nuclear magnetic double resonance - gbv

9
ITALIAN PHYSICAL SOCIETY PROCEEDINGS OF THE INTERNATIONAL SCHOOL OF PHYSICS «ENRICO FERMI» COURSE CXXIII edited by B. MARAVIGLIA Director of the Course VARENNA ON LAKE COMO VILLA MONASTERO 13-21 October 1992 Nuclear Magnetic Double Resonance 1993 NORTH-HOLLAND AMSTERDAM - OXFORD - NEW YORK - TOKYO

Upload: others

Post on 16-Mar-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

ITALIAN PHYSICAL SOCIETY

PROCEEDINGS OF THE

INTERNATIONAL SCHOOL OF PHYSICS «ENRICO FERMI»

COURSE CXXIII edited by B. MARAVIGLIA

Director of the Course VARENNA ON LAKE COMO

VILLA MONASTERO

13-21 October 1992

Nuclear Magnetic Double Resonance

1993

NORTH-HOLLAND AMSTERDAM - OXFORD - NEW YORK - TOKYO

I N D I C E

B.MARAViGLiA-Preface pag. xv

Gruppo fotografico dei par tecipant i al Corso fuori testo

M. GOLDMAN - Introduction to some basic aspects of NMR.

1. Nuclear interactions pag. 1 l ' l . The Zeeman interaction » 1 1'2. Electron-nucleus interactions » 3

1'2.1. Magnetic interactions » 4 1'2.2. Electric interactions » 7 T2.3. The case of metals » 9

1'3. Dipole-dipole interactions » 9 1'4. Exchange interactions » 11 1*5. Appendix: transformation properties of 2nd-rank tensors upon

rotation » 12 2. Spin-lattice relaxation revisited » 14

2 1 . Derivation of the master equation » 15 2'1.1. Evolution in the interaction representation » 18 2'1.2. Evolution in the Schrödinger representation » 20 21.3. Relation between both approaches » 21 2'1.4. Conditions ofvalidity of thetheory » 22 21.5. Extension to solids » 23

2'2. Drawbacks of alternative approaches. A selection » 24 2'2.1. Use of an interaction representation that does not remove

all of 5T0 » 25 2'2.2. Premature assumption that the average of a product

equals the product of the averages » 26

VII

VIII INDICE

2'2.3. Calculation of the time evolution of all elements of the density matrix pag. 27

2'2.4. Guesses about the form of the density matrix » 28 2'2.5. Use of the memory function formalism » 29

3. Spin temperature » 31 3*1. Spin temperature in zero field » 31 3'2. Spin temperature in low field » 34 3'3. Spin temperature in high field » 35 3'4. R.f. irradiation in high field » 38 3'5. Value and evolution of the spin temperature » 39

3'5.1. Sudden change of the Hamiltonian » 40 3'5.2. Adiabatic Variation of the Hamiltonian » 40

3'6. What gives rise to a r.f. signal? » 42 3'7. Verification of spin temperature theory » 44

37.1. General » 44 37.2. The case of effective Hamiltonians » 45

4. The case of a periodic Hamiltonian » 52 4 1 . Introduction » 52 4'2. Fast modulation » 55

4'2.1. The basic equations » 55 4'2.2. The next-order approximation » 56 4'2.3. The general expansion » 57

4'3. Large anisotropic chemical shifts » 63 4'3.1. Spin-spin relaxation » 65 4'3.2. Application of the theory. Generalities » 66

C H . P . S L I C H T E R - Double resonance.

