nuclear data sheets for a = 222

36
Sukhjeet Singh Department of Physics, Maharishi Markandeshwar University, Mullana, Haryana 133207, India A. K. Jain Department of Physics, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India Jagdish K. Tuli National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973 USA (Received April 4, 2011; Revised October 14, 2011) Abstract: The ENSDF evaluation for A=222 mass chain (1996El01) has been updated on the basis of the experimental results, since September 1995 (literature cutoff date in 1996El01), from various reaction and decay studies for all nuclides in A=222 mass chain (Z=84 to 92). A new nuclide ( 222 Po) has since been observed. In addition, new measurements have been reported in Rn, Th and Ra nuclides. The results obtained from various theoretical studies are given as comments. The updated level and decay schemes, and experimental decay and reaction data on which they are based, are summarized and presented for all the nuclides with mass number A= 222. The adopted values of level energies, level spins and parities are given, and γ –ray energies, intensities, as well as other nuclear properties are presented. The references, J π arguments, and necessary comments are given in the text. All Q values have been adopted from 2011AuZZ. Theoretical work of 2009Mo27 was consulted. Cutoff Date: March 31, 2011. General Policies and Organization of Material: See the January issue of the Nuclear Data Sheets or http://www.nndc.bnl.gov/nds/NDSPolicies.pdf. Acknowledgments: Support from J.K. Sharma (M.M. University, Mullana, India) and BirBikram Singh (Institute of Physics,Bhubaneswar, India) is gratefully acknowledged. Nuclear Data Sheets for A = 222 * * The work at M.M. University, Mullana, India and at IIT Roorkee, Roorkee, India was supported by the Department of Science and Technology, India. Available online at www.sciencedirect.com Nuclear Data Sheets 112 (2011) 2851–2886 0090-3752/$ – see front matter © 2011 Elsevier Inc. All rights reserved. www.elsevier.com/locate/nds doi:10.1016/j.nds.2011.10.002

Upload: sukhjeet-singh

Post on 10-Sep-2016

217 views

Category:

Documents


3 download

TRANSCRIPT

Sukhjeet SinghDepartment of Physics, Maharishi Markandeshwar University,

Mullana, Haryana 133207, India

A. K. JainDepartment of Physics, Indian Institute of Technology,

Roorkee, Uttarakhand 247667, India

Jagdish K. TuliNational Nuclear Data Center, Brookhaven National

Laboratory, Upton, NY 11973 USA

(Received April 4, 2011; Revised October 14, 2011)

A b s t r a c t : T h e E N S D F e v a l u a t i o n f o r A = 2 2 2 m a s s c h a i n ( 1 9 9 6 E l 0 1 ) h a s b e e n u p d a t e d o n t h e b a s i s o f t h e

exper imenta l r esu l t s , s ince September 1995 ( l i t e ra ture cu to f f da te in 1996El01 ) , f r om var i ous reac t i on and

decay studies for all nuclides in A=222 mass chain (Z=84 to 92). A new nuclide (222Po) has since been observed.

In addition, new measurements have been reported in Rn, Th and Ra nuclides. The results obtained from various

theoret ical studies are g iven as comments . The updated level and decay schemes, and experimental decay and

reaction data on which they are based, are summarized and presented for all the nuclides with mass number A=

222. The adopted values o f level energies , leve l spins and par i t ies are g iven, and γ–ray energies , intensi t ies ,

as wel l as other nuclear properties are presented. The references, Jπ arguments, and necessary comments are

given in the text. All Q values have been adopted from 2011AuZZ. Theoretical work of 2009Mo27 was consulted.

Cutoff Date: March 31, 2011.

General Policies and Organization of Material: See the January issue of the Nuclear Data Sheets or

http: / /www.nndc.bnl.gov/nds/NDSPolicies.pdf.

Acknowledgments: Support from J.K. Sharma (M.M. University, Mullana, India) and BirBikram Singh (Institute of

Physics,Bhubaneswar, India) is gratefully acknowledged.

Nuclear Data Sheets for A = 222*

* The work at M.M. University, Mullana, India and at IIT Roorkee, Roorkee, India was supported by the Department

of Science and Technology, India.

Available online at www.sciencedirect.com

Nuclear Data Sheets 112 (2011) 2851–2886

0090-3752/$ – see front matter © 2011 Elsevier Inc. All rights reserved.

www.elsevier.com/locate/nds

doi:10.1016/j.nds.2011.10.002

2 8 5 2

NUCLEAR DATA SHEETS

Index for A = 222

Nuclide Data Type Page

Skeleton Scheme for A=222 2854222Po Adopted Levels 2856222At Adopted Levels 2856222Rn Adopted Levels, Gammas 2857

226Ra α Decay 2860

(HI,xnγ ) 2862222Fr Adopted Levels 2863

226Ac α Decay 2863222Ra Adopted Levels, Gammas 2864

222Fr β– Decay 2868226Th α Decay 2871232Th(136Xe,Xγ ) 2873

222Ac Adopted Levels 2874226Pa α Decay 2874

222Th Adopted Levels, Gammas 2875226U α Decay 2878

(HI,xnγ ) 2878222Pa Adopted Levels 2880

226Np α Decay 2880222U Adopted Levels 2881

2 8 5 4

NUCLEAR DATA SHEETS

Skeleton Scheme for A=222

0+ 0.0

550 s22

824Po138

Q– unknown

100%

0.0

54 s

S(n) 4090SY

228

25At137

Q–=4430SY

100%

0+ 0.0

3.8235 d

S(n) 61706

S(p) 7730SY

228

68Ra138

Qα=4870.6225100%

0+ 0.0

1600 y

228

26Rn136

Q–=2421

Qα=5590.33

100%

2– 0.0

14.2 min

S(n) 500022S(p) 541222

228

69Ac137

Qα=5536216×10–3% 2

(1) 0.0

29.37 h

228

27Fr135

Q–=202822

100%

0+ 0.0

38.0 s

S(p) 62466

S(n) 67146

229

60Th136

Qα=6450.922100%

0+ 0.0

30.57 min

228

28Ra134

Qα=66794

99% 11% 1

1– 0.0

5.0 s

0.0+x

S(p) 36317

S(n) 597050

229

61Pa135

Qα=69871074% 5

0.0

1.8 min

228

29Ac133

Q+=23007

Qα=7137.420

100%

0+ 0.0

2.8 ms

S(p) 461050

S(n) 780615

229

62U134

Qα=771514100%

0+ 0.0

0.35 s

229

20Th132

Q+=58213

Qα=81275

100%

0.0

2.9 ms

S(p) 2110SY

S(n) 6340SY

229

63Np133

Qα=820050100%

0.0

35 ms

229

21Pa131

Q+=4910SY

Qα=8850SY

2 8 5 5

NUCLEAR DATA SHEETS

Skeleton Scheme for A=222 (continued)

