nyersvas- és acélgyártás · critf cooling martensitic layer 13. the effect of alloying elements...

86
Steels Department of Materials Science and Engineering Materials Engineering Prof. Péter János SZABÓ Department of Materials Science and Engineering

Upload: others

Post on 12-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Steels

Department of Materials Science and Engineering

Materials Engineering

Prof. Péter János SZABÓ

Department of Materials Science and Engineering

Page 2: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Outline of todays lecture

• Alloying elements

• The effect of carbon

• The effect of alloying elements on

– Microstructure

– Grain size

– Softening during tempering

– Embrittlement during tempering

– Ductile-brittle Transition temperature

– Temperature of recrystallization

– Mechanical properties of ferrite

– Forming of carbides and nitrides

2

Page 3: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Basic alloying and impurity

elements

Basic alloying elements

C – primer alloying element

Mn – austenite producing element

Si – ferrite producing element

Main impurity elements

S – hot and cold brittleness

P – hot brittleness

O – gas inclusions (CO)

N – ageing

3

Page 4: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Effect of C% on properties –

annealed state

Carbon %

Har

dn

ess

HB

, Str

en

gth

(M

Pa)

Contraction Z

Impact Energy , KV

Elong. Stra

in, c

on

trac

tio

n (

%)

Imp

. E (

J)

Structural steels Tool steels 4

Page 5: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Effect of C% on properties

Annealed state

Quenched state

Non-heattreatable

Heat treatable

5

Page 6: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

The effect of alloying elements

on the properties of steel

1. Solubility – ferrite or austenite producing

elements

2. Non-equilibrium γ α transformation

3. Austenite grain growth

4. Softening during tempering

5. Embrittlement during tempering

6. Ductile-brittle transition temperature

7. Recrystallization's temperature

6

Page 7: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

1. Does it dissolve in the steel?

• Does not dissolve

– Produces inclusions, disadvantageous

– S, As, Pb…

• Dissolves

– Dissolves better in ferrite – ferrite producing element

• Cr, Al, Si, W, Mo, V, Ti

– Dissolves better in austenite – austenite producing

element

• Ni, Mn, C, N, Cu

7

Page 8: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Microstructure

C and alloy content

Ferrite producing

element

Austenite producing

element

austenitic

Ferritic-perlitic

Perlitic+Sec.Cem

Ledebutitic

Allo

y %

Semi-austenitic

Led

eb

utitic

Ferritic-perlitic

Perlitic+Sec.Cem

Allo

y %

8

Page 9: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Change of transformation’s

temperature

9

Page 10: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

2. Effect of alloying elements on

non-equilibrium transformation

• All alloying elements decreases the Ms and Mf

temperatures, except Co and Al.

• The present of residual austenite increases.

– Deep cooling if necessary

• The CCT curves are shifted to the left.

– The critical cooling rate is decreasing.

• Hardenability, trough hardening diameter

increases.

10

Page 11: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Conditions of quenching

• Importance of quenching: with quenching&tempering (allotropic transformation) the properties can be influenced in wide range.

• Conditions– Heating to the temperature of A3 + ~50°C

– Keeping at constant temperature till material is fully austenitized

– Cooling faster than the critical cooling rate.

– Practical condition: C > 0.2%

11

Page 12: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

The alloying decreases the critical cooling rate

and the Ms temperature.

vcritical

vwater

Effect of through

hardenability

voil

C10

C45

C (%)

MS = 480 °C

MS = 340 °C

~0,22

12

Practical conditions

Page 13: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

The trough hardening diameter

The maximal diameter of a bar, which can be

quenched to contain 50% of martensite.

