numerical and experimental aspects of temporal analysis of

63
Laboratory for Chemical Technology, Ghent University http://www.lct.UGent.be Numerical and experimental aspects of Temporal Analysis of Products: a tool for understanding and designing heterogeneous catalysts Guy B. Marin 1 NEXTLAB 2014 Rueil-Malmaison - 2-4 April 2014

Upload: others

Post on 16-Nov-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical and experimental aspects of Temporal Analysis of

Laboratory for Chemical Technology, Ghent University

http://www.lct.UGent.be

Numerical and experimental aspects of Temporal Analysis of Products: a tool

for understanding and designing heterogeneous catalysts

Guy B. Marin

1

NEXTLAB 2014 Rueil-Malmaison - 2-4 April 2014

Page 2: Numerical and experimental aspects of Temporal Analysis of

Overview

2

• Introduction • Case: total oxidation of volatile organic

components

• Mathematical analysis

• Statistical analysis

• Best practices

• Conclusions

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 3: Numerical and experimental aspects of Temporal Analysis of

3

Steady-state versus transient

Tamaru K (1964), Adv. Catal., 15, 65‒90

A B C D

steady-state experiment transient ex

A B

only rate-determining step manifested

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 4: Numerical and experimental aspects of Temporal Analysis of

Relaxation methods in heterogeneous catalysis

Pulse or step in carrier gas flow

Pulse response – TAP No carrier gas flow

A B Stimulus Response Reactor

A A,B

A

Rob J. Berger et al., Appl. Catal. A: General, 342 (2008) 3 4

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 5: Numerical and experimental aspects of Temporal Analysis of

TC

Microreactor

Catalyst

Vacuum (10-8 torr)

Temporal Analysis of Product (TAP) Pulse Response Experiment

0.0 time (s) 0.5

Exi

t flo

w (F

A)

Inert

Reactant

Product

Reactant mixture

Pulse valve

Mass spectrometer

5

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 6: Numerical and experimental aspects of Temporal Analysis of

Temporal Analysis of Products (TAP)

6

Types of experiments

6

Size ~ 1013 molecules

C7H8 C7H8

CO2

t/s t/s

Knudsen diffusion regime No change in the state of the catalyst

t/s

CO2

t/s

C7H8

Size > 1014 molecules/pulse Molecular diffusion regime Deliberate change in

the state of the catalyst

Single pulse experiment

Multi pulse experiment

Alternating pulse experiment

O2

CO2 CO2

t/s

C7H8

Two pulses of different gases By varying the time

delay of the pulses, lifetime of active surface species can be determined

C7H8

t/s

∆t O2

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 7: Numerical and experimental aspects of Temporal Analysis of

Temporal Analysis of Products (TAP)

7

Pump-Probe experiment

7

Alternating pulse experiment

Two pulses of different gases By varying the time delay

of the pulses, lifetime of active surface species can be determined

C7H8

t/s

∆t

O2

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 8: Numerical and experimental aspects of Temporal Analysis of

8

Temporal Resolution of TAP

Reactor bed

If reactant pulses small enough: Knudsen diffusion

A

A

B

A B

∑+−∂

∂=

∂jjga

gcat

gcat kCk

xC

Dt

Cθε 2

2

Pulse response

LI LII LIII

Inert zone I Catalyst zone

Inert zone II

jj R

t=

∂θ

8

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 9: Numerical and experimental aspects of Temporal Analysis of

Temporal Analysis of Products (TAP) setup

9

TAP-3E

TAP-1

TAP-2

1988

1997

2014

J.T. Gleaves, et al. Studies in Surface Science and Catalysis, 38 (1988) 633-644

John T. Gleaves, et al. Appl.Cat. A: General, 160 (1997) 55-88

John T. Gleaves, et al. J. Mol. Cat. A: Chem, 315(2010) 108-134

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 10: Numerical and experimental aspects of Temporal Analysis of

TAP-3E

10

Diffusion pump

Main chamber

Mass spectrometer chamber Main gate

valve

Manifold, Reactor Extractor

Set of pneumatic cylinders: - Vacuum/Pressure

experiments (By slide valve)

- Heating system

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 11: Numerical and experimental aspects of Temporal Analysis of

TAP-3E The TAP-3E menu of experiments includes: • Multireactors system (carousel). Reactor can be easily and rapidly removed from the system without venting the vacuum chambers. Easily switching between 6 reactors (in situ) within 1 minute.