1. What is double resonance, and why do it? » 69 2. Discovery of the Pound-Overhauser family » 70 3. AmodelSystem » 71 4. The electron-nuclear case: the Overhauser effect » 71 5. Cross-relaxation double resonance » 78 6. Spin coherence double resonance—S-flip-only echoes » 82 7. Spin coherence double resonance—coherence transfer » 85 8. Spin echo double resonance (SEDOE) » 88 9. SEDOR Signals when there are several S spins » 92 10. Examples of SEDOR studies » 94 Explanatory note » 101

Polarization of nuclear spins in metals » 101 Measurement of the spin and gyromagnetic ratio of 13C by the collapse of spin-spin Splitting » 104 Effects of perturbing radiofrequency fields on nuclear-spin coupling » 106 Method of polarizing nuclei in paramagnetic substances » 117 Polarization of phosphorous nuclei in Silicon , » 120

L. E M S L E Y and A. P I N E S - Lectures on pulsed NMR (2nd edition).

Introduction » 123 1. Multiple-quantum NMR » 123

l ' l . Dipolar couplings and molecular structure » 123 1'2. Onset of spectral complexity » 124

INDICE IX

1*3. Simplification by multiple-quantum transitions pag. 127 1'4. Analogy to chemical isotopic labeling » 128 1'5. Obtaining multiple-quantum spectra » 129 1"6. Theory of multiple-quantum NMR: preliminaries » 130 17. Multiple-quantum signal » 132 1'8. Special case: one-quantum FID pointbypoint » 132 1'9. General case: multiple-quantum FID » 133 HO. Time-reversal (conjugate) detection » 134 111. Effect of phase shifts » 135 1'12. Time-proportional phase incrementation (TPPI) » 137 113. Double-quantum NMR in solids » 137 114. Double-quantum spin locking » 138 115. Molecular structure by multiple-quantum NMR » 141 116. Selective w-quantum excitation » 145 117. Multiple-quantum NMR in solids » 147 118. Selection rules in multiple-quantum dynamics » 151 119. Total coherence transfer » 151 1'20. Bilinear rotation pulses » 153

2. Coherent-averaging theory » 153 2 1 . Introduction..... » 153 2'2. Multiple-pulse line narrowing » 155 2'3. Magic-angle spinning » 157 2'4. Double rotation » 160

3. Spin decoupling » 165 3 1 . Spin/ = l /2pa i r » 165 3'2. One-quantum offset and r.f. amplitude dependence » 166 3'3. Double-quantum decoupling » 168 3'4. Double-quantum offset and r.f. amplitude dependence » 168 3'5. Comment on the relationship between spin decoupling an multi­

ple-quantum excitation » 171 4. Interaction of radiation and matter » 171

4 1 . Two-level system in a quantized field » 171 4'2. Fictitious spin / = 1/2 Operators » 173 4'3. Evolution of the two-level system » 174 4'4. Evolution off resonance » 175 4'5. Adiabatic rapid passage » 175 4'6. Three-level system in a quantized field » 177 4'7. Fictitious spin / = 1 Operators » 178 4'8. Double-quantum (two-photon) Hamiltonian » 178 4'9. Evolution of the system » 179 410. Double-quantum adiabatic rapid passage » 180

5. Group theory and dynamics » 182 5 1 . Molecular motion » 183 5'2. Group theory and exchange » 185 5'3. Relevant representations » 186 5'4. Summary of symmetry considerations » 187 5'5. Example: dynamics of solid benzene » 188 5'6. Macroscopic motional averaging » 190 5'7. Sample spinning » 190 5'8. Group theory of motional averaging » 191 5'9. Averaging under cubic and icosahedral symmetry » 193

X INDICE

'510. Dynamic-angle spinning pag. 195 511. Isotropic-anisotropic correlation spectra » 199 512. Variable-angle correlation spectroscopy » 201

6. Cross-polarization » 203 6 1 . Spin temperature » 203 6'2. Methods for obtaining thermal contact » 204 6'3. Statistical picture of cross-polarization » 206 6'4. Hartmann-Hahn mismatch » 208 6'5. Thermodynamics of heteronuclear cross-polarization » 210 6'6. Resolved heteronuclear coupling » 213

7. Unitary bounds on spin dynamics » 216 7 1 . Unitary evolution » 216 7'2. The entropy limit » 217 7'3. Bounds on unitary evolution » 217 7'4. Redfield's description of polarization transfer » 218 7'5. Bounds in INS Systems » 219 7'6. The thermodynamic limit » 220 77. Two-dimensional bounds » 221 7'8. Transfer of basis Operators » 223 7'9. Nonunitary evolution » 223 710. Cross-polarization echoes » 225

