observation and numerical simulation of propagation of ulf ... · department of earth and planetary...

14
Observation and Numerical Simulation of Propagation of ULF Waves From the Ion Foreshock Into the Magnetosphere Kazue Takahashi(1), Lucile Turc(2), Emilia Kilpua(2), Naoko Takahashi(3), Andrew Dimmock(4), Primoz Kajdic(5), Minna Palmroth(2), Yann Pfau-Kempf(2), Jan Soucek(6), Howard Singer(7), Tetsuo Motoba(1), and Craig Kletzing(8) 1. The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 2. Department of Physics, University of Helsinki, Helsinki, Finland 3. Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish Institute of Space Physics (IRF), Uppsala, Sweden 5. Instituto de Geofísica Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México 6. Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic 7. Space Weather Prediction Center, NOAA, Boulder, Colorado, USA 8. Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA Paper EGU2020-5562 EGU 2020 General Assembly, 3-8 May 2020

Upload: others

Post on 28-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Observation and Numerical Simulation of Propagation of ULF Waves From the Ion Foreshock Into the

Magnetosphere

Kazue Takahashi(1), Lucile Turc(2), Emilia Kilpua(2), Naoko Takahashi(3), Andrew Dimmock(4), Primoz Kajdic(5), Minna Palmroth(2), Yann Pfau-Kempf(2), Jan Soucek(6),

Howard Singer(7), Tetsuo Motoba(1), and Craig Kletzing(8)

1. The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA2. Department of Physics, University of Helsinki, Helsinki, Finland

3. Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan4. Swedish Institute of Space Physics (IRF), Uppsala, Sweden

5. Instituto de Geofísica Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México6. Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

7. Space Weather Prediction Center, NOAA, Boulder, Colorado, USA8. Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA

Paper EGU2020-5562

EGU 2020 General Assembly, 3-8 May 2020

Page 2: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Abstract

2020-05-06 EGU

Observational studies have demonstrated that ULF waves excited in the ion foreshock are a main source of Pc3-4 ULF waves detected in the magnetosphere. However, quantitative understanding of the propagation of the waves is not easy, because the waves are generated through a kinetic process in the foreshock, pass through the turbulent magnetosheath, and propagate as fast mode waves and couple to shear Alfven waves within the magnetosphere. Recent advancement of hybrid numerical simulations of foreshock dynamics motivated us to analyze observational data from multiple sources and compare the results with simulation results. We have selected the time interval 1000-1200 UT on 20 July 2016, when the THEMIS, GOES, and Van Allen Probe spacecraft covered the solar wind, foreshock, magnetosheath, and magnetosphere. The EMMA magnetometers (L=1.6-6.5) were located near noon. We found that the spectrum of the magnetic field magnitude (Bt) in the foreshock exhibits a peak near 90 mHz, which agrees with the theoretical prediction assuming an ion beam instability in the foreshock. A similar Bt spectrum is found in the dayside outer magnetosphere but not in the magnetosheath or in the nightside magnetosphere. On the ground, a 90 mHzspectral peak was detected in the H component only at L=2-3. The numerical simulation using the VLASIATOR code shows that the foreshock is formed on the prenoon sector but that the effect of the upstream waves in the magnetosphere is most pronounced at noon. The Bt spectrum of the simulated waves in the outer magnetosphere exhibits a peak at 90 mHz, which is consistent with the observation..

2

Page 3: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Magnetic cloud on 20 July 2016

2020-05-06 EGU 30000 0300 0600 0900 1200 1500 1800 2100

UT

MAS (L=6.4)10 s samples

1000

500

0

40

20

0

-40-20

02040

-40-20

02040

-40-20

02040

100

50

0

906030

0

-500

0

10050

0-50

302010

0

201510

50

201510

50

V

(km

/s)

n p(c

m-3

) B

x(n

T) B

y(n

T) B

z(n

T) B

t(n

T) δ

B (n

T) θ

xB(d

eg)

Rbs

(RE)

Rm

p(R

E)SY

M-H

(nT

) A

L(n

T)