100%

0+ 0.0

1.0 μs

S(p) 3370SY

S(n) 8360SY

229

22U130

Q+=2180SY

Qα=9500SY

Ground–State and Isomeric–Level Properties

Nuclide Level Jπ T1/2 Decay Modes

222Po 0.0 0+ 550 s 430222At 0.0 54 s 10 %β–=100222Rn 0.0 0+ 3.8235 d 3 %α=100222Fr 0.0 2– 14.2 min 3 %β–=100222Ra 0.0 0+ 38.0 s 5 %α=100222Ac 0.0 1– 5.0 s 5 %α=99 1 ; %ε+%β+=1 1

0.0+x 63 s 3 %α≥88; %IT≤10; 0.7≤%ε+%β+≤2222Th 0.0 0+ 2.8 ms 3 %α=100222Pa 0.0 2.9 ms +6–4 %α=100222U 0.0 0+ 1.0 μs +12–4 %α=100226Ra 0.0 0+ 1600 y 7 %α=100226Ac 0.0 (1) 29.37 h 12 %α=6×10–3 2; . . .226Th 0.0 0+ 30.57 min 10 %α=100226Pa 0.0 1.8 min 2 %α=74 5 ; . . .226U 0.0 0+ 0.35 s 15 %α=100226Np 0.0 35 ms 10 %α=100

2 8 5 6

228

24Po138

228

24Po138NUCLEAR DATA SHEETS

Adopted Levels

See 2010Ch19 for 222Po isotope discovery and its mass measurements in the fragmentation of 238U beam at 670

MeV/nucleon with a 4g/cm2 9Be target fol lowed by separation by Fragment Recoil Separator facil ity at GSI.

Fragments were then injected into the cooler electron storage ring ESR. The mass and half–li fe was measured by

t ime–resolved Schottky Mass spectrometry technique. For the measurements of isotopic distributions of the

cross–sections, see 2010Al24.

222Po Levels

E(level) Jπ T1/2 Comments

0 . 0 0 + 5 5 0 s 4 3 0 T1/2: Uncertainty symmetrized (by evaluators) from the quoted value of 145 s +694–66 (2010Ch19).

Measured mass excess=22476 keV 67 (2010Ch19).

228

25At137 22

825At137

Adopted Levels

Q(β–)=4430 SY ; S(n)=4090 SY ; Q(α )=5040 SY 2003Au03,2011AuZZ.

Estimated: ΔQ(β–)=300, ΔS(n)=360, ΔQ(α )=200 (2003Au03,2011AuZZ).

The nucleus was produced by 1989Bu09 in 232Th (600–MeV p) by spallation with a negative ion source where chemically

pure beams of halogen elements were produced; the products were mass separated. The measured half–lives provided

the information for the definite nuclear assignment of the products.

The calculations of 1973Ta30 by using the β–gross theory yielded T1/2≈100 s for the β decay half–li fe of 222At;

1984Kl06 calculated this half–li fe as 21.5 s by using a microscopic theory. 2010Li02 measured mass values using

Schottky mass spectrometry.

See 2010Al24 for measurement of production cross–section using cold–fragmentation at relativistic energies.

222At Levels

E(level) T1/2 Comments

0 . 0 5 4 s 1 0 %β–=100.

Only β– decay was observed.

T1/2: measured by 1989Bu09.

2 8 5 7

228

26Rn136–1 22

826Rn136–1NUCLEAR DATA SHEETS

Adopted Levels, Gammas

Q(β–)=24 21 ; S(n)=6170 6 ; S(p)=7730 SY ; Q(α )=5590.3 3 2003Au03,2011AuZZ.

Estimated ΔS(p)=200 (2003Au03,2011AuZZ).

Potential energy and equilibrium deformations were calculated by 1994Li05, 1988So08, 1984Na22, 1983Ro14, 1982Le19,

1981Gy03. The nuclear binding energies were calculated and incipiency of deformation in this region is discussed

in 1986Ch23.

See 1983Ro14 for calculations of static quadrupole and hexadecapole moments.

2010Li02 measures mass values using Schottky mass spectrometry.

See 2009Qi07, 2004Re22 for predictions of cluster decay and its half–li fe. See 1989De11 for discussions on octupole

deformation and E1 transitions.

See 1987Ro08 for calculation of single–particle states and dipole moments as a function of octupole deformation, and

for B(E1)/B(E2) values at the equilibrium octupole deformation.

Higher order of deformations were considered by 1995De13; the level energies of the 2+, 4+ states in the g.s. band

and the 1–,3– states in the octupole–vibrational band were calculated. See 1995De13 for calculations, discussions

and comparison with experiments. See 1998Ra05 for calculations of level energies. Others: 2001Za04, 2001Za09. See

2003Ga34 for calculations of ground state properties.

222Rn Levels

The Kπ=0+ g.s. band and the Kπ=0– band at 600.66 keV have been interpreted as octupole parity–doublet bands. This

nucleus falls in the middle of the region of octupole deformation defined by the spin systematics for octupole

shapes (1990Ja11).

Cross Reference (XREF) Flags

A 226Ra α Decay

B (HI,xnγ )

E(level) Jπ† XREF T1/2 Comments

0 . 0 ‡ 0 + AB 3 . 8 2 3 5 d 3 %α=100.

%β–<1×10–4 for Eβ–=40 for log f1ut>8.5.

See 1986De32, 1986Ir01, 1986Pi11 for the calculations of partial half–li fe for 14C decay.

T1/2: from 1972Bu33, measured to ≈40 half–lives. Recent measurement: 3.8195 d 30

(2004Sc04) fol lowed to ≤5.2 half–lives. Other measurements: 3.825 d 5

(1951To25), 3.8229 d 17 (1956Ma64), 3.825 d 4 (1956Ro31), 3.83 d 3 (1958Sh69).

1 8 6 . 2 1 1 ‡ 1 3 2 + AB 0 . 3 2 n s 2 μ=+0.92 14 (2005St24,1970Or02).

See 1970Or02 for Gyromagnetic ratio g=0.45 7 by αγ (θ ,H).

