numerical simulation of a cross flow hydrokinetic...

52
Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine Taylor Hall University of Washington Northwest National Marine Renewable Energy Center MSME Thesis Presentation 3/13/2012

Upload: others

Post on 27-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine

Taylor Hall

University of WashingtonNorthwest National Marine Renewable Energy Center

MSME Thesis Presentation3/13/2012

Page 2: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Tidal Energy

Tidal energy resource realized

Renewable Clean Predictable Many similarities to wind energy

Page 3: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Axial Flow Turbines Cross Flow Turbines

Turbine Classifications

Page 4: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Turbine Design Concepts

Page 5: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Cross Flow Turbine Advantages High energy density typically found in

narrow constricted channels Packing critical to efficiency and

economic feasibility Cross flow turbines can be stacked,

efficiently utilizing limited space Vertical axis: works in any direction of

flow

Page 6: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Motivation and Goals Recently realized advantages have ignited interest in cross flow hydrokinetic turbines (CFHT)

Significant gaps in understanding and modeling capabilities  Benefits of numerical models

Turbine performance for a variety of parameters Influence of turbine surroundings: stacking, mooring, supports Environmental impacts Larger scale turbine performance

Goals: Gain a better understanding of  the CFHT flow dynamics Develop a numerical methodology  for CFHT Ultimate goal of developing a computational tool to aid in turbine design and array installation process

Page 7: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Hydrodynamics of a Cross Flow Turbine

Many differences from axial flow turbines Unsteady and largely three-dimensional Interference between shed vortices and blades Can reach very high angles of attack Rapidly changing angles of attack Dynamic stall behavior

Page 8: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Hydrodynamics of a Cross Flow Turbine

Tip Speed Ratio:

Relative Velocity:

Tangential Velocity:

Free Stream Velocity:

Power available in the flow:

Azimuthal Position:

Source: Antheaume

Page 9: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Hydrodynamics of a Cross Flow TurbineAngle of Attack:

Relative Reynolds Number:

Torque:

Power:

Page 10: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Angle of Attack Relative Reynolds Number

Hydrodynamics of a Cross Flow Turbine

Page 11: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Micropower generation project as benchmark study:

Adam Niblick and UW Mech. Eng. Capstone Design Team

Source: Adam Niblick

Helical Cross Flow Turbine

Page 12: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Experiment/Simulation Parameters

Re 28,000

AspectRatio 1.4

SolidityRatio

0.075 for  1blade0.3 for  4blades

CFDSoftwareFluentv12.0 Reynolds‐AverageNavier‐Stokes RANS equations

Turbine and Channel Flow Numerical Modeling

Page 13: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Reynolds Average Navier Stokes  (RANS) Equations

ShearStressTransport‐kω turbulenceclosuremodel Defaultturbulencemodelcoefficients Low‐Reynoldsnumbermodeling

Page 14: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Channel Domain and Boundary Conditions

Page 15: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Blockage Ratio: Matched to ExperimentsBlockageratio

0.12

Page 16: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Simulation Cases Static Turbine

—1 blade—4 blades

Rotating Turbine—1 blade—4 blades

Page 17: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Labeling of Helical Blade Position

“ θ=45⁰ ”Top

Bottom

Top

Bottom

Page 18: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Static Turbine: Single Blade

Particle brake applies constant torque to hold turbine in stationary position: λ=0

Torque cell measurements available from experiments

Repeated at several azimuthal locations

Page 19: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Static Turbine: Single Blade

Page 20: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages
Page 21: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

α=15⁰

α=5⁰ α=60⁰

α=205⁰

Flow fields for angles of attack (α)

Page 22: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Modeling in Near Wall RegionWall Functions Near Wall Approach

Page 23: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Modeling in Near Wall RegionWall Functions

30< y+ < 300

0.15

Total Elements = 185,000

Near Wall Approach y+ < 1

0.0001

Total Elements = 4.0 million

Near Wall: 20x computation time, 20-25% reduction in error

First Length

Page 24: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Static Turbine: Single Blade with near‐wall modeling approach

Page 25: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Static Turbine: 4 Blades

Page 26: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Static Torque: 4 Bladed Turbine

Page 27: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Superposition of Single Blades vs. 4 Bladed Turbine

VS.

Page 28: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

CFD:

Experiments:

Superposition of Single Blades vs. 4 Bladed Turbine

Page 29: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Single Blade vs. 1 blade from 4 bladed turbine

VS.

VS.

VS.

VS.

Page 30: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Single Blade vs. 1 blade from 4 bladed turbine

Page 31: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Wake Interactions

Page 32: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Simulation Cases Static Turbine

—1 blade—4 blades

Rotating Turbine—1 blade—4 blades

Page 33: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Set RPM of rotating domain

Time step =1.2 degree rotation

At each time step:• Non-conformal boundary • Determine interfaces• Calculate flux

Sliding Mesh Technique for Rotating Turbine

Page 34: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Rotating Turbine: Single Blade

CFD—λ=3.2—λ=3.6 —λ=1.6 

Experiment—λ=3.2—λ=3.6 (no load)

Page 35: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Dynamic Torque: Single Blade

Page 36: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages
Page 37: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages
Page 38: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Rotating Single Bladed Turbine:CFD vs. Experiment

Dynamic Torque for a Single-Bladed Turbine at λ=3.2

Page 39: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Oscillating Rotational Velocity

Page 40: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

System Dynamics

• CFD models the Hydrodynamic Torque

• Experiments measure the Particle Brake Torque

Page 41: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Torque Calculations

0

Page 42: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Experiment Single Blade,  2

Page 43: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Model Validation

λ=3.2

Differences Attributed To:

• Constant  vs. varying tip speed ratio

• System Frictional Torque λ=3.6

Page 44: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Possible Comparison Improvements

—Run simulations at several different tip speed ratios : create a composite result

—Run experiments with a variable load to keep a constant rotation speed

Four‐ bladed turbine• Hydrodynamic torque undergoes much smaller fluctuations• Much higher moment of inertia• Leads to much smaller oscillations in the rotational velocity

Page 45: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Increased Reynolds Number Simulation

• Decreased viscosity to achieve higher Re

• Required finer mesh

• Increase in turbine efficiency from 21 to 42%

Page 46: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Rotating Turbine: 4 Blades

CFD—λ=1.3, 1.6, 2.0 

Experiments—λ=1.3 to 2.1

Page 47: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Rotating 4 Bladed Turbine

Page 48: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

1 Bladed Turbine vs. 4 Bladed Turbine:Effect of Solidity for λ=1.6

Page 49: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

1 Bladed Turbine vs. 4 Bladed Turbine:Effect of Solidity

Page 50: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

4 Bladed Rotating Turbine: CFD vs. Experiments

λ

Page 51: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

Summary and ConclusionsStatic Turbine Analysis

—Methodology can accurately model the starting torque of the turbine

—Limitations associated with predictions of separated flow in RANS simulations

Rotating Turbine Analysis—Direct comparisons between the model and experiments were 

challenging for a 1‐bladed turbine with high levels of experimental angular acceleration

—Limitations modeling dynamic stall—Simulations for 4 blades show great qualitative agreement—Promising results for using the methodology for future turbine 

performance predictions

Page 52: Numerical Simulation of a Cross Flow Hydrokinetic Turbinedepts.washington.edu/pmec/docs/20120313_HallT_pres_Cross...2012/03/13  · Motivation and Goals Recently realized advantages

AcknowledgementsProfessor AlisedaProfessor MalteProfessor RileyAdam Niblick and the Capstone Design TeamNorthwest National Marine Renewable Energy CenterDepartment of EnergyFriends and Family