H

19-20 July 2016

GSM

200

nT

CME

GSM

GSM

2-h interval for data analysys

• Steady IMF– Magnitude ~15 nT– Cone angle < 30�

• Multiple spacecraft– THEMIS, GOES, and Van

Allen Probes

• Ground magnetometers– EMMA– N = 23– L = 1.6–6.5

20 July 20161000-1200 UT

403020100-10-20

Y SM

(RE)

30

20

10

0

-10

-20

-30

XSM(RE)

20151050-5-10

15

10

5

0

-5

-10

-15

Bow shock

Magneto-pause

TH-E

TH-DTH-A

VA-A

VA-B

G-13G-14

G-15

EMMA

Dawn

Dusk

XSM(RE)

Y SM

(RE)

(a)

(c)

(b)

Page 4: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Density radial profile

2020-05-06 EGU

(a)

(b)1000-1100 UT

fT1

(mHz

) ~13 h MLT

EMMA

101

102

ρeq

(am

u.cm

-3)

101

102

103

104

105

1110987654321L

20

15

10

SC p

oten

tial

(V)

THEMIS-A 0800-1400 UT

20 July 2016

1000 UT 1200

(c)

Plume

4

• THEMIS-A spacecraft potential– Plume in the outer

magnetosphere

• Magnetoseismic analysis of EMMA data– Smooth plasmaspheric mass

density profile at L < 6

Page 5: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Dayside spacecraft observations

2020-05-06 EGU 5

• Foreshock/sheath – Broadband– No strong peak at

theoretical frequency !"#

• Magnetosphere– Broadband – Cross-phase indicates

instances of tailward propagation

20 July 201620

10

0

Bt

(nT)

OMNI

1510

50

R mp

(RE)

THEMIS-A200

100

0

B t (nT)

1000 1030 1100 1130 1200UT

15010050

0

fuw

(mHz

)

906030

0

θxB

(deg

)

36027018090

0

φyz

B(d

eg)

THEMIS-D

n

i(c

m-3

)

100

50

0

B t (nT)

906030

0

10-1

101

103

θxB

(deg

)

THEMIS-E

n

i(c

m-3

)

10-1

101

103

100

50

0

B t (nT)

906030

0

θxB

(deg

)

MagnetosheathForeshock

MagnetospherePlume

10.59 1.3

10.22

10.89 2.2

10.32

11.17 3.0

10.41

11.41 3.8

10.50

11.63 4.5

10.59

LMLATMLT

PS

D(n

T2/H

z)

Freq

uenc

y

(mHz

)

10 110 210 310 4

PS

D(n

T2/H

z)

10 -110 010 110 2

0

50

100

150

Freq

uenc

y

(mHz

)

Bt

20 July 2016THEMIS-D

11.34 -4.7

11.71

11.07 -3.8

11.80

10.77 -2.9

11.89

10.44 -2.0

12.00

10.09 -1.1

12.12

LMLATMLT

10 110 210 310 4

PS

D(n

T2/H

z)

0

50

100

150

Freq

uenc

y

(mHz

)

Bt

PSD

((mV\

m)2 /

Hz)

THEMIS-A

10 -410 -310 -210 -1

0

50

100

150 Eφ

1000

9.14 -8.7

12.301030

8.54 -8.3

12.451100

7.89 -7.9

12.621130

7.18 -7.6

12.841200

6.41 -7.6

13.10UT

LMLATMLT

-180

0

180

Cros

s-ph

ase

(

deg)

0

50

100

150 Eφ−Bt

Foreshock M’sheath

0

50

100

150THEMIS-E

Bt

PlumeInstumental

(b)(a)

!"# mHz= 7.6+, nT cos2345

Page 6: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Foreshock waves just outside the magnetosheath

2020-05-06 EGU 6

20 July 2016

-50

0

50

Bz

(nT)

(a)

100

50

0

Bt

(nT)

1100 1102 1104 1106 1108 1110UT

(b)

(c)PS

D(n

T2/H

z)