T1/2: by (α ) (γ ) (t) (1960Be25). Other measurement: 0.31 ns (1961Fo08).

4 4 8 . 3 7 ‡ 1 2 4 + AB (α ) (262γ ) (θ ) data of 1989Po03 rule out J of 0, 1, 2 and 3. Jπ≠4– by requiring

parity conservation for the α transition from the 0+ parent.

6 0 0 . 6 6 § 5 1 – AB Jπ : γ to g.s . ; the (α ) (601γ ) (θ ) and (α ) (415γ ) (θ ) data rule out 2; Jπ≠1+ from the

parity–conservation requirement in α decays.

6 3 5 . 4 7 § 1 5 3 – AB (α ) (449γ ) (θ ) data of 1989Po03 rules out 0, 1, 2 and 4; Jπ≠1+, 2– by requiring

parity conservation in α decay from its 0+ parent.

7 6 8 . 5 ‡ 4 ( 6 + ) B

7 9 7 . 8 § 6 ( 5 – ) B

1 0 4 9 . 2 § 6 ( 7 – ) B

1 1 2 8 . 1 ‡ 4 ( 8 + ) B

1 3 5 6 . 9 § 6 ( 9 – ) B

1 5 1 3 . 0 ‡ 5 ( 1 0 + ) B

1 7 0 8 . 2 § 6 ( 1 1 – ) B

1 9 1 3 . 4 ? ‡ 6 ( 1 2 + ) B

2 0 8 9 . 1 § 8 ( 1 3 – ) B

2 3 1 7 . 2 ? ‡ 8 ( 1 4 + ) B

2 4 8 5 . 3 ? § 8 ( 1 5 – ) B

2 7 2 7 . 7 ? ‡ 9 ( 1 6 + ) B

2 8 8 1 . 9 ? § 1 0 ( 1 7 – ) B

3 2 8 5 . 9 ? § 1 1 ( 1 9 – ) B

3 6 9 6 . 1 ? § 1 2 ( 2 1 – ) B

† All levels above 635 based on band assignments in (HI,xnγ ) .

‡ (A): Kπ=0+ g.s. band.

§ (B): Kπ=0– octupole vibrational band.

2 8 5 8

228

26Rn136–2 22

826Rn136–2NUCLEAR DATA SHEETS

Adopted Levels, Gammas (continued)

γ (222Rn)

E(level) Eγ† Iγ‡ Mult.§ α I(γ+ce) Comments

1 8 6 . 2 1 1 1 8 6 . 4 2 1 0 0 1 5 E2 0 . 6 9 2 1 6 9 2 5 B(E2)(W.u.)=58 4 .

4 4 8 . 3 7 2 6 2 . 5 2 1 3 4 2 0 E2 1 6 2 1 0

6 0 0 . 6 6 4 1 4 . 6 0 5 6 0

6 0 0 . 6 6 5 1 0 0 E1 Mult. : assigned by evaluators, only E1 decay is possible.

6 3 5 . 4 7 4 4 8 . 6 5

7 6 8 . 5 3 1 9 . 6 2 1 1 8 2 6 E2 1 3 2 2 9

7 9 7 . 8 1 6 3 . 0 # 5

3 4 8 . 9 # 5

1 0 4 9 . 2 2 5 1 . 4 # 5

2 8 0 . 6 5 2 5 7 E1 2 6 7

1 1 2 8 . 1 3 5 9 . 6 2 7 5 1 4 E2 8 1 1 5

1 3 5 6 . 9 2 2 8 . 8 5 2 3 1 3 E1 2 4 1 4

3 0 7 . 7 5 3 1 1 3 E2 3 5 1 5

1 5 1 3 . 0 3 8 4 . 9 2 4 0 1 1 E2 4 3 1 1

1 7 0 8 . 2 1 9 5 . 4 5 2 2 1 4 E1 2 4 1 5

3 5 1 . 2 5 4 6 1 4 E2 5 0 1 5

1 9 1 3 . 4 ? 4 0 0 . 4 # 5

2 0 8 9 . 1 1 7 5 . 6 # 5

3 8 0 . 9 5 1 5 8 E2 1 6 9

2 3 1 7 . 2 ? 4 0 3 . 8 # 5

2 4 8 5 . 3 ? 3 9 6 . 3 # 5

2 7 2 7 . 7 ? 4 1 0 . 5 # 5

2 8 8 1 . 9 ? 3 9 6 . 6 # 5

3 2 8 5 . 9 ? 4 0 4 . 0 # 5

3 6 9 6 . 1 ? 4 1 0 . 2 # 5

† All γ properties are from 226Ra α decay.

‡ Relative photon intensity deexciting the level .

§ From GAMMASPHERE data (1999Co02).

# Placement of transition in the level scheme is uncertain.

(A) Kπ=0+ g.s. band

(B) Kπ=0- octupolevibrational band

0.00+

186.2112+

448.374+

768.5(6+)

1128.1(8+)

1513.0(10+)

1913.4(12+)

2317.2(14+)

2727.7(16+)

186

262

320

360

385

400

404

410

600.661-

635.473-

797.8(5-)

1049.2(7-)

1356.9(9-)

1708.2(11-)

2089.1(13-)

2485.3(15-)

2881.9(17-)

3285.9(19-)

3696.1(21-)

163

251

308

351

381

396

397

404

410

222

86Rn136

2 8 5 9

228

26Rn136–3 22

826Rn136–3NUCLEAR DATA SHEETS

2 8 6 0

228

26Rn136–4 22

826Rn136–4NUCLEAR DATA SHEETS

226Ra αααα Decay

Parent 226Ra: E=0.0; Jπ=0+; T1/2=1600 y 7 ; Q(g.s. )=4870.62 25 ; %α decay=100.

Eα (g.s . )=4784.34 25 gives Q(α ) (226Ra)=4870.54 25 ; from their mass adjustment, 2003Au03, 2011AuZZ recommend

Q(α ) (226Ra)=4870.62 25 ; the input value is l isted as Q(α )=4870.70 25 .

α γ ( θ ) : 1 9 8 9 P o 0 3

E γ E ( l e v e l ) d e d u c e d J π r e j e c t e d s p i n s

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

2 6 2 4 4 8 4 + 0 , 1 , 2 , 3

4 1 4 6 0 1 1 – 2 , 3

6 0 1 6 0 1 1 – 2 , 3

4 4 9 6 3 5 3 – 0 , 1 , 2 , 4

O t h e r α γ ( θ ) me a s u r eme n t s : 1 9 5 4R o 0 6 , 1 9 5 4Mi 5 3 .