(see more: lab practice…)

T

Temperature distribution Distribution of cooling rate

vcritf

cooling

Martensitic layer

13

Page 14: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

The effect of alloying elements

on through hardenability

D-

thro

ug

h h

ard

en

ab

ility

Alloying (%)

SiNi

CrMoMn

V austenitizing at 950

and 1100 °CCo

14

Page 15: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Application of Jomminy test

results

• Verification of material

– Harness according to the

standards

• Technology information

– Maximal/minimal hardness by

quenching

– Harness distribution in the cross

section Distance from quenched end

Ha

rdn

ess

15

Page 16: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

3. The effect of alloying on the

austenite grain growth

• Mn, Si and B increases the susceptibility to grain

coarsening

• Grain refining effect: Ti, V, Nb, Al, Zr

– Producing fine uniformly distributed nitro-carbides on the

grain boundaries, what decreases the boundary migration.

• Other has no significant effect of grain coarsening.

16

Page 17: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

4. The effect alloying on

softening during tempering

Temperature of 1 hour tempering Temperature of 1 hour tempering

17

Page 18: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

5. The effect of alloying on the

embrittlement during tempering

• Cr, Mn causes brittleness if

slowly cooled at 500-650°C

• Reason: Enrichment of

Carbides, nitrides,

phosphides at grain

boundaries

• P makes it worse.

• Ni together with Cr and Mn

is disadvantageous

• 0,2…0,3% Mo or 0,5-0,7% W and fast cooling is

advantageous.

Tempering temperature, °C

Imp

ac

t e

ne

rgy

18

Page 19: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

6. The effect of alloying on the

Ductile-brittle Transition temperature

• Ni alloying shifts the Impact energy–temp. diagram

to the left.

– 1% Ni alloying ~20°C shift

• Grain refinement helps as well

– Nb, V, Ti, Al, Zr, N microalloying ~40°C effect

• Impact energy–temp. Diagram is shifted to right

(makes it worse)

– C, 0.1% C ~25°C

– P, 0.1% P ~55°C

– N, 0.01% N ~300°C (as solution)

– O, 0.01% O ~200°C (as solution)

19

Page 20: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

7. The effect of alloying on the

recrystallization temperature

• The alloying increases the heat and creep

resistance.

– W, Mo ~110°C / at%

– V ~55°C / at%

– Cr ~30°C / at%

20

Page 21: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Classification of steels

Page 22: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Classification according to

1) Steel production methods (old category)

2) Structure at room temperature

3) Content of alloying elements

4) Purpose of utilization

22

Page 23: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Plain (carbon) steels

Because of the steel making process contains

unavoidable elements

Mn < 0.8% Si < 0.6% Cr,Ni,Cu <0.3%

Mo,W < 0.2% Al, Ti, V, Nb < 0.05%

Alloyed steels

- micro alloyed steels Σ alloy < 0.1% (Ti, Ni, V, …)

- low alloyed steels Σ alloy < 3 %

- medium alloyed steels Σ alloy < 10 %

- high alloyed steels Σ alloy > 10 %

Content of alloying elements

23

Page 24: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Structure at room temperature

• Ledeburitic

• Semi austenitic

• Austenitic

– Austenite producing element

Ferritic- Ferrite producing element

Semi ferritic Hipoeutektoidic Hipereutektoidic

austenitic

Ferritic-perlitic

Perlitic+Sec.Cem

Ledebutitic

Allo

y %

Semi-austenitic

Led

eb

utitic

Ferritic-perlitic

Perlitic+Sec.Cem

Allo

y %

24

Page 25: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Structure at room temperature

• Perlitic

• Martensitic

• Austenitic

• Ferritic

• Bainitic

25

Page 26: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Utilization

• Structural steels

– Automotive industry, machine industry , steel structures

– Toughness is also a requirement

– C < 0,6%

• Tool steels

– Machining and forming tools

– Wear resistance, stiffness, hardness

– hardenable, precipitation hardenable alloys

• Special steels and alloys

– For a specific purpose

• Heat resistance, corrosion resistance etc.

26

Page 27: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Designation of steels

According to different standards

Most well-known standards:

International Standard Organization ISO

American Iron and Steel Institute AISI

Society of Automotive Engineer SAE

American Society for Testing and Materials ASTM

27

Page 28: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Designation of steels

Example: number (werkstoffnummer)

1 – steels

2 – heavy metals

3 – light metals

4 – nonmetallic

1.43 00 xx

Material group

Steel group

number

Auxiliary sign

28

Page 29: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

sign Application Area Main prop. e.g.