Frequency (mHz)

Bz

Bt

20 50 200 500

80 mHz

10010

GSE

THEMIS-E

100

101

102

103

• Large amplitude• Transverse

component (Bz) Broad peak at 80 mHz(~fuw)

• Compressional component (Bt)– Strong power at

30-40 mHz

Page 7: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Comparison of waves between space and ground

2020-05-06 EGU

1000 9.14 -8.7

12.30

1020 8.75 -8.4

12.39

1040 8.33 -8.1

12.50

1100 7.89 -7.9

12.62

1120 7.42 -7.7

12.76

1140 6.93 -7.6

12.92

1200 6.41 -7.6

13.10

UTLMLATMLT

(a)

(b)

(c)

MLTSOD 12.80 13.13 13.45 13.78 14.11 14.44 14.77MLTPPN 11.98 12.31 12.63 12.96 13.29 13.62 13.95

2July 20 2016

10 -210 -110 010 110 2

0

50

100

150 THA Bt

10 -210 -110 010 110 2

0

50

100

150 SOD H (L = 5.4)

10 -210 -110 010 110 2

0

50

100

150 PPN H (L = 2.2)

0.0

0.5

1.0

Cohe

renc

e

0

50

100

150 THA -SOD

0.0

0.5

1.0

Cohe

renc

e

0

50

100

150 THA-PPN (e)

(d)

Freq

uenc

y

(mHz

)

PS

D(n

T2/H

z)

PSD

(nT2

/Hz)

PS

D(n

T2/H

z)

Freq

uenc

y

(mHz

)Fr

eque

ncy

(m

Hz)

Freq

uenc

y

(mHz

)Fr

eque

ncy

(m

Hz)

Plume

7

• Power spectra – not similar

between space and ground

• Coherence– Low at all

frequencies

Page 8: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

EMMAgram

2020-05-06 EGU 8

THEMIS-A and EMMA Magnetometers 20 July 2016

T_boxcar = 21 s

1.05

0.00

-1.05 1.05

0.00

-1.05

L

1 2 3 4 5 6 7

L

1 2 3 4 5 6 7

1000 1005 1010 10151233 1238 1243 1247

UTMLT

H (nT)

D (nT)

(b)

(c)

0.90

0.00

-0.90 0.90

0.00

-0.90

L

1

2

3

4

L

1

2

3

4

1005 1006 1007 1008 1009 10101152 1153 1154 1155 1156 1157

UTMLT

D (nT)

H (nT)

(e)

(f)

-505

Bt

(nT)

-505

Bt

(nT)

(a)

(d)

PPNZAG

PPNZAG

• H component– Poleward phase

propagation – Transient

pulsations at low L

• D component– Weaker poleward

propagation– No transient

pulsations

Page 9: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Cross-phase analysis

2020-05-06 EGU 9

• Power spectra

– Peaks at ~30 and

~90 mHz

– The higher

frequency matches

fuw

• Cross spectra

– T1, T2, and T3

waves detected

(a)

(b)

(c)

PPN (L = 2.21)

PSD

(nT2

/Hz)

PSD

(nT2

/Hz)

Cro

ss ph

ase

(deg

)

EMMA 20 July 2016 H component Midpoint L = 2.16

100011.9811.79

103012.4712.28

110012.9612.77

113013.4513.26

120013.9513.76

UTMLTPPNMLTZAG

10 -210 -110 010 110 2

10 -210 -110 010 110 2

-90

0

90

0

50

100

150

0

50

100

150

0

50

100

150

ZAG (L = 2.11)

PPN - ZAG

Freq

uenc

y

(mHz

)

PPN (L = 2.21)

T3

T1

T2

Page 10: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Comparison with previous studies

2020-05-06 EGU

5 September 2002 1830-1850 UT (Clausen et al. 2009)

20 July 2016 1000-1020 UT (This study)

Cluster-3(L = 4.5)

Geotail(Foreshock)

(a)

(b)

(i)

(h)

(g)

(f)

(e)

(d)

(c)