( α ) ( α ) ( θ ) :

( 2 2 6Ra a ) ( 2 2 2Rn a ) ( θ ) : 1 9 6 8B i 0 8 o b s e r v e d i s o t r o p i c c o r r e l a t i o n .

α γ ( θ , H ) : s e e 1 9 7 0O r 0 2 , 1 9 7 4O r 0 2 .

α γ ( t ) : T 1 / 2 ( 1 8 6 l e v e l ) = 0 . 3 2 n s 2 ( 1 9 6 0B e 2 5 ) .

See 1994Da26 for Bremsstrahlung emission accompanying the 226Ra α decay.

222Rn Levels

E(level) Jπ T1/2

0 . 0 0 +

1 8 6 . 2 1 1 1 3 2 + 0 . 3 2 n s 2

4 4 8 . 3 7 1 2 4 +

6 0 0 . 6 6 5 1 –

6 3 5 . 4 7 1 5 3 –

α radiations

See 1992De44, 1987Be43, 1986Ch36, 1977Ba70, 1996De19 for theoretical calculations of α–decay widths.

Eα† E(level) Iα‡# HF§ Comments

4 1 6 0 2 6 3 5 . 4 7 0 . 0 0 0 2 7 5 8 . 6 1 6

4 1 9 1 2 6 0 0 . 6 6 0 . 0 0 1 0 1 4 . 4 5 Eα : 4194.4 3 from level energy and Eα (to g.s. ) .

4 3 4 0 1 4 4 8 . 3 7 0 . 0 0 6 5 3 1 0 . 3 5

4 6 0 1 1 1 8 6 . 2 1 1 6 . 1 6 3 0 . 8 5 7 6 Eα : the original energy has been increased by 3 keV, as recommended by

1991Ry01, because of a change in the calibration energy. I(α ) from

2007Ne01 Eα=4601.7 2 was recommended by 1983Co22 and 1987El01 from

measurements of 1958Wa16. Eα=4601.43 26 from Eα (g.s . )=4784.34 25 and

E(level) .

4 7 8 4 . 3 4 2 5 0 . 0 9 3 . 8 4 1 1 1 . 0 Eα : from 1971Gr17. The original energy has been decreased by 0.16 keV, as

recommended by 1991Ry01. Other measurements 1996Wi27. I(α ) from 2007Ne01.

† From 1963Ba62, except where otherwise noted. Other measurements: 1958Wa16, 1953Ba29, 1949Ro08.

‡ α intensity per 100 α decays; Iα ' s are from 1963Ba62. The uncertainties on 4784.34α and 4601α are given as recommended by

1991Ry01.

§ HF(4784α )=1.0 gives r0(222Rn)=1.5397 3 .

# Absolute intensity per 100 decays.

γ (222Rn)

γγ : 1971Lo19. For calculated alpha decay l i fe t ime see 2005Sh42, 2006Xu04, 2007Pe30, 2009Ni06, 2009De32.

EㆠE(level) Comments

( 3 4 . 8 1 6 ) 6 3 5 . 4 7 Eγ : transition was not observed; its energy is from the level scheme.

Continued on next page (footnotes at end of table)

2 8 6 1

228

26Rn136–5 22

826Rn136–5NUCLEAR DATA SHEETS

226Ra αααα Decay (continued)

γ (222Rn) (continued)

Eγ† E(level) Iγ‡ Mult. α Comments

1 8 6 . 2 1 1 1 3 1 8 6 . 2 1 1 3 . 6 4 4 E2 0 . 6 9 3 Eγ : from 1993Di09 and 1977Zo01. Other measured energies: 186.0 1

(1969Li10), 185.97 5 (1971Lo19), 186.196 12 (1974AlZT), 185.8 2

(1975Ha31), 186.19 10 (1976De48), 186.19 16 (1982Ak03). Earlier

measurements: 1951Co15, 1960St20, 1964Ew04.

Iγ : absolute photon intensity per 100 226Ra α decays, as measured by

2001La14. Other absolute measurements: 3.50 5 (1983Ol01), 3.51 6

(1983Sc13), 3.29 3 (1983Co22), 3.59 6 (1991Li11).

Iγ=3.28 3 from intensity balance at the 186–keV level .

Other values: Iγ (186γ ) /Iγ (609γ of 214Bi in equilibrium)= 0.0858 5

(1993Di09), 0.0823 3 (1983Bu14), 0.092 10 (1982Ak03), 0.0907 14

(1982Fa10), 0.076 4 (1981We18), 0.0900 11 (1977Zo01), 0.087 15

(1975Ha31), 0.0820 12 (1970Mo28), 0.079 8 (1964Ew04). Iγ (609γ of 214Bi in equilibrium)=46.1% 5 is adopted in the Nuclear Data

Sheets for A=214. Other Iγ measurements: 1976De48, 1974AlZT,

1969Li10, 1969Wa27, 1969Gr33, 1967Ma51.

Mult. : from ce ratios measured by 1963Go21, 1955Ju14, 1954Ro05.

1973De50 α (K)=0.200 9 , α (L)=0.380 20 were deduced by 1973De50 from

I(K x ray)/I(186γ ) , I (L x ray)/I(186γ ) .

( 1 8 7 . 1 0 2 0 ) 6 3 5 . 4 7 Eγ : transition was not observed; its energy is from the level scheme.

I(γ+ce)(34.8γ )+I(γ+ce)(187.1γ )=0.0008 from the intensity balance at

the 635.47–keV level ; the intensity balance at the 448.37–keV

level yields I(γ+ce)(187.1γ )=0.0061 6–0.0065 3 . See the section on 222Rn adopted levels, gammas for the references where E1

transition probabil it ies and E1/E2 ratios were calculated and

discussed in terms of octupole deformations.

2 6 2 . 2 7 5 4 4 8 . 3 7 0 . 0 0 5 0 5 [ E2 ] 0 . 2 1 2 Iγ : from Iγ (262γ ) /Iγ (186γ )=0.0014 2 (1993Di09,1971Lo19). Other

measured ratios: 0.0029 (1960St20), 0.0025 (1956Ha71).

I(262γ )=0.0054 3 from I(4340α )=0.0065 3 and α (262γ )=0.212.

4 1 4 . 6 0 5 6 0 0 . 6 6 0 . 0 0 0 3 0 [ E1 ] 0 . 0 1 6 4 Iγ : from Iγ (414.6γ ) /Iγ (186γ )=0.000086 (1971Lo19). Other measured

ratio: 0.00021 (1960St20).

