nural network

12
1.0 INTRODUCTION 2.0 DATA SET Input data Box width(m) = w Box height(m) = h Fill height(m) = H Reinforcement provided (mm2) = A Output data Thickness of box (mm) = t Our organization Road Development Authority design structures for roads .Box culverts are the main type of drainage structures we designed,In our organization we have typical culvert table for different sizes and different fill height ,That can be use to train a neural network for predicting unknown parameters Total number of data = 37 2/3 Number of data = 25 Number of training examples = 25 Number of testing examples = 12

Upload: dulanbackup1

Post on 17-Dec-2015

9 views

Category:

Documents


3 download

DESCRIPTION

Neural network

TRANSCRIPT

  • 1.0 INTRODUCTION

    2.0 DATA SET

    Input data

    Box width(m) = w

    Box height(m) = h

    Fill height(m) = H

    Reinforcement provided (mm2) = A

    Output data

    Thickness of box (mm) = t

    Our organization Road Development Authority design structures for roads .Box culverts are

    the main type of drainage structures we designed,In our organization we have typical culvert

    table for different sizes and different fill height ,That can be use to train a neural network for

    predicting unknown parameters

    Total number of data = 37

    2/3 Number of data = 25

    Number of training examples = 25

    Number of testing examples = 12

  • w(m) h(m)

    fill height

    H(m)

    RF Area A

    (mm2/m)

    1005

    top slab

    thickness t

    (mm)

    200

    2 2 1 0 1795 250

    1 1 1 0

    Data set

    3 1 1.5 0 1005 225

    4 1.5 1.5 0 1340 200

    5 2.5 1.5 0 2094 225

    6 1 2 0 1005 200

    7 2 2 0 1795 225

    8 2.5 2 0 2094 225

    9 1.5 2.5 0 1340 200

    10 2 2.5 0 1795 225

    11 3 1 0 1608 275

    12 3 1.5 0 1608 275

    13 3 2 0 1340 275

    14 3.5 1 0 1608 300

    15 3.5 1.5 0 1608 300

    16 3.5 2.5 0 2094 350

    17 4 1 0 2094 350

    Training

    17 4 1 0 2094 350

    18 4 1.5 0 2094 350

    19 4 2.5 0 2094 350

    20 2 2 2 1340 250

    21 2 2 4 1795 300

    22 3 2 2 1340 300

    23 3 2 6 2094 400

    24 3 3 2 1340 300

    25 3 3 6 2094 400

    1 1.5 1 0 1340 200

    2 2.5 1 0 2094 225

    3 2 1.5 0 1795 225

    4 1.5 2 0 1340 200

    5 1 2.5 0 1005 200

    6 2.5 2.5 0 2094 225

    7 3 2.5 0 1340 275

    8 3.5 2 0 2094 300

    9 4 2 0 2094 350

    12 3 3 4 1795 350

    10 2 2 6 2094 350

    11 3 2 4 1795 350

    Testing

  • 3.0 NURAL NETWORK

    WinNN32 software used to train and test data set

    3.1 TRAIN 4:3:1 NURAL NETWORK

    Input layer nodes Mid layer nodes Output layer node

    The raw data was normalized before training to get better performance. Eta and Alpha values

    were set to 0.5. Sigmoid transfer function used and target error values adjusted so that 90%

    or more good patterns achieve. Here three and two middle layers were tried with two

    different target errors. This had given four distinct predictions.

    Same data set is used in mathematical regression and test data set was tested accordingly.

    All out put data with Mean absolute error and 1-Ratioaverage is displayed

    Number of parameters = 4 x 3 + 3 + 3 x 1 + 1 = 19

    No of parameters x 1.5 = 19 x 1.5

    = 28.5

    Number of training examples = 25

    But it is possible to train above neural network since number of parameter are less than the

    training example available

  • Artificial Neural Network (3 middle nodes and target error of 0.01)prediction slab

    thickness(mm)

    225

    219 225

    212 200

    216 200

    255 225

    1.08

    351 350

    329 350

    Network Target

    Mean

    Absolute

    error

    16

    30

    6

    12

    13

    16

    8

    25

    1

    21

    I 1-RAVG I

    1.13

    0.97

    1.06

    1.06

    1.07

    1.03

    1.08

    1.00

    0.94

    283 275

    325 300

    213 200

    241

    376 350 26

    14364 350

    16

    1.07

    1.04

    0.05

  • Artificial Neural Network (3 middle nodes and target error of 0.005)prediction slab

    thickness(mm)