8. Zero-field NMR >» 226 8 1 . Zero-field NQR of deuterium » 228 8'2. Two-dimensional zero-field NMR » 230 8'3. Zero-field pulses » 233 8'4. Calculation of the zero-field spectrum » 236 8'5. Average over orientational distribution » 237 8'6. Dipolar coupled spin / = 1/2 pair or quadrupolar spin / = 1 » 237 8'7. Effects of motion » 240 8'8. Magnetic resonance with a SQUID detector » 241 8'9. Comment on relationship of spatially selective pulses to zero-field

NMR » 242 9. Geometrie phases » 243

9 1 . Context for geometric phases » 243 9'2. Classical holonomy » 244 9'3. Quantum holonomy » 245 9'4. Equations for the geometric phase » 248 9'5. Explicit calculation for s p i n / = 1/2 » 249 9'6. The Aharonov-Bohm effect » 251 9'7. Geometric phase in NMR interferometry » 252 9'8. Fractional quantum numbers » 254 9'9. Nonunitary behavior, quantum protection » 256 910. Geometry of light » 257 911. Rotation of cats » 258

M. M E H R I N G - A guided tour through double-resonance phenomena.

1. Introduction » 267 2. Double resonance in three- and multi-level Systems » 269

2 1 . Population trasfer » 270

INDICE XI

2*1.1. Saturation ofthe 2-3 transition pag. 271 2'1.2. Inversion of the 2-3 transition » 272

2*2. Spin alignment and pulsed ENDOR experiments » 272 2"3. Spin echo double resonance (SEDOR) » 276

2*3.1. The 1-2 spin echo » 277 23.2. SEDOR effect » 277 2*3.3. Spinor experiments » 278

2*4. Cross-polarization in the rotating frame » 280 2*5. Coherence transfer » 281

3. Many-spin Systems » 282 3 1 . Spin temperature and spin density matrix » 283 3*2. Spin calorimetry » 284 3*3. From Hilbert space to Liouville space » 285 3*4. Spin calorimetry in Liouville space » 286

3*4.1. Energy conservation » 287 3*4.2. Isentropic mixing » 288

3*5. SEDOR » 289 3*6. Double-resonance spin dynamics » 291

4. Unconventional double-resonance experiments » 294 4*1. Rb-Xe double resonance and rotating the frame » 294 4*2. Hyperfine spectroscopy with correlation to an electron spin

(HYSCORE) » 295 4*3. Optical Zeeman double resonance with a laser diode » 296

5. Summary » 298

B. H. M E I E R - Polarization t ransfer experiments .

1. Introduction » 301 1*1. A simple application: the two-spin System » 305

2. Application to the MOIST experiment » 309 3. Larger spin Systems » 314 4. Time-dependent Hamiltonians » 317 5. Spin diffusum » 324 6. Polarization echoes » 330

R. F R E E M A N - Introduction to two-dimensional N M R in liquids.

1. Introduction : » 335 2. Pseitdo-two-dimensional spectroscopy » 337 3. Correlation spectroscopy (COSY) » 340 4. Total-correlation spectroscopy » 345 5. Chemical-exchange spectroscopy » 346 6. Nuclear Overhauser effect » 346 7. Nuclear Overhauser spectroscopy (NOESY) » 349 8. Forbidden transitions » 349 9. «INADEQUATE» » 350 10. Spin echoes » 353 11. «Broad-band decoupled» proton spectra » 356 12. Discussion » 359

XII INDICE

R. FREEMAN - Selective excitation in high-resolution NMR.

1. Introduction pag. 363 2. The DANTE sequence » 364 3. Shaped pulses » 365 4. Phase gradients » 366 5. «Spin pinging» » 367 6. Practical implementation » 368 7. Resolution enhancement » 368 8. Reduction of dimensionality » 370 9. The Hartmann-Hahn experiment » 373 10. Stepwise coherence transfer (DAISY) » 374

R. FREEMAN - Fine structure in two-dimensional spectra.

1. Introduction » 381 2. The structure of COSY cross-peaks » 381 3. Extractionofcouplingconstants » 386 4. J-extension » 387 5. J-deconvolution » 389 6. /-doubling » 393

C. ZWAHLEN, S. J. F. VINCENT and G. BODENHAUSEN - Selective

double resonance and coherence transfer.