• Vacuum pulse-responses. The four pulse valves can be triggered

simultaneously or in a programmed alternating sequence

• Atmospheric pressure steady-state, step-transient, and SSITKA experiments, temperature programmed desorption (TPD), and temperature programmed reaction (TPR) experiments;

• Highly automated instrument that can be operated either locally or

remotely via the Internet (with limited intervention on site for the initial experiment configuration)

John T. Gleaves, et al., J. Mol. Catal. A: Chemical 315 (2010) 108. 11

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 12: Numerical and experimental aspects of Temporal Analysis of

TAP-3E

12

Reactor carousel (6 reactors)

Reactor

Reactor extractor

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 13: Numerical and experimental aspects of Temporal Analysis of

Reactor carousel and reactor extractor

13

Turbo pump (Attached to Mass spectrometer chamber)

Carousel

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 14: Numerical and experimental aspects of Temporal Analysis of

Manifold

14

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 15: Numerical and experimental aspects of Temporal Analysis of

TAP-3E The TAP-3E menu of experiments includes: • Multireactors system (carousel). Reactor can be easily and rapidly removed from the system without venting the vacuum chambers. Easily switching between 6 reactors (in situ) within 1 minute.

• Vacuum pulse-responses. The four pulse valves can be triggered

simultaneously or in a programmed alternating sequence

• Atmospheric pressure steady-state, step-transient, and SSITKA experiments, temperature programmed desorption (TPD), and temperature programmed reaction (TPR) experiments;

• Highly automated instrument that can be operated either locally or

remotely via the Internet (with limited intervention on site for the initial experiment configuration)

John T. Gleaves, et al., J. Mol. Catal. A: Chemical 315 (2010) 108. 15

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 16: Numerical and experimental aspects of Temporal Analysis of

TAP-3E

16

EXTREL QMS with conical aperture for increased signal-to-noise ratio

one pulse TAP-3

TAP-1 TAP-3E

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 17: Numerical and experimental aspects of Temporal Analysis of

Experimental data and Knudsen model

17

Ar He

D = 1.75 x 10-3 m2/s D = 5.02 x 10-3 m2/s

Experimental () and simulated (─) responses

298 K 298 K

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 18: Numerical and experimental aspects of Temporal Analysis of

Intracrystalline diffusion

18

quartz (─) H-ZSM 5 (─)

T=298K

Ar

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 19: Numerical and experimental aspects of Temporal Analysis of

TAP-3: Atmospheric pressure experiments The TAP-3E menu of experiments includes: • Multireactors system (carousel). Reactor can be easily and rapidly removed from the system without venting the vacuum chambers. Easily switching between 6 reactors (in situ) within 1 minute.

• Vacuum pulse-responses. The four pulse valves can be triggered

simultaneously or in a programmed alternating sequence

• Atmospheric pressure steady-state, step-transient, and SSITKA experiments, temperature programmed desorption (TPD), and temperature programmed reaction (TPR) experiments;

• Highly automated instrument that can be operated either locally or

remotely via the Internet (with limited intervention on site for the initial experiment configuration)

John T. Gleaves, et al., J. Mol. Catal. A: Chemical 315 (2010) 108. 19

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 20: Numerical and experimental aspects of Temporal Analysis of

TAP-3E: Atmospheric pressure experiments

20

Reactor

Slide valve (Atmospheric pressure experiments)

Reactor carousel

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 21: Numerical and experimental aspects of Temporal Analysis of

Overview

21

• Introduction • Case: total oxidation of volatile organic

components

• Mathematical analysis

• Statistical analysis

• Best practices

• Conclusions

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 22: Numerical and experimental aspects of Temporal Analysis of