S Structural steel ReH (MPa) S235

P Pressure vessel steel ReH (MPa) P275

L Pipe steels ReH (MPa)

E Steels for machines ReH (MPa) E235

B Steels for concrete ReH (MPa)

… … … …

Short designation

29

Page 30: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Designation according to

chemical composition

Carbon steels: C22, C60, C90, C120

Alloyed steels:14NiCrMo13-4

high alloy steels:

X8CrNiTi18-10

30

Page 31: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Structural steels

A: hot rolled structural steels

B: flat steel products for pressure vessels

Formable, weldable

C: Steels for cold forming

D: Heat treatable steels

E: Case hardening steels

F: Nitridable steels

G: …other

31

Page 32: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Hot rolled unalloyed

structural steels

• For general purpose

• Hot rolled of forged state

• Certificate: Rm, ReH, A, KV, chem. comp

• Can not be used in some cases

– Carbon equivalent ( less than 0,5%, see later)

• Various types

• E.g.: S235JR

32

Page 33: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Normalized rolled,

weldable, fine-grained steels

• Normalized during rolling

• Grain size number greater than 6

• Auxiliary mark:

– N: normalized

– L: impact energy 27 J at -50°C

• E.g.: S275N, S275NL

33

Page 34: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Thermomechanical rolled,

weldable, fine-grained steels

• Thermomechanical rolling: controlled

recrystallization during deformation

• Nb alloying increases the recrystallization

temperature

• The grain refinement is promoted by Ti-alloying

• Auxiliary mark: M

• E.g.: S355M, S355ML

34

Page 35: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Thermomechanical rolled,

weldable, fine-grained steels II.

• Hydrogen resistant steels

• Problem: H makes the iron carbide dissociate

– Higher temperatures speeds up the process (T>200°C)

– Tensile stress speeds up the process

• Solution: stabile carbide producing alloying

elements

– Cr, Mo, V, W

• Better heat resistance, used in heat treated state

• Oil industry, refineries, hydrogen appliances

35

Page 36: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: atmospheric corrosion

resistant (weathering) steels

• The steel corrodes. Pores.

• Cu, Cr, P, Ni, Mo alloying (low content!)

• Forming of phosphate, sulfate, hydroxide

compounds – closes the pores, the corrosion stops.

• Passive layer, red-brown color, < 0.3 mm

• E.g.: S235J0W, S355J0WP

36

Page 37: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Sheets and bands for high

strength heat treatable steels

• Welded structures for high load at low or

environment temperature.

• Containers, bridges cranes etc.

• Auxiliary mark: Q

• Weldable but susceptible to cold cracking

• E.g.: S460QL

37

Page 38: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Plain and alloyed steels for

elevated temperatures

• Plain steels (e.g.: P235GH)

– Yield stress or creep strength is given

– Steam boilers, pressure vessels

– Up to ~400°C-

• Alloyed steels(e.g.: 12CrMo9-10)

– Mn, Mo, Cr, V, Nb and Si, Ni for weldability

– boilers, heat exchanger, chemistry appliances,

flanges, fasteners

– Up to ~500-530°C

38

Page 39: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Weldable fine-grained

normalized steels

• Three sub-classes

– Room temperature quality (P…N)

• T > -20°C

– Heat resistant quality (P…NH)

• T= -20…400°C

– Sub-zero toughness (P…NL1 and P…NL2)

• Not brittle even at T=-40 or -50°C

• Grain size number is greater than 6

• Welding: carbon equivalent

39

Page 40: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Cryogenic Ni alloyed steels