    Network Target

    Mean

    Absolute

    error

    I 1-RAVG I

    229 200 29 1.14

    229 225 4 1.02

    220 225 5 0.98

    205 200 5 1.03

    202 200 2 1.01

    228 225 3 1.01

    283 275 8 1.03

    337 300 37 1.12

    352 350 2 1.00

    365 350 15 1.04

    392 350 42 1.12

    391 350 41 1.12

    16 0.05

  • 3.2 TRAIN 4:2:1 NURAL NETWORK

    Input layer nodes Mid layer nodes Output layer node

    Number of parameters = 4 x 2 + 2 + 2 x 1 + 1 = 13Number of parameters = 4 x 2 + 2 + 2 x 1 + 1 = 13

    No of parameters x 1.5 = 13 x 1.5

    = 19.5

    Number of training examples = 25

  • Artificial Neural Network (2 middle nodes and target error of 0.01)prediction slab

    thickness(mm)

    Network Target

    Mean

    Absolute

    error

    I 1-RAVG I

    222 200 22 1.11

    248 225 23 1.10

    224 225 1 0.99

    217 200 17 1.08

    215 200 15 1.08

    238 225 13 1.06

    277 275 2 1.01

    331 300 31 1.10

    343 350 7 0.98

    314 350 36 0.90

    379 350 29 1.08379 350 29 1.08

    379 350 29 1.08

    19 0.05

  • Artificial Neural Network (2 middle nodes and target error of 0.005)prediction slab

    thickness(mm)

    Network Target

    Mean

    Absolute

    error

    I 1-RAVG I

    211 200 11 1.05

    233 225 8 1.03

    219 225 6 0.97

    212 200 12 1.06

    209 200 9 1.05

    247 225 22 1.10

    282 275 7 1.02

    325 300 25 1.08

    354 350 4 1.01

    399 350 49 1.14

    332 350 18 0.95332 350 18 0.95

    318 350 32 0.91

    17 0.03

  • 4.0 MULTIPLE REGRESSION ANALYSIS

    from above analysis we can write slab thickness as

    slab thickness t = 138.7 + 49.774w -2.719h + 18.032H - 0.00000796A

    SUMMARY OUTPUT

    Regression Statistics

    Multiple R 0.949

    R Square 0.901

    Adjusted R Square 0.881

    Standard Error 21.471

    Observations 25

    ANOVA

    df SS MS F Significance F

    Regression 4 83680 20920 45 9.27818E-10

    Residual 20 9220 461

    Total 24 92900

    Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

    Intercept 138.732 23.581 5.883 0.000 89.542 187.922

    w 49.774 6.197 8.032 0.000 36.848 62.700

    h -2.719 8.001 -0.340 0.738 -19.409 13.971

    H 18.032 2.712 6.650 0.000 12.376 23.688

    A -0.00000796 0.016 -0.001 1.000 -0.033 0.033

    slab thickness t = 138.7 + 49.774w -2.719h + 18.032H - 0.00000796A

    355 350 5 1.01

    352 350 2 1.01

    13 0.03

    307 300 7 1.02

    332 350 18 0.95

    341 350 9 0.97

    182 200 18 0.91

    256 225 31 1.14

    281 275 6 1.02

    260 225 35 1.16

    234 225 9 1.04

    208 200 8 1.04

    Network Target

    Mean

    Absolute

    error

    I 1-RAVG I

    211 200 11 1.05

  • 5.0 RESULTS COMPARISON FOR DIFFERENT MODELS

    6.0 DISCUSSION

    Results of four Artificial Neural Networks and Multiple regressions are summarized in above

    table . Both mean absolute error and 1- ratio average zero are desired

    From results of Artificial Neural Networks minimum mean absolute error of 16mm observed

    from three middle layer node . This may due to lager number of links tend to fit more with the

    trained data examples. Also lager target error avoids sub local maximums and minims.

    3 Middle layer nodes 2 Middle layer nodesMultiple

    Regression

    16

    0.05

    16 19 17 13

    0.05 0.05 0.03 0.03

    Mean

    Absolute

    error

    I 1-RAVG I

    Error = 0.01 Error = 0.005 Error = 0.01 Error = 0.005

    When comparing Artificial Neural Networks and Multiple Regression results, lowest mean

    absolute error was given by Multiple Regression method. This may due to lack of training

    examples of Artificial Neural Networks. But generally ANN should give better results than MR.

  • ANNEXURES

    WinNN32 software interface for 4 2 1 model of error 0.01

    WinNN32 software interface for 4 2 1 model of error 0.005

  • WinNN32 software interface for 4 3 1 model of error 0.01

    WinNN32 software interface for 4 3 1 model of error 0.005