22

Mars-van Krevelen (Redox) cycle

Al2O3

CuO or CeO2

O O

C3H8

CuO-CeO2/γ-Al2O3

CO2

O2

reduction re-oxidation

V. Balcaen, et al., Catalysis Today, 157 (2010) 49-54 22

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 23: Numerical and experimental aspects of Temporal Analysis of

Reaction mechanism

Al2O3

CuO or CeO2

O*,s Oads

C3H8

O2

O*,b CO2 CO2

CO2

Elementary steps + Active sites

23

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 24: Numerical and experimental aspects of Temporal Analysis of

Kinetic modeling

C3H8 C3H8O*,s ?

C2H4O*,sCH3

CO2*,s

CO2

CO*,s

? Rates of elementary steps

Optimal description of experimental data

Kinetic model

r6= k6CC3H8O*,s

r5 = k5CC3H8CO*,s

r7 = k7CC3H8C²O*,s

? ?

24

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 25: Numerical and experimental aspects of Temporal Analysis of

Propane responses Calculated

623 K

673 K

723 K

773 K

823 K

873 K

Experimental

25

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 26: Numerical and experimental aspects of Temporal Analysis of

26

Toluene: Oxygen labeling experiment

Only 10% of water formed contained H2

18O Mainly lattice oxygen participates in reaction

Unmesh Menon et al., J. Catal. 283 (2011) 1

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 27: Numerical and experimental aspects of Temporal Analysis of

27

+ 18O2 ↔ 18OL + 18Os

18Os + ↔ 18OL

+ 16OLb ↔ 16OL + b

18O in CO2 more than in H2O but still mainly 16O in CO2

Toluene: Oxygen labeling experiment

Di-Oxygen is mainly required for re-oxidation of the reduced surface metal centers

Unmesh Menon et al., J. Catal. 283 (2011) 1

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 28: Numerical and experimental aspects of Temporal Analysis of

Toluene: Carbon labeling experiment

28

Activation of C-C bonds

13CO2 is formed before 12CO2

12C6H5-13CH3

12CO2 13CO2

Abstraction of methyl carbon atom followed by destruction of aromatic ring

Unmesh Menon et al., J. Catal. 283 (2011) 1

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 29: Numerical and experimental aspects of Temporal Analysis of

Toluene: Hydrogen labeling experiment

29

C6H5-CD3

H2O, HDO, D2O

Peaks of H2O, HDO, D2O very close to each other

Activation of C-H bonds

Simultaneous abstraction of hydrogen from methyl and aromatic ring or scrambling of hydroxyl groups on the surface

Unmesh Menon et al., J. Catal. 283 (2011) 1

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 30: Numerical and experimental aspects of Temporal Analysis of

Total oxidation mechanism: summary

30

1 2

3

4

5

O2 H2O

CO2

CO2

H2O

O2

O- O2-

Cu2+

Vo

Unmesh Menon et al., J. Catal. 283 (2011) 1

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 31: Numerical and experimental aspects of Temporal Analysis of

Overview

31

• Introduction • Case: total oxidation of volatile organic

components

• Mathematical analysis

• Statistical analysis

• Best practices

• Conclusions

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 32: Numerical and experimental aspects of Temporal Analysis of

TAP, designed for simple math

32

• Knudsen diffusion: constant diffusivity

• Tiny inlet pulse: essentially linear kinetics

• Long cylinder: 1D model suffices

• Linear equations in each zone

Θ−=∂Θ∂

Θ+−∂∂

=∂∂

ΘΘΘ

Θ

KCKt

KCKxCD

tC

C

CCC2

2

ε

inert

catalyst

inert

gas

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 33: Numerical and experimental aspects of Temporal Analysis of

Laplace transform

33

• Laplace transform:

• Derivatives to algebra:

• Initial conditions and

• Determine coverages from equation:

• Transformed equations in each zone:

CsKs

xFFD

xC

CsKx

CDCs

LLLL

LLL

))(( and

i.e.,)(

1

2

2

+−=∂

∂−=

∂∂

−∂

∂=

− ε

ε

0=C 0=Θ

CKKs CLL Θ−

ΘΘ+=Θ 1)(

∫+∞ −=

0)()( dttFesF stL

)0()()(' FsFssF −= LL

D. Constales et al., Chem. Eng. Sci., 56 (2001) 133.

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 34: Numerical and experimental aspects of Temporal Analysis of

3D effects justifiably neglected

34

• In 2D or 3D, additional terms in Laplacian

• Simple math, separation of variables is possible.