• The impact energy is prescribed for structures

• Below -60°C Ni alloying

• FCC lattice not sensitive to embrittlement

• Selection according to temperature and thickness

• Acceptable impact energy even at -200 °C

• Cooling and cryogen technology

• E.g.: 11MnNi5-3, 12Ni14, X7Ni9

40

Page 41: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Weldable fine-grained

thermomechanical rolled steels

• Nb alloying to increase the recrystallizations

temperature

• Ti alloying to grain refining

• V and Mo alloying to strengthen

• Auxiliary mark: M

• E.g.: P355ML1

41

Page 42: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Weldable, fine-grained heat

treatable steels

• Three sub-classes

– Room temperature quality (P…Q)

– Heat resistant quality (P…QH)

– Sub-zero toughness quality upto -40°C-ig (P…QNL1), up to

-50°C-ig (P…QNL2)

• Micro alloying elements for grain refining and

strengthening (Ti, Nb, V, N, B)

• Weldability is influenced by: thickness, input energy,

design, welding process, electrode

42

Page 43: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Corrosion resistant steels

• Ferritic steels

– Weak corrosive environment; pressure vessels, food industry appliances

– Up to 350°C 155-215 MPa yield stress

• Martensitic steels

– Pump parts, valves, turbine impellers

– Up to 300°C-ig 530-580 Mpa yield stress

• Austenitic steels

– Wide range of application

– From -196 to 600°C applicable (FCC, no susceptibility to

embrittlement after solution heat treatment, there is no

TTKV)

• Ferritic-austenitic (duplex) steels

43

Page 44: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

C: Cold rolled flat products from

low carbon steels for cold forming

• Low carbon content, ferritic steel

• Very low alloy content

• DC01…DC06, : A, or B – surface quality

– A: surface insufficiency (e.g. scratch) allowed

– B: no surface imperfection allowed

• Surface roughness grades

– Shiny, matt, normal, rough

• E.g.: DC01Am

44

Page 45: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

C: Cold rolled uncoated steel

band for cold forming

• With less than 600 mm, thickness lass than 10 mm

un-alloyed and alloyed steel band

• designation:

– Annealed (A)

– Cold rolled (C )

– Skin passed (LC)

– Surface quality MA, MB and MC

• E.g.: DC03C440MB

45

Page 46: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

C: Hot rolled high strength steel

flat products for cold forming

• For cold forming, hot rolled, weldable high strength,

alloyed

• Thermo mechanical or normalizing rolled

• Low Perlite steels (Ti, Nb, V) – HSLA

• E.g.: S420NC, S460MC

• Plastically formable, shearable, bendable,

machinable

• Welded structures, automotive industry

46

Page 47: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

DP Steels

• Dual Phase steels

– very hard martensite finely distributed in soft ferrite matrix

• Good strength, good formability

• Wheels, car body, bumper, wires, building structures

47

Page 48: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

TRIP steels

• TRansformation Induced Plasticity

• Ferritic-austenitic-bainitic microstructure after hot

forming

• Austenite transforms to martensite during further

forming

• car body, vehicle industry

48

Page 49: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

DP / TRIP

DP TRIP

49

Page 50: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

IF steels

• Interstitial Free

• Extra low content of alloying elements

(30-60 ppm)

• Good deep drawability, formability, no aging

• Household appliances, vehicle overlay parts

50

Page 51: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

BH steels

• Bake Hardening

• Low carbon content alloys, precipitation

hardenable at ~200°C

• Increases the yield stress by ~40 MPa though

precipitation hardening (C and N)

• E.g.: after forming during painting

• Vehicle body elements

51

Page 52: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Heat treatable steels

• Must be tough enough and resistant to dynamic

impacts

• Fasteners, pins, joints, beam structures, wrenches,

axle, cardan cross, gears, etc.