4 4 9 . 3 7 1 0 6 3 5 . 4 7 0 . 0 0 0 1 9 [ E1 ] 0 . 0 1 3 8 Iγ : from Iγ (449γ ) /Iγ (186γ )=5.5×10–5 (1971Lo19). Other measured

ratio: 9×10–5 (1960St20).

6 0 0 . 6 6 5 6 0 0 . 6 6 0 . 0 0 0 4 9 [ E1 ] 0 . 0 0 7 6 6 Iγ : from Iγ (600γ ) /Iγ (186γ )=0.00014 (1971Lo19). Other measured ratio:

0.00033 (1960St20).

† From 1971Lo19, except where noted otherwise. Other measurements: 1960St20, 1956Ha71.

‡ Absolute intensity per 100 decays.

0+ 0.0 1600 y

%α=100228

68Ra138

Qα=4870.6225

0+ 0.0 1.093.844784.34

2+ 186.211 0.32 ns 0.8576.164601

4+ 448.37 10.30.00654340

1– 600.66 4.40.00104191

3– 635.47 8.60.000274160

HFIαEα

Decay Scheme

Intensities: I(γ+ce) per 100

decays by this branch

186.

211

E2

6.1

6

262.

27 [

E2]

0.

0061

414.

60 [

E1]

0.

0003

0

600.

66 [

E1]

0.

0004

9

34.8

187.

10

449.

37 [

E1]

0.

0001

9

228

26Rn136

2 8 6 2

228

26Rn136–6 22

826Rn136–6NUCLEAR DATA SHEETS

(HI,xn γγγγ) 1999Co02,2000BuZY

232Th(136Xe,Xγ ) , E=833 MeV, multi–particle transfer reaction. Measured Eγ , Iγ , γγγ using GAMMASPHERE array of 73

HPGe detectors (1999Co02).

222Rn Levels

E(level) Jπ

0 . 0 † 0 +

1 8 6 . 3 9 † 2 0 2 +

4 4 8 . 9 † 3 4 +

6 0 0 . 8 ‡ 8 1 –

6 3 5 . 0 ‡ 3 3 –

7 6 8 . 5 † 4 ( 6 + )

7 9 7 . 8 ‡ 6 ( 5 – )

E(level) Jπ

1 0 4 9 . 2 ‡ 6 ( 7 – )

1 1 2 8 . 1 † 4 ( 8 + )

1 3 5 6 . 9 ‡ 6 ( 9 – )

1 5 1 3 . 0 † 5 ( 1 0 + )

1 7 0 8 . 2 ‡ 6 ( 1 1 – )

1 9 1 3 . 4 ? † 6 ( 1 2 + )

2 0 8 9 . 1 ‡ 8 ( 1 3 – )

E(level) Jπ

2 3 1 7 . 2 ? † 8 ( 1 4 + )

2 4 8 5 . 3 ? ‡ 8 ( 1 5 – )

2 7 2 7 . 7 ? † 9 ( 1 6 + )

2 8 8 1 . 9 ? ‡ 1 0 ( 1 7 – )

3 2 8 5 . 9 ? ‡ 1 1 ( 1 9 – )

3 6 9 6 . 1 ? ‡ 1 2 ( 2 1 – )

† (A): g.s . band.

‡ (B): Octupole vibrational band.

γ (222Rn)

Eγ E(level) Iγ Mult. I(γ+ce) Comments

1 6 3 . 0 † 5 7 9 7 . 8

1 7 5 . 6 † 5 2 0 8 9 . 1

1 8 6 . 4 2 1 8 6 . 3 9 1 0 0 1 5 E2 1 6 9 2 5

1 9 5 . 4 5 1 7 0 8 . 2 2 2 1 4 E1 2 4 1 5

2 2 8 . 8 5 1 3 5 6 . 9 2 3 1 3 E1 2 4 1 4

2 5 1 . 4 † 5 1 0 4 9 . 2

2 6 2 . 5 2 4 4 8 . 9 1 3 4 2 0 E2 1 6 2 1 0

2 8 0 . 6 5 1 0 4 9 . 2 2 5 7 E1 2 6 7

3 0 7 . 7 5 1 3 5 6 . 9 3 1 1 3 E2 3 5 1 5

3 1 9 . 6 2 7 6 8 . 5 1 1 8 2 6 E2 1 3 2 2 9

3 4 8 . 9 † 5 7 9 7 . 8

3 5 1 . 2 5 1 7 0 8 . 2 4 6 1 4 E2 5 0 1 5

3 5 9 . 6 2 1 1 2 8 . 1 7 5 1 4 E2 8 1 1 5

3 8 0 . 9 5 2 0 8 9 . 1 1 5 8 E2 1 6 9

3 8 4 . 9 2 1 5 1 3 . 0 4 0 1 1 E2 4 3 1 1

3 9 6 . 3 † 5 2 4 8 5 . 3 ?

3 9 6 . 6 † 5 2 8 8 1 . 9 ?

4 0 0 . 4 † 5 1 9 1 3 . 4 ?

4 0 3 . 8 † 5 2 3 1 7 . 2 ?

4 0 4 . 0 † 5 3 2 8 5 . 9 ?

4 1 0 . 2 † 5 3 6 9 6 . 1 ?

4 1 0 . 5 † 5 2 7 2 7 . 7 ?

4 1 4 . 6 6 0 0 . 8 Eγ : Not seen in 1999Co02 but taken from adopted gammas.

4 4 8 . 6 † 5 6 3 5 . 0

6 0 0 . 7 6 0 0 . 8 Eγ : Not seen in 1999Co02 but taken from adopted gammas.

† Placement of transition in the level scheme is uncertain.

2 8 6 3

228

27Fr135

228

27Fr135NUCLEAR DATA SHEETS

Adopted Levels

Q(β–)=2028 22 ; S(n)=5000 22 ; S(p)=5412 22 ; Q(α )=5826 24 2003Au03,2011AuZZ.

222Fr Levels

E(level) Jπ T1/2 Comments

0 . 0 2 – 1 4 . 2 m i n 3 %β–=100.

μ=0.63 1 ; Q=0.51 4 (2005St24,1985Co24).

Jπ : 1978Ek02 measured spin (atomic–beam magnetic resonance, 1978Ek02). Log f t values for β–

transitions to 0+ and 4+ states give π=–.