• Transversally nonuniform components exhibit

diffusional decay (pseudo-reaction )

• At current aspect ratios, justifiably negligible:

extinct in less than 1/15th of peak time

2/ rDk λ=

D. Constales et al., Chem. Eng. Sci., 56 (2001) 133 and 56 (2001) 1913

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 35: Numerical and experimental aspects of Temporal Analysis of

Other boundary conditions

35

• Inlet can have premixing chamber.

• Outlet condition can be finite

• Order 1 effect similar to zone length uncertainty

• Order 2 effect similar to tiny time shift

• Justifiably neglected

in current reactor setups

outout vCF = v

D. Constales et al. Chem. Eng. Sci., 61(2006)1878

RB Zone length BG Time shift

ms

mV

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 36: Numerical and experimental aspects of Temporal Analysis of

Fourier transform

36

• Fourier transform:

• System is empty for past eternity

So and hence

• Inversion, from Fourier back to time:

• Example response one-zone inert:

0<t

)()(s

outout iFF=

= ωω LF

real

imaginary

∫+∞

∞−

−= dttFeF ti )())( ωω(F

∫∫+∞+∞

∞−=

0

∫∞+

∞−= ωω

πω dfetf ti )(

21))(1-(F

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 37: Numerical and experimental aspects of Temporal Analysis of

Noise

no meaningful information

frequency (Hz)

modulus (mV)

sample time (ms)

signal (mV)

Di-oxygen pulse response

37

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 38: Numerical and experimental aspects of Temporal Analysis of

Thin-zone TAP-reactor: Uniformity

• For not-too-fast reactions, narrow zone (∆Lcat/L < 1/20) minimizes spatial concentration and temperature non-uniformities.

• Observed kinetics can be related to a uniform catalyst composition.

Finlet – Foutlet = Scat RTZ(Cg,Cs) Cinlet = Coutlet = CTZ

g

• A Fourier-domain algorithm (the Y-Procedure) can be used to translate exit flow rates into otherwise non-observable gas concentrations CTZ

g and rates RTZ within the uniform catalytic zone. • The Y-Procedure is kinetically “model-free”, i.e. it does not require a priori assumptions about the mechanism and kinetic model of catalytic reactions.

Shekhtman et al. Chem. Eng. Sci., 2004, 59, 5493 – 5500 Yablonsky et al. Chem. Eng. Sci., 2007, 62, 6754-6767 38

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 39: Numerical and experimental aspects of Temporal Analysis of

Thin-zone TAP-reactor: Info on intermediates

Uptake Release

Information flow:

Intermediates

Redekop et al. Chem. Eng. Sci., 2011, 66, 6441–6452 39

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Coverage

Page 40: Numerical and experimental aspects of Temporal Analysis of

Thin-zone TAP-reactor: use of Y-procedure

RC

O2,

(mm

ol/k

g cat

/s)

CCO CO*, (mol/m3)(mmol/kgcat)

ER, ER+CO ads. LH, ER+LH

time

Redekop et al. Chem. Eng. Sci., In Press

O2 + 2CO → 2 CO2

Simulation results: CO oxidation via different mechanisms

(1) O2 + 2* → 2O*

(2) CO + * ↔ CO*

(3) CO + O* → * + CO2

(4) CO* + O* → 2* + CO2

Possible elementary steps:

Possible mechanisms (combinations of steps):

