numerical simulation of regular wave in a tankesss.com.br/events/ansys2010/pdf/20_3_1710.pdf ·...

31
Numerical Simulation of Regular Wave in a Tank Marcelo de A. Vitola, Dr. LabOceano/COPPE/UFRJ email: [email protected] Carlos Antonio Levi, Dr. LabOceano/COPPE/UFRJ email: [email protected] Authors: Monica Campos Silva, Dr. student PENO/UFRJ email: [email protected] Waldir Terra Pinto, Dr. FURG email: [email protected]

Upload: nguyendiep

Post on 19-May-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

  • Numerical Simulation of Regular Wave in a Tank

    Marcelo de A. Vitola, Dr.LabOceano/COPPE/UFRJemail: [email protected]

    Carlos Antonio Levi, Dr. LabOceano/COPPE/UFRJemail: [email protected]

    Authors:

    Monica Campos Silva, Dr. studentPENO/UFRJ

    email: [email protected]

    Waldir Terra Pinto, Dr.FURG

    email: [email protected]

    mailto:[email protected]:[email protected]:[email protected]:[email protected]

  • Summary

    Introduction;

    Numerical Wave Tank

    Set up of the Numerical Model

    Grid generation

    Parametric Study

    NWT

    Conclusions

    Next steps

    Acknowledgement

  • Introduction

    Offshore structures submitted to wave loads

    Molikpaq platformwww.nrc-cnrc.gc.ca

    http://horsesmouth.typepad.com/hm/ocean/ http://horsesmouth.typepad.com

  • Introduction

    Model Testingmeasuring structural loads and response

    FPSO modelLabOceno/COPPE/UFRJ

    WavemakerLabOceno/COPPE/UFRJ

  • Introduction

    Numerical Modeling

    supply information to help the planning of experimental tests

    supply field information difficulty obtained in experimental tests.

  • NWT without

    structures

    Set up

    of the numerical

    model, CFX

    (i)

    Computational

    Domain

    (2D)Flap-type wavemaker;

    Beach slope: 1:3;

  • (ii)

    Boundaries

    Conditions:Wavemaker WallBottom WallBeach WallEndwall WallTop Opening

    (iii)

    Initial

    Condition:Zero-velocity fieldHydrostatic pressure distribution

    Numerical

    Model:

    Set up

    of the numerical

    model, CFX

    (iv)

    Numerical

    Model:Parameter SettingModel Laminar

    Multiphase model Homogeneous model

    Analysis Type Transient

    Convergence criteria RMS < 1E-7

    Run Mode Serial

  • ICEM-CFX

    Numerical

    Model:

    Grid

    Generation

  • Parameters:

    1. Geometry of the domain: Top boundary locationLength of domain

    2. Grid refinement

    3. Time step

    4. Spatial discretization scheme

    5. Time discretization scheme

    6. Body force averaging type

    7. Interface Compression Level

    Parametric

    Study:

  • Parametric

    study Initial

    Setup

    Parameter Numerical settings1. Geometry of the domain: hfs-top

    = 1.0 m

    2. Grid refinement: Test 01:n. hexa

    = 5,289zmin

    = 0.025 mx = 0.250 mAspect ratio = 10.0

    3. Time step t = 0.02 s

    4. Spatial discretization scheme High order

    5. Time discretization scheme 2nd

    order backward Euler

    6. Body force averaging type Volume-Weighted

    7. Interface Compression Level 0

  • Water.VOF

    = 0.5

    Parametric

    study: Influence

    of VOF value

    in the free

    surface

    location

  • Parametric

    study: Influence

    of variable

    on

    horizontal velocity

    profile

    WSV = Water Superficial Velocity X (m/s) WV = Water Velocity u (m/s)

    Test 32

    Water Velocity u

  • Parametric

    study (Conclusions)

    Geometry of domain:

    top boundary:

    Distance from mean free surface to top boundary showed small influence on free surface results.

    length (simple x double):

    The length of the domain had not significantly influence on free surface and velocity field results.

    Grid refinement:

    in the region around the free surface:

    Both direction x

    and z

    has influence on free surface results

    in the region under wave:

    Small influence of mesh refinement of both direction were observed on velocity field.

  • Parametric

    study (Conclusions)

    Time step:

    t Tp/100 to avoid free surface damping

    Spatial and time discretization schemes:

    Better agreement:

    spatial scheme: 2nd

    (UDS) or High Order

    and

    time discretization: 2nd

    order (BE)

    Body force averaging type and Interface Compression Level

    Both parameters did not show great influence on numerical results

  • Parametric

    study: Final Setup

    Parameter Numerical settings1. Geometry of the domain: hfs-top

    = 1.0 m

    2. Grid refinement: Test 10:n. hexa

    = 36,352zmin

    = 0.013 mx = 0.052 mAspect ratio = 4.16

    3. Time step t

    Tp

    / 100

    4. Spatial discretization scheme 2nd order upwind differencing scheme

    5. Time discretization scheme 2nd

    order backward Euler

    6. Body force averaging type Volume-Weighted

    7. Interface Compression Level 0

    Details in Silva et al. SOBENA 2010

  • Numerical

    Wave

    Tank

    (NWT)

    hw = 1.5 m;

    Tp (s) 2.0 2.5 3.0 3.5max (o) 4.29 5.71 7.12 8.53S (m) 0.15 0.20 0.25 0.30

    (H/L)theory 0.0033 0.0335

  • Test 032:Tp = 2 s;max = 5.81;t = 0.02 s

  • numerical results x 1st order wavemaker theory

    NWT

  • Wave heightWave length

    NWT

  • NWT

  • NWT Field

    velocity: Issues

    Test 032: t = 19.4s

    Test 032:Tp = 2 s;max = 5.81;t = 0.02 s

  • NWT Field

    velocity: Issues

  • Test 032

    t = 19.4s

    NWT Field

    velocity: Issues

  • Test 032

    t = 19.4s

    NWT Field

    velocity: Issues

  • Test 032

    NWT Field

    velocity: Issues

    t = 19.4s

  • Test 032

    NWT Field

    velocity: Issues

    t = 19.4s

  • Conclusions

    Numerical model seems to be a useful tool for estimate the free surface behaviour in monochromatic wave generated in laboratory.

    Further investigations are necessary to verify the preliminary numerical results observed for velocity field under wave.

  • Next

    steps

    Checking the numerical results from CFX with the ones from Fluent;

  • Acknowledgement

  • Thanks for your attention!

    Numerical Simulation of Regular Wave in a TankSummaryIntroductionSlide Number 4Slide Number 5NWT without structures Set up of the numerical model, CFXSlide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27ConclusionsNext stepsAcknowledgementSlide Number 31