• Unalloyed and alloyed steels

• Purpose of alloying:

– Increase the trough hardening diameter

– Increase toughness, decrease TTKV

– Improve fatigue resistance

– Decrease softening during tempering

52

Page 53: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Unalloyed Heat treatable

steels

• Only carbon, no additional alloying element

(except elements from production)

• Higher toughness, lower strength

• Small trough hardening diameter

• Wear resistance can be improved by surface

quenching

• Rm: 500…1000 MPa,

ReH: 300-580 Mpa, A: 20-11%, Z: 50-20%

• designation: Cnn, where nn = C%

• Auxiliary marks: E: S < 0.035%,

R: 0.020 % < S < 0.040%

53

Page 54: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed Heat

treatable steels I.

• Mn (1.4-1.65%)

– cheap

– Increased trough hardening diameter

– Susceptibility to over heating and embrittlement

during tempering (fast cooling necessary)

– Must not be used for parts with service

temperature below 0°C

– E.g.: 28Mn6

54

Page 55: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed Heat

treatable steels II.

• Cr (even 2%)

– Most common alloying element

– Strongly Increases the trough hardening

diameter and yield stress

– Good surface hardenability

– For low to middle stresses, engine parts, axles

– E.g.: 34Cr4

55

Page 56: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed Heat

treatable steels III.

• Cr-Mo (even 2% Cr, 0.9-1.2% Mo)

– Mo eliminates the embrittlement during

tempering

– Cr and Mo are strong carbide-forming elements,

tempering at higher temperatures (~600°C)

– Significant strength and good toughness

– For middle sized part for high fatigue and impact

loads.

Axles, parts with teeth

– E.g.: 50CrMo4

56

Page 57: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed heat

treatable steels IV.

• Cr-V (0.7-1.1% Cr, 0.1-0.2% V)

– Similar to Cr-Mo steels

– a little cheaper but worse toughness

– For middle sized part for high fatigue and impact

loads.

– E.g.: 51CrV4

57

Page 58: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed heat

treatable steels V.

• Ni-Cr-Mo(-V) (0.7-1.1% Cr, 0.1-0.2% Mo)

– Large sized parts where the fast cooling can not

be realized.

• Ni decreases the ductile to brittle temperature

(TTKV)

• Mo eliminates the embrittlement during

tempering

– Though hardening diameter increases

significantly (~150 mm)

– Engine parts, crankshaft, quenched&tempered

state

– E.g.: 36NiCrMo16

58

Page 59: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed heat

treatable steels VI.

• Boron steels

– Mn, Mn-Cr alloying, B micro alloying

– Though hardening diameter increases

significantly

– Delivered generally in hot formed state

– Good toughness

– E.g.: 20MnB5, 27MnCrB5-2

59

Page 60: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

E: Case hardening steels

• Carbon content below 0.2%

• Tough core and wear resistant surface layer

~1%C in the surface layer, 60-63 HRC

• Can be used up to the diameter of ~80 mm

(through hardenability)

• Heat treatable steels have higher

strength for the same toughness

• No carburizing for fatigue

loaded parts, 35-45 HRC

60

Page 61: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

E: Unalloyed case

hardening steels

• Small size parts for modest loads

• pins, gear pumps

• Harness: 55-60 HRC

• Up to 20-30 mm size

• E.g.: C10, C15

61

Page 62: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

E: Alloyed case

hardening steels

• Alloying elements are the same as those of heat

treatable steels

• Low carbon content, C<0,2%

• Cr-Mo alloying for middle sized and loaded parts

(bush, pin, gears)

– Susceptible to overheating, up to the diameter

of

40-60 mm

• Mn-Cr-Mo alloying for highly loaded parts (gears,

chain wheels, axles)

– up to the diameter of 70-80 mm

• Ni-Cr-Mo alloying for extrem strong dynamic loads

tough core, high surface hardness

62

Page 63: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

F: Nitridable steels

• They are basically heat treatable steels

• Aim: very hard wear resistant surface layer

• Addition of nitride-forming elements (Cr, Al, V, Ti)

• Results: wear-resistant, hard, better fatigue-

resistance. Sensitive to high local pressures

• E.g.: 34CrAlNi7-10

63

Page 64: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Other structural steels