(j)

PINA (4.1)

10-4

10-2

100

102

104

10 100Frequency

(mHz)

GILL(6.2)

10-4

10-2

100

102

104

FCHU (7.4)

HD

10-4

10-2

100

102

104

PSD

(nT2 /H

z)

PPN (2.2)

10-4

10-2

100

102

104

10 100Frequency

(mHz)

MEK (3.9)

10-4

10-2

100

102

104

KIL (6.3)

10-4

10-2

100

102

104

10-4

10-2

100

102

104

10-4

10-2

100

102

104

Bt

10-4

10-2

100

102

104

THEMIS-D(Foreshock)

10-4

10-2

100

102

104

THEMIS-A(L = 8.9)

Bt

Trace

Trace

T1T2 T3

41 mHz88 mHz

Mag

netic

field

trac

e PS

D

(

nT2 /H

z)

Frequency (mHz)

THEMIS-E20 July 2016 1100-1120 UT

ISEE-1 (Le and Russell,1992) 28 Dec 19861: 1030-1050 UT2: 1400-14203: 1950-2010

12

3

1(f×4, p×3)

100

101

102

103

104

100 101 102 103

10

• Comparison with ISEE study– Higher frequency– Higher power– Broader spectral peak

• Comparison with Cluster study– No single outstanding spectral

peak

Page 11: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Local time dependence of wave power

2020-05-06 EGU 11

Bt component

Van Allen Probe B

20 July 20161000-1200 UT

Freq

uenc

y

(mHz

)

PSD(nT2/Hz)

Van Allen Probe A

0.01

0.1

1

RMS

ampli

tude

(nT

)

10:002016-07-20

10:30 11:00 11:30 12:00UT

THEMIS-A

70-110 mHz

GOES-13

GOES-14

GOES-15

10 -210 -110 010 1

0

50

100

150 THEMIS-A

10 -210 -110 010 1

0

50

100

150 GOES-13

10 -210 -110 010 1

0

50

100

150 GOES-14

10 -210 -110 010 1

0

50

100

150 GOES-15

10 -210 -110 010 1

10 -210 -110 010 1

0

50

100

150

0

50

100

150

20151050-5-10

15

10

5

0

-5

-10

-15

Bow shock

Magneto-pause

TH-A

VA-A

VA-B

G-13G-14

G-15

Dawn

Dusk

YSM(RE)

X SM

(RE)

• Nightside waves– Much weaker than

dayside waves– No indication of

upstream wave propagation

Page 12: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Vlasiator simulation

2020-05-06 EGU 12

• Magnetosphere is included

– Magnetopause at 5 Re

– Realistic Alfven velocity

Proton density

Alfven velocity

Page 13: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Simulated waves

2020-05-06 EGU

1.0

0.5

0.0

cohe

renc

e

1.0

0.5

0.0cohe

renc

e

10 100Frequency (mHz)

10-3

10-2

10-1

100

101

102

VS-1vsVS-2

VS-1vsVS-3

(e)

(d)

(c)

(b)

(f)

VS-3. (3.2, 3.8) VS-2. (4.9, -0.9)

VS-1. (4.7, -1.7)(a)

600550500450400350Time(s)

Bz

2 nT

Bz P

SD(n

T2/H

z)20 50 200 500

VS-1

VS-2

VS-3

VS-1VS-2

VS-3

13

• Foreshock– Short coherence

length– Multiple wave

packets

• Magnetosphere– Wave power peaks

at noon– Low coherence

between noon and dusk

– Rapid power decrease toward dawn/dusk

Page 14: Observation and Numerical Simulation of Propagation of ULF ... · Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4. Swedish

Summary

2020-05-06 EGU

• A magnetic cloud in the solar wind produces an ion foreshock populated with ULF waves with higher-than-usual frequencies and complex spectra.

• In the magnetosphere and on the ground, there are only weak signatures of oscillations directly driven by the foreshock waves.

• Numerical simulation indicates short spatial scales and a multiple frequencies of the foreshock waves.

14