2

    Ξii∏ =

    Ah4

    Tc = −

    rc2πℓ2

    (ℓ2 − rc2 )

    rc2 + ai

    2i∑ +

    ℓ2 + rc2

    4πrc ℓ2

    Th =

    rh2πℓ2

    (ℓ2 − rh2 )

    rh2 + ai

    2i∑ −

    ℓ2 + rh2

    4πrhℓ2

    Ωc

    i = (ℓ2 − rc

    2 )aiℓ2 rc

    2 + ai2( )

    Ωhi = (ℓ

    2 − rh2 )ai

    ℓ2 rh2 + ai

    2( )Vc =

    rcAcD −1

    + 8π(D −1)(D − 2)

    aii∑ Ji . Vh =

    rhAhD −1

    + 8π(D −1)(D − 2)

    aii∑ Ji .

    2m = 1

    ℓ2rc(ℓ2 − rc

    2 ) (rc2 + ai

    2 )i∏ =

    1ℓ2rh

    (ℓ2 − rh2 ) (rh

    2 + ai2 )

    i∏

  • Cosmological Horizon Black Hole Horizon

    Odd  Dim’l Kerr-‐dS Black  HolesM = mωD−2

    4π Ξ jj∏

    1Ξii

    ∑ −12

    ⎛⎝⎜

    ⎞⎠⎟

    Ji =maiωD−2

    4πΞi Ξ jj∏

    Sc =ωD−24rc

    rc2 + ai

    2

    Ξii∏ =

    Ac4

    Sh =ωD−24rh

    rh2 + ai

    2

    Ξii∏ =

    Ah4

    Tc = −

    rc2πℓ2

    (ℓ2 − rc2 )

    rc2 + ai

    2i∑ +

    12πrc

    Th =rh2πℓ2

    (ℓ2 − rh2 )

    rh2 + ai

    2i∑ −

    12πrh

    Ωc

    i = (ℓ2 − rc

    2 )aiℓ2 rc

    2 + ai2( )

    Ωhi = (ℓ

    2 − rh2 )ai

    ℓ2 rh2 + ai

    2( )Vc =

    rcAcD −1

    + 8π(D −1)(D − 2)

    aii∑ Ji . Vh =

    rhAhD −1

    + 8π(D −1)(D − 2)

    aii∑ Ji .

    2m = 1

    ℓ2rc(ℓ2 − rc

    2 ) (rc2 + ai

    2 )i∏ =

    1ℓ2rh

    (ℓ2 − rh2 ) (rh

    2 + ai2 )

    i∏

  • (Reverse)  Isoperimetric  Inequality?

    R = (D −1)VωD−2

    ⎛⎝⎜

    ⎞⎠⎟

    1 D−1ωD−2A

    ⎛⎝⎜

    ⎞⎠⎟1 D−2

    R ≤1VA

    Kerr-(A)dS Black Hole

    Vh =

    rhAhD −1

    + 8π(D −1)(D − 2)

    aii∑ Ji =

    rhAhD −1

    1+ ℓ2 ± rh

    2

    (D − 2)ℓ2rh2

    ai2

    Ξii∑

    ⎣⎢

    ⎦⎥

    Ah =

    ωD−2rh1−ε

    rc2 + ai

    2

    Ξii∏

    RD−1 = rh 1+z

    D − 2⎡⎣⎢

    ⎤⎦⎥1rh1−

    (rh2 + ai

    2 )Ξii

    ∏⎡

    ⎣⎢

    ⎦⎥

    12−D

    = 1+ zD − 2

    ⎡⎣⎢

    ⎤⎦⎥

    (rh2 + ai

    2 )rh2Ξii

    ∏⎡

    ⎣⎢

    ⎦⎥

    12−D

    ≥ 1+ zD − 2

    ⎡⎣⎢

    ⎤⎦⎥

    2D −1

    1Ξii

    ∑ +ai2

    rh2Ξii

    ∑⎛⎝⎜

    ⎞⎠⎟

    ⎣⎢

    ⎦⎥

    D−14−2D

    = 1+ zD − 2

    ⎡⎣⎢

    ⎤⎦⎥1+ 2z

    D −1⎡⎣⎢

    ⎤⎦⎥

    D−14−2D

    ≡ F(z)

    F(0) = 1 dF(z)dz

    > 0 F(z) ≥1 R ≥1

    Cvetic/Gibbons/Kubiznak/Pope  PRD84  (2011)  024037  

  • Cosmic  Volume

    Can  we  understand  cosmic  volume  without  black  hole  volume?Yes!    With  cosmic  solitons!

    Clarkson/MannPRL  96  (2006)  051104

    • Geometry  depends  on  relative  size  of  the  soliton and  the• No  black  hole  horizon!    • Can  now  have  a  cosmological  horizon  surrounding  soliton• Obtained  a  number  of  results  depending  on  mass/energy  of  the  soliton and  its  size  relative  to  the  cosmic  horizon

    Mbarek/MannPLB  765  (2017)  352

    Soliton:  a  bubble  in  spacetime!