• Free-cutting steels

• Steels for roll-bearings

• Spring steels

• Steels and nickel alloys for cryogenic and Low-

Temperature application

• Heat resistant steels and nickel alloys

• Steels and alloys for valves of internal combustion

engines

64

Page 65: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Free-cutting steels

• For high performance machining cells

• aim: brittle chip

• S and S+Bi alloying

• E.g.: 11SMn37, 10S20, 44SMn28

65

Page 66: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Steels for roll-bearings

• High wear resistance and fatigue limit

• Carbon content 0.85-1.1% - hardness

– S < 0.015%, P < 0.025%, O < 0.,002%

– Polishing – fatigue

• Quenching, cooling to lower temp. (-30°C), low

temperature tempering – 62 HRC

• E.g.: 100Cr6, 100CrMnMoSi8-4-6, 19MnCr5,

18NiCrMo14-6, 70Mn4, KO:X65Cr14, X89CrMoV18-1,

80MoCrV42-16, X82WMoCrV6-5-4

66

Page 67: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Spring steels I.

• Storing of elastic energy

• High yield stress (1000-1350 MPa) and acceptable

ultimate tensile strain are necessary (6-8%)

• Heat treatable steels, 0.4-0.7% C-content, low

temperature tempering (450-480°C)

• For different purposes

67

Page 68: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Spring steels II.

• Heat treated springs from hot rolled steels by

forming

– Si alloying, ReH increases

– Cr-V, Cr-MoV high performance, high dynamic

loads

– E.g.: 38Si7, 60SiCrV7, 60CrMo3-2

• Cold rolled narrow steels trip for heat treatment

– Good surface quality, Rm up to 2100 MPa

– E.g.: C75S

• Corrosion resistant steels strip for springs

– For corrosive media

68

Page 69: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Steels and nickel alloys for cryogenic, low-

temperature and heat resistant application

• Unalloyed / alloyed (corr. resistant too)

• Applicable up to 900°C

• Mo: carbide-forming increases strength

• The corrosion must be taken into account beside of

heat-loading.

– E.g.: 42CrMo5-6, 25CrMo4, NiCr20TiAl (Ni alloy),

X10CrNiMoMnNbVB15-10-1

• Ni alloying for low temperatures

– E.g.: 41NiCrMo7-3-2, X8Ni9, X6CrNi18-10

69

Steels and nickel alloys

Page 70: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Heat resistant steels

and Ni-alloys I.

• Problem: Oxidizing of steels’ surface over 500°C

• Austenitic, ferritic, austenitic-ferritic steel

• Creep resistant and strength are the characteristic

properties

• Alloying with Cr, Si, Al

• Applicable even at 900°C-ig

• Groin coarsening can be a problem

• Ni based superalloys (not iron alloys!)

70

Page 71: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Heat resistant steels

and Ni-alloys II.

• Ferritic

– Susceptible to grain coarsening and embrittlement at 350-550°C and over 900°C, better in S-containing environment,

e.g.: X10CrAlSi18

• Austenitic

– Grain coarsening is not significant even at higher

temperatures, between 600-800°C the σ-phase causes

brittlement, e.g.: X10NiCrAlTi32-21

• Austenitic-ferritic

– In oxidizing S-containing environment,

e.g.: X15CrNiSi25-4

• Ni alloys

– Jet engines, rocket industry, e.g.: NiCr23Fe

71

Page 72: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Steels and alloys for valves of

internal combustion engines

• Homogeneous microstructure, high alloying,

calculable thermal expansion

• Loads: unsteady temperature, corrosion, oxidation,

fatigue, strike, wear

• Bars, wires

• Hot formable, hard to machine

• Main types

– Martensitic valve steel e.g.: X40CrSiMo10-2

– Austenitic valve steel e.g.: X50CrMnNiNbN21-9,

NiFe25Cr20NbTi

72

Page 73: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Hadfield steels

• Austenitic, high alloyed Mn steels

– ~1.2%C, ~0.4 Si, ~12.5% Mn

• Impact wear resistance, hardening during wear

(cold forming)