1. Introduction » 397 2. Doubly selective irradiation » 398 3. Matrix representations » 401 4. Evolution, coherence transfer and detection » 404 5. Conclusions » 410

R. CAMPANELLA, S. CAPUANI, F. D E LUCA and B. MARAVIGLIA -

Double-resonance J-coupling imaging.

1. Introduction » 413 2. Double resonances to increase the signal-to-noise ratio » 413 3. /-coupling imaging » 416 4. Results and conclusions » 418

E. W. RANDALL - Some double-resonance methods in imaging experi-ments.

Introduction » 423 1. Some thoughts on definition » 424 2. Classification » 426 3. Introduction to double-resonance imaging » 434

31. Nitrogen » 435 32. Imaging 14N » 436 3'3. Imaging 15N » 439

3*3.1. Direct method » 439 3-3.2. ^NfH} Overhauser method » 439 33.3. Indirect methods, ' H ^ N } » 444

INDICE XIII

N. LUGERI, F . D E LUCA, B. C. D E SIMONE and B. MARAVIGLIA - Ro-

tating-frame spectroscopy and imaging under radio- and audio-frequency excitation.

1. Introduction pag- 449 2. General features of RCF experiments » 450 3. Theoretical backgrounds » 450 4. Magic-angle rotating-frame experiments » 455

41. Interaction representation » 455 4'2. TRCF Hamiltonians » 459

5. Applications of MARF experiments » 462 51. MARF imaging » 462 5'2. Relaxation studies » 466

M. BLOOM - A proposed Stern-Gerlach experiment on individual spins in solids.

1. Introduction » 473 2. Review of the Stern-Gerlach experiment » 474

21. Classical description » 474 2'2. Quantum description » 475

3. The transverse Stern-Gerlach experiment » 475 31. Resonance in the TS-G experiment—quantizationof/^ » 476

4. Thefolded Stern-Gerlach experiment » 476 41. Analysis of the FS-G experiment for a frictionless oscillator » 477 4'2. Inclusion of oscillator damping » 478 43. Some practical considerations concerning mechanical oscilla-

tors » 478 4'4. Criterion for detectability of a Single proton spin by FS-G

resonance » 479 5. Basic differences between Stern-Gerlach experiments and NMR » 480 6. Stern-Gerlach experiments on macroscopic spin Systems » 481

61. Polarized samples » 482 6"2. Unpolarized samples » 482

Note added (January, 1993) » 483

D. J. LURIE and I. NICHOLSON - Proton-electron double-resonance imaging of exogenous and endogenous free radicals in vivo.

1. Introduction » 485 2. Summary of relevant results from dynamic nuclear polarization the-

ory » 486 21. The DNP enhancement » 487 2"2. The coupling factor » 487 2"3. The leakage factor » 487 2'4. The Saturation factor » 487 2'5. The maximum theoretical enhancement » 488 26. EPR irradiation power » 488

3. Implementation ofPEDRI » 489 31. Magnetic-field strength considerations » 489 3'2. Basic PEDRI pulse sequence » 490

XIV INDICE

3*3. Interleaved PEDRI pulse sequence pag. 490 3*4. Field-cycled PEDRI » 491 35 . Snapshot PEDRI » 492

4. Hardware for PEDRI » 492 4 1 . The magnet » 492 4*2. The double-resonance r.f. coil assembly » 494

5. Applications of PEDRI » 496 5 1 . Imaging exogenous free radicals in vivo » 496

5*1.1. Desirable features ofa PEDRI contrast agent » 496 5*1.2. Nitroxide free radicals » 496 5*1.3. In vivo PEDRI studies » 498

5*2. Imaging endogenous free radicals in vitro and in vivo » 498 5*2.1. Spin trapping » 499 5*2.2. PEDRI with spin trapping » 500

6. Summary and conclusions » 501