Isotopic shift=–26262 MHZ 3 (1985Co24).

See 2005Dz02 for isotopic shift calculations.

See 1987Co19 for deduced change in the mean square charge radius relative to 212Fr from their

measured isomeric shift , and for calculated deformation parameter from the electric quadrupole

moment.

T1/2: from 1973AfZV (14.2 min 3 ) , 1976VaZC (14.2 min). Other measurement: 1950Hy20 (14.8 min).

Branching: only β– decay was observed. Calculation of probabil ity for 14C emission (1985Po11).

%α<1 was estimated by 1950Hy20 from α systematics. No α decay has been observed.

4 0 2 2 Level populated by 226Ac α decay.

E(level) : from Eα=5399 5 , measured in 226Ac α decay and Q(α ) (226Ac)=5536 21 (2003Au03,2011AuZZ).

226Ac αααα Decay

Parent 226Ac: E=0.0; Jπ=(1); T1/2=29.37 h 12 ; Q(g.s. )=5536 21 ; %α decay=6×10–3 2 .

222Fr Levels

E(level) Jπ T1/2

0 . 0 2 – 1 4 . 2 m i n 3

4 0 2 2

α radiations

Eα E(level) Iα† HF Comments

5 3 9 9 5 4 0 1 0 0 5 1 1 9 Eα : measurement by 1975VaZD. Other measurement: 1964Mc21.

Iα : only one α group was observed.

HF: r0(222Fr)=1.538 6 , T1/2(226Ac)=29.37 h 12 , measured by 1987Mi10 and Q(α ) (226Ac)=5536 21

from 2003Au03, 2011AuZZ are used in calculations.

† For α intensity per 100 decays, multiply by 6×10–5 2 .

2 8 6 4

228

28Ra134–1 22

828Ra134–1NUCLEAR DATA SHEETS

Adopted Levels, Gammas

Q(β–)=–2300 7 ; S(n)=6714 6 ; S(p)=6246 6 ; Q(α )=6679 4 2003Au03,2011AuZZ.

For calculations of level energies by various methods, some including deformations of order higher than β (2) , and

for discussions on level structure see 2006Sa53, 2005Za02, 2003Sh02, 2001Za04 2001Za09, 1998Bu18, 1998Ra05,

1997Bu07, 1997Bu28, 1995De13, 1987En05, 1986Da03, 1985Na07, 1983Pi04, 1983Ia01, 1980Sh07, 1970Ne08.

For theoretical calculations of equil ibrium deformations and deformation energies see 1994Cw01, 1991Sk01, 1988So08,

1986Bo19, 1986Le05, 1984Na22, 1983Ro14, 1982Le19, 1982Du16 and 1981Gy03.

Exotic nuclear shapes, including superdeformation, hyperdeformation and octupole shapes, were calculated and

discussed by 1994Cw01, 1992Ch20, 1992SkZZ, 1989De11, 1989Eg02, 1988Ba48, 1988Ro05, 1988So08, 1987Na10, 1987Ro08,

1986Bo19, 1986Ch23, 1984Na22.

For calculations of electric–dipole moment, and for discussions on the strong octupole effects and octupole

deformation, as well as higher order of deformations, see 2004Ad15, 2003Ad32, 1991Eg01, 1991Bu10, 1989De11,

1986Le05.

See 1988Ro02 for the E1, E3 transition probabil it ies and the 0+, 1– energy splitting.

See 1986Le05, 1993Yo02 for calculations of B(E1)/B(E2) transition probabil it ies from the Kπ=0– band.

For calculations of 14C emission probabil ity, partial half–lives and branchings by using various models, see

1984Po08, 1985Po11, 1985Sh01, 1986De32, 1986Gr20, 1986Ir01, 1986Ka46, 1986La01, 1986Pi11, 1986Po15, 1986Ru11,

1987Bl04, 1987Gu04, 1987Iv01, 1987Po08, 1987Sh04, 1988Ba01, 1988Bl11, 1988Iv02, 1988Sh29, 1988Ta25, 1989Bu06,

1989Ci03, 1989Ma21, 1989Sh37, 1990Ba20, 1990Bu09, 1990Hu07, 1990Ka15, 1990Sh01, 1991Bu01, 1992Gu10, 1993Bu05,

1993De38, 1993Go18, 1993Gr15, 1993Gu11, 1993Ka21, 1993Si26, 1994Bu07, 1994De38, 1995Si05, 1998Ro11, 2002Sa55,

2004Re22, 2004Ba64, 2005Ku32, 2006Xu15, 2009QI07, 2009RO16, 2010Ni13, 2008Ni12.

See 2001Ch02 for calculation of yrast band energies.

Weighted mean of intrinsic electric dipole moment/intrinsic electric quadrupole moment=4.02 11 extracted from

B(E1)/B(E2) (2007Co08).

222Ra Levels

The Kπ=0+ g.s. band and the Kπ=0– band at 242.11 keV have been interpreted as octupole parity–doublet bands. This

nucleus falls sl ightly to the left of middle of the region of octupole deformation defined by the spin systematics

for octupole shapes (1990Ja11).

Cross Reference (XREF) Flags

A 226Th α Decay

B 222Fr β– Decay

C 232Th(136Xe,Xγ )

E(level) Jπ XREF T1/2 Comments

0 . 0 † 0 + ABC 3 8 . 0 s 5 %α=100; %14C=3.0×10–8 10 .

T1/2: from measured values of 38.0 s (1948St42),37.5 s 5 (1956As38), 39 s 4

(1958To25). Other measurement: 1982Bo04.

14C branching from measured values of I(14C)/I(α )= 3.7×10–10 6 (1985Pr01),

3.1×10–10 10 (1985Ho21), and 2.3×10–10 3 (1991Hu02). 1991Hu02 searched also

for any 14C branching to the 3– state in 208Pb at 2614 keV and deduced an

upper l imit of 2×10–10% for its branch.

The isotope shift relative to 214Ra was measured by 1988Ah02; the change in the

nuclear mean square charge radius and the change in the quadrupole

deformation parameter were deduced as Δ<r2>=–0.198, and Δ<β2>1/2=0.191. See

also 1987We03, 1985Ne09.

1 1 1 . 1 2 † 2 2 + ABC 0 . 5 2 n s 4 T1/2: by (α ) (ce 111γ ) (t) in 226Th α decay.

2 4 2 . 1 1 ‡ 2 1 – ABC < 1 . 2 n s T1/2: by (α ) (242γ ) (t) in 226Th α decay.