Eley-Rideal (ER): steps 1 and 3

Langmuir-Hinshelwood (LH): steps 1,2, and 4

ER + LH: steps 1 - 4

ER + CO ads.: steps 1,2, and 3

Analysis of rate-concentration dependencies allows for model discrimination

40

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 41: Numerical and experimental aspects of Temporal Analysis of

Overview

41

• Introduction • Case: total oxidation of volatile organic

components

• Mathematical analysis

• Statistical analysis

• Best practices

• Conclusions

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 42: Numerical and experimental aspects of Temporal Analysis of

Experimental data: time series

42

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 43: Numerical and experimental aspects of Temporal Analysis of

Conditions for maximum-likelihood estimates

• The independent variables contain no experimental errors

• The model is adequate • The mean experimental error is zero • All errors are normally distributed • The errors are homoskedastic • The errors are uncorrelated

43

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 44: Numerical and experimental aspects of Temporal Analysis of

44

Heteroskedasticity of TAP noise

More noise near peak than in tail

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 45: Numerical and experimental aspects of Temporal Analysis of

45

Autocorrelation of TAP noise

F

t

ε1

ε2

ε1

ε2

R. Roelant et al. Catal. Today 2007, 121, 269

[1]

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 46: Numerical and experimental aspects of Temporal Analysis of

46

Autocorrelation of TAP-noise

t

F

ε1

ε2

ε1

ε2

46

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 47: Numerical and experimental aspects of Temporal Analysis of

47

Second-order statistical regression

average experimental time series

G(aussian) H(omoskedastic) U(ncorrelated)

model-calculated time series

NLSQ

NLSQ

transformed average expt. time

series

transformed calculated time

series

linear transform

G H U

R. Roelant, D. Constales, R. Van Keer, G.B. Marin, Chem. Eng. Sci. 2008, 63, 1850

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 48: Numerical and experimental aspects of Temporal Analysis of

48

Principal Component Analysis and rescaling

Rescaling of the principal component

axes

ε1

ε2

Projection on the Principal Component Axes

48

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 49: Numerical and experimental aspects of Temporal Analysis of

Estimation of diffusion coefficient

49

Second Order Statistical Regression (SOSR): realistic confidence intervals

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 50: Numerical and experimental aspects of Temporal Analysis of

Overview

50

• Introduction • Case: total oxidation of volatile organic

components

• Mathematical analysis

• Statistical analysis

• Best practices

• Conclusions

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 51: Numerical and experimental aspects of Temporal Analysis of

Regression of TAP-Data: Best Practices

51

The Ten Commandments:

I. Thou shalt verify Knudsen II. Correct thy baseline III. Waste nor scrimp collection time IV. Beware spectrally localized noise V. Be neither finicky nor coarse in sampling

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 52: Numerical and experimental aspects of Temporal Analysis of

Regression of TAP-Data: Best Practices

52

VI. Count thy replicates VII. Thy pulse size will stray VIII. Thy kinetics be linear: pulse modestly IX. Rightfully regress X. Spare thy fancy weaving the network

The Ten Commandments (cont’d):

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 53: Numerical and experimental aspects of Temporal Analysis of

I. Knudsen diffusion regime

53

Reactor bed

A inert zone inert zone

catalyst zone

2

2j j

a i i

C CD k C k

t xε θ

∂ ∂= − +

∂ ∂ ∑

jj M

RTrDπτ

ε 234

=j

ref

refrefj M

MTTDD =

A

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 54: Numerical and experimental aspects of Temporal Analysis of

standard deviation (mV)

sample time (ms)

IV. Spectrally localized noise

frequency (Hz)

standard deviation (mV)

0 Hz

50 Hz

150 Hz

250 Hz

regression

54

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 55: Numerical and experimental aspects of Temporal Analysis of

V. Do not sample too much

sample time (ms)

1.0

0.8

0.6

0.4

0.2

0.0

0 2 4

Cor

rela

tion

coef

ficie

nt

sample time (ms)