• Inner not-hardened layer gives good toughness

• For dynamic and wear loads

• Railroad switches, excavator bucket,

73

Page 74: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Tool Steels

• A: Unalloyed tool steels

• B: Hot forming tool steels

• C: Coldforming tool steels

• D: High speed steels

74

Page 75: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

General requirements

• Harness, wear resistance

• toughness

• Heat resistance

• Resistance against thermal fatigue

• Appropriate trough hardening diameter

75

Page 76: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Un alloyed tool steels

• 0.45-1.25% C content

– 0.45% C – 54 HRc

– 1.125% C – 62 HRc

• Only base alloying and impurity elements (Mn, Si, S,

P)

• For hand tools

• E.g.: C90U, C100U

– U mark: un-treated state

76

Page 77: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Hot forming tool steels

• Service temperature over 200°C, but hardness and

heat resistance even at 600°C (38-46 HRc)

• Main alloying elements: Cr, Mo, W, Ni, Co

• Carbide compounds– hardness at high

temperatures

• Closed-dies for forging, die-casting dies

• E.g.: 55NiCrMoV7, X40CrMoV5-1

77

Page 78: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

C: Cold forming tool steels

• Main alloying elements: Mn, Cr, Mo, V, W, Ni

• To increase through hardening diameter and

improve

– strength

– Wear resistance

– Hardness

• Heat-treated. Service temperature at room

temperature (maximum 150-180°C)

• E.g. Cutting and punching tools

• E.g.: 95MnWCrV5, X210CrW12

78

Page 79: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

E: High speed steels

• For high performance machining. 62-64 HRc harness

at ~600°C

• Main alloying elements : W, Mo, V, Co

• Special heat treatment method. (precipitation

hardening)

• E.g.: HS6-5-2, HS10-4-3-10

79

Page 80: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Corrosion resistant steels

• A: Ferritic corrosion resistant steels

• B: Martensitic corrosion resistant steels

• C: Austenitic corrosion resistant steels

• D: Duplex (austenite + ferrite) corrosion resistant

steels

80

Page 81: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Ferritic corrosion

resistant steels

• The alloying element forms a cohesive, non-porous

surface layer preventing the further oxidation.

• Max 0.08% carbon in ferritic corrosion resistant steels

and ~13% Cr alloying

• ReH ~280-320 MPa, A=18-20%

• Good formability and weldablility

• Good corrosion resistance in wear and modest

corrosive media: food industry, beer- and milk

industry

• For some purposes: semi-ferritic steel

– increased strength (chemical industry)

• E.g.: X2CrTi12, X6CrMo17-1, X2CrMoTi29-4

81

Page 82: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Martensitic corrosion

resistant steels

• ferritic corrosion resistant steels are not strength enough higher C content & heat treatment

• Heat treatment: quenching + tempering

• C content: between0.08% and 1.2%

• Surgery blades, scalpel, needles, food industry blades

• E.g.: X12Cr13, X105CrMo17, X7CrNiAl17-7

82

Page 83: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

C: Austenitic corrosion

resistant steels

• Ferritic corrosion resistant steels does not have good

resistance against strong acids.

• Austenitic steel

– C<0.03% + ~18% Cr + ~10% Ni (Mn, Cu, N)

• Cr-cardibes form at grain boundaries by slow

cooling at 600-800°C, which spoils the corrosion

resistance

– Can prevent by alloying of Ti and Nb

• Difficult to machine

• E.g.: X10CrNi18-8, X3CrNiMo17-13-3

83

Page 84: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Duplex corrosion

resistant steels

• High Cr and Ni content

• ~40-60% austenite at room temperature

• Higher strength

• Better stress-corrosion resitance

• Can be applied as heat resistant steel as well.

• E.g.: X2CrNiN23-4, X2CrNiMoCuWN25-7-4

84

Page 85: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Corrosion resistant steels

85

Page 86: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

THANK YOU FOR YOUR ATTENTION!Prof. Péter János Szabó – [email protected]

86