3 0 1 . 3 9 † 4 4 + ABC < 1 . 4 n s T1/2: by (α ) (190γ ) (t) in 226Th α decay.

3 1 7 . 2 9 ‡ 5 3 – ABC The nuclear electric dipole moment was deduced by 1992Ru01 as 0.036 6 fm from

the branching ratio for E1, E2 transitions deexciting the level . The electric

quadrupole moment of 6.74 b 28 for both the g.s. and the Kπ=0– band was

assumed.

4 7 3 . 7 6 ‡ 8 ( 5 – ) ABC

5 5 0 . 3 † 4 ( 6 + ) C

7 0 3 . 2 ‡ 4 ( 7 – ) C

8 4 3 . 3 † 4 ( 8 + ) C

9 1 4 . 0 § 3 ( 0 + ) A Jπ : gammas to 2+, 1– states; no γ to 0+, 3–, 4+; analogy to the 0+, 916–keV

level in 224Ra.

9 9 2 . 4 ‡ 5 ( 9 – ) C

1 0 2 4 . 9 § 2 2 + AB Jπ : gammas to 0+ and 4+ levels.

1 1 7 0 . 9 2 ( 3 – , 4 + ) B Jπ : γ ' s to 3–, (5–) states; log f t=8.1 3 for β branch from 2– 222Fr.

1 1 7 1 . 6 3 1 + , 1 – , 2 + B Jπ : γ to 0+.

1 1 7 3 . 3 † 5 ( 1 0 + ) C

1 2 2 5 . 2 2 1 + , 1 – , 2 + B Jπ : γ to 0+.

Continued on next page (footnotes at end of table)

2 8 6 5

228

28Ra134–2 22

828Ra134–2NUCLEAR DATA SHEETS

Adopted Levels, Gammas (continued)

222Ra Levels (continued)

E(level) Jπ XREF Comments

1 2 6 5 . 0 3 ( 2 + , 3 ) B Jπ : γ ' s to 2+, 4+; log f t=7.2 for β branch from 2– 222Fr.

1 3 1 0 . 2 3 B

1 3 3 0 . 8 ‡ 6 ( 1 1 – ) C

1 3 6 0 . 6 3 B

1 3 7 5 . 7 3 B

1 4 0 2 . 6 2 ( 3 – ) B Jπ : γ ' s to the 1–, 3– states of the K=0 octupole–vibrational band and to the 2+, 4+ states of

the g.s. band.

1 4 3 2 . 6 3 1 , 2 , 3 – B Jπ : γ ' s to 1–, 2– states; log f t=7.2 for the β branch from 2– 222Fr.

1 4 3 9 . 9 2 ( 3 – ) B Jπ : γ transitions to 1– and (5–) states.

1 4 9 9 . 5 3 1 – , 2 , 3 – B Jπ : γ transitions to 1–, 3– states.

1 5 3 7 . 2 † 6 ( 1 2 + ) C

1 5 5 6 . 1 4 2 + B Jπ : γ transitions to 0+ and 4+ states.

1 6 1 9 . 6 4 B

1 6 4 4 . 9 3 2 + , 3 – B Jπ : γ transitions to 1– and 4+ states.

1 7 1 0 . 3 ‡ 6 ( 1 3 – ) C

1 7 5 4 . 4 6 3 – B Jπ : γ transitions to 2+, 4+, (5–) states; log f t=6.3 for the β feeding from 2– 222Fr.

1 8 2 1 . 5 5 1 , 2 , 3 B Jπ : log f t=6.7 for the β branch from 2– 222Fr.

1 8 4 1 . 2 5 1 , 2 , 3 Jπ : log f t=5.8 for the β branch from 2– 222Fr. If Jπ (1645 level)=3–, then Jπ (1841)≠1+.

1 9 3 3 . 2 † 7 ( 1 4 + ) C

2 1 2 5 . 3 ‡ 7 ( 1 5 – ) C

2 3 5 8 . 7 † 8 ( 1 6 + ) C

2 5 7 0 . 1 ‡ 8 ( 1 7 – ) C

2 8 1 1 . 0 † 1 0 ( 1 8 + ) C

3 0 4 0 . 9 ‡ 1 0 ( 1 9 – ) C

3 2 8 7 . 7 † 1 1 ( 2 0 + ) C

† (A): K=0 g.s. band.

‡ (B): K=0 octupole vibrational band.

§ (C): K=0 band.

γ (222Ra)

E(level) Eㆇ Iγ§ Mult.# α I(γ+ce) Comments

1 1 1 . 1 2 1 1 1 . 2 2 2 8 1 2 E2 6 . 2 6 2 0 5 9 1 B(E2)(W.u.)=111 9 .

2 4 2 . 1 1 1 3 1 . 0 0 2 3 2 . 1 1 6 [ E1 ] 0 . 2 5 4 B(E1)(W.u.)>1.5×10–5.

2 4 2 . 1 1 2 1 0 0 5 E1 0 . 0 5 8 0 B(E1)(W.u.)>7.4×10–6.

Mult. : from ce work in 226Th α decay.

3 0 1 . 3 9 1 9 0 . 7 2 1 0 0 1 9 E2 0 . 7 1 6 1 7 1 3 2 B(E2)(W.u.)>12.

3 1 7 . 2 9 7 5 . 1 3 2 0 . 0 1 7 4

2 0 6 . 1 7 5 1 0 0 1 0 E1 0 . 0 8 4 7 Mult. : from ce work in 226Th α decay.

4 7 3 . 7 6 1 7 2 . 3 7 2

5 5 0 . 3 2 4 8 . 4 2 8 6 1 7 E2 1 1 0 2 1

7 0 3 . 2 1 5 3 . 1 5 7 2 2 3 E1 8 4 2 7

2 2 9 . 3 5 1 3 4 E2 1 8 5

8 4 3 . 3 1 4 0 . 1 2 6 6 1 2 E1 8 0 1 4

2 9 2 . 9 2 6 1 5 E2 7 2 6

9 1 4 . 0 6 7 1 . 9 3 1 0 0 1 1

8 0 2 . 7 5 2 1 8

9 9 2 . 4 1 4 9 . 3 5 5 0 8 E1 5 8 1 0

2 8 9 . 0 5 4 4 5 E2 5 2 6

1 0 2 4 . 9 7 0 7 . 5 2 1 0 0 5

7 2 3 . 4 4 3 . 4 5

7 8 2 . 8 2 9 8 9

9 1 3 . 7 4 1 7 3

1 0 2 5 . 0 4 6 . 7 1 2

1 1 7 0 . 9 6 9 6 . 9 2 2 8 . 7 5

8 5 3 . 8 2 1 0 0 7

8 6 9 . 6 2 8 1 2 5

1 1 7 1 . 6 9 2 9 . 5 2 1 5 2

1 0 6 0 . 3 2 1 0 0 8

1 1 7 1 . 7 2 5 3 6

Continued on next page (footnotes at end of table)