1.0

0.8

0.6

0.4

0.2

0.0

22 24 26 28 30

Cor

rela

tion

coef

ficie

nt

neighboring samples

neighboring samples

)exp()(θ

ρ tt ∆−=∆ Gauss-Markov

stochastic process

55

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 56: Numerical and experimental aspects of Temporal Analysis of

VIII. Ensure state-defining conditions

Rate Coefficients that include catalyst state

Catalyst State

εin

∂Cg

∂t= Din

∂2Cg

∂x2∑+−∂

∂=

∂jjga

gcat

gcat kCk

xC

Dt

Cθε 2

2

in the inert zones in the catalyst zones

(...) (...)a g j jRate k C k θ= +∑ ∑

56

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 57: Numerical and experimental aspects of Temporal Analysis of

IX. Second-Order Statistical Regression

57

noise needs to be whitened rendered homoskedastic

t (s)

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 58: Numerical and experimental aspects of Temporal Analysis of

58

X. Parcimonious network selection

!

• Bode analysis helps bound network complexity

• In line with the experimental window on reality

Example:

58

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 59: Numerical and experimental aspects of Temporal Analysis of

XI: Be lazy, use TAPFIT code

59

Purpose • Solve the direct problem: calculate TAP pulse responses from a general 1D reactor model • Solve inverse problems: regress TAP experimental data and estimate various physical and kinetic parameters Features • Regresses the raw pulse responses (in volts) directly • Regression

• NLSQ (classical non-linear least square regression) • SOSR (second order statistical regression)

•Uses the Levenberg-Marquardt method for optimization • Integration can be performed in

• time domain • frequency domain (Fourier transformation, for linear kinetics)

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 60: Numerical and experimental aspects of Temporal Analysis of

Overview

60

• Introduction • Case: total oxidation of volatile organic

components

• Mathematical analysis

• Statistical analysis

• Best practices

• Conclusions

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 61: Numerical and experimental aspects of Temporal Analysis of

Conclusions

61

TAP offers a unique mix of opportunities:

• data acquisition near millisecond resolution

• insignificant perturbation of catalyst state

• robust math modeling

• both intuitive qualitative interpretation and advanced model-free analysis techniques

• challenges for catalytic, engineering and mathematical research

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 62: Numerical and experimental aspects of Temporal Analysis of

Acknowledgments This work was supported by • The ‘Long Term Structural Methusalem Funding by the Flemish

Government’ • Advanced Grant of the European Research Council (N° 290793) • Marie Curie International Incoming Fellowship (N° 301703)

• Profs. D. Constales and G.S.Yablonsky • Dr. Vladimir Galvita • Dr. Evgeniy Redekop • Rakesh Batchu • Dr. Veerle Balcaen • Dr. Raf Roelant • Dr. Unmesh Menon

62

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014

Page 63: Numerical and experimental aspects of Temporal Analysis of

Glossary

63

For a linear, time-invariant system…..

Bode plot is a graph of the transfer function versus frequency, typically plotted with a log-frequency axis. Often it is a combination of magnitude plot 𝐻𝐻(2𝜋𝜋𝜋𝜋𝜋𝜋) and phase plot arg(𝐻𝐻(2𝜋𝜋𝜋𝜋𝜋𝜋)).

Transfer function 𝐻𝐻(2𝜋𝜋𝜋𝜋𝜋𝜋) is a mathematical representation in terms of temporal frequency 𝜋𝜋 of the relation between the input X(2𝜋𝜋𝜋𝜋𝜋𝜋) and output Y(2𝜋𝜋𝜋𝜋𝜋𝜋) with zero initial conditions and zero-point equilibrium such that Y(2𝜋𝜋𝜋𝜋𝜋𝜋)=H(2𝜋𝜋𝜋𝜋𝜋𝜋)·X(2𝜋𝜋𝜋𝜋𝜋𝜋)

Poles of the transfer function show up on Bode plots as breakpoints at which the slope decreases.

Zeros of the transfer function show up on Bode plots as breakpoints at which the slope increases.

NEXTLAB , IFPEN / Rueil-Malmaison - 2-4 April 2014