2 8 6 6

228

28Ra134–3 22

828Ra134–3NUCLEAR DATA SHEETS

Adopted Levels, Gammas (continued)

γ (222Ra) (continued)

E(level) Eㆇ Iγ§ Mult.# I(γ+ce)

1 1 7 3 . 3 1 8 0 . 9 2 5 7 1 3 E1 6 4 1 5

3 3 0 . 1 2 4 3 4 E2 4 9 5

1 2 2 5 . 2 9 8 2 . 9 2 9 7 1 9

1 1 1 4 . 3 2 1 0 0 1 9

1 2 2 5 . 2 2 3 8 7

1 2 6 5 . 0 9 6 3 . 6 2 2 6 4

1 1 5 3 . 9 2 1 0 0 1 0

1 3 1 0 . 2 1 0 6 8 . 1 2

1 3 3 0 . 8 1 5 7 . 4 5 2 7 4 E1 3 1 4

3 3 8 . 3 5 4 2 4 E2 4 6 6

1 3 6 0 . 6 1 0 4 3 . 6 2 1 0 0 1 3

1 2 4 9 . 1 2 6 0 1 1

1 3 7 5 . 7 1 1 3 3 . 6 2

1 4 0 2 . 6 2 3 1 . 7 2 1 5 . 2 1 6

3 7 7 . 6 2 2 4 2

1 0 8 5 . 2 2 9 2 1 2

1 1 0 1 . 1 2 1 0 0 1 0

1 1 6 0 . 5 2 1 4 . 4 1 4

1 2 9 1 . 6 2 9 . 6 1 6

1 4 3 2 . 6 1 1 9 0 . 4 3 8 . 5 1 5

1 3 2 1 . 6 2 1 0 0 8

1 4 3 9 . 9 2 6 9 . 0 2 1 3 3

4 1 5 . 0 2 1 1 2

9 6 6 . 2 2 2 3 5

1 1 2 2 . 4 2 4 0 7

1 1 3 8 . 5 2 1 0 0 1 0

1 1 9 8 . 0 2 3 0 5

1 4 9 9 . 5 4 7 4 . 5 3 1 0 0 1 0

1 1 8 2 . 1 3 8 7 1 0

1 2 5 7 . 5 3 3 3 7

1 3 8 8 . 5 3 7 6 1 0

1 5 3 7 . 2 2 0 6 . 2 5 2 7 5 E1 3 0 6

E(level) Eㆇ Iγ§ Mult.# I(γ+ce)

1 5 3 7 . 2 3 6 3 . 9 5 4 2 4 E2 4 6 4

1 5 5 6 . 1 1 2 3 8 . 6 3 1 0 0 1 3

1 2 5 4 . 4 4 2 6 3

1 4 4 5 . 2 4 6 9 1 1

1 5 5 6 . 5 4 5 9 1 1

1 6 1 9 . 6 1 3 7 7 . 4 3 1 0 0 1 5

1 5 0 8 . 7 4 2 4 7

1 6 4 4 . 9 6 1 9 . 9 2 3 1 4

1 3 2 7 . 6 2 1 0 0 9

1 3 4 3 . 3 3 1 0 . 4 1 7

1 4 0 2 . 5 4 2 7 3

1 5 3 4 . 1 4 1 7 3

1 7 1 0 . 3 1 7 3 . 1 5 2 8 4 E1 3 2 5

3 7 9 . 6 5 3 4 3 E2 3 6 4

1 7 5 4 . 4 3 5 1 . 7 2 5 2 1 2

1 2 8 1 . 0 3 3 4 7

1 4 3 6 . 4 3 1 0 0 7

1 4 5 3 . 4 3 4 5 1 0

1 6 4 3 . 9 3 4 4 1 2

1 8 2 1 . 5 1 5 7 9 . 4 4

1 8 4 1 . 2 1 9 6 . 3 2 1 0 0 1 3

1 5 9 9 . 6 4 1 6 5

1 9 3 3 . 2 3 9 6 . 0 5 3 0 4 E2 3 2 4

2 1 2 5 . 3 1 9 2 . 1 5 2 3 1 0 E1 2 5 1 1

4 1 5 . 0 5 3 4 4 E2 3 5 4

2 3 5 8 . 7 4 2 5 . 5 5 2 4 4 E2 2 5 4

2 5 7 0 . 1 2 1 1 . 4 5

4 4 4 . 8 5 3 2 6 E2 3 4 6

2 8 1 1 . 0 4 5 2 . 3 5 1 7 4 E2 1 7 4

3 0 4 0 . 9 4 7 0 . 8 5 1 5 4 E2 1 6 4

3 2 8 7 . 7 4 7 6 . 7 5 1 0 4 E2 1 1 4

† From 232Th(136Xe,Xγ ) dataset. Those not observed in this dataset are taken from decay datasets.

‡ From 226Th α decay and 222Fr β– decay. The uncertainties of γ ' s deexciting the levels above 1 MeV have been increased because

of a poor energy f it to the level scheme; therefore, the Eγ values have been rounded off here. See 222Fr β– decay section for

the experimental values l isted by the authors.

§ Relative photon intensity deexciting each level .

# From GAMMASPHERE data (1999Co02). Multipolarities inside the square brackets are from the ce work in 226Tl α decay.

A

A

A

(A) K=0 g.s. band

(B) K=0 octupolevibrational band

(C) K=0 band

0.00+

111.122+

301.394+

550.3(6+)

843.3(8+)

1173.3(10+)

1537.2(12+)

1933.2(14+)

2358.7(16+)

2811.0(18+)

3287.7(20+)

111

191

248

293

330

364

396

426

452

477

242.111-

317.293-

473.76(5-)

703.2(7-)

992.4(9-)

1330.8(11-)

1710.3(13-)

2125.3(15-)

2570.1(17-)

3040.9(19-)

229

289

338

380

415

445

471

914.0(0+)

1024.92+

1025

803

914

723

222

88Ra134

2 8 6 7

228

28Ra134–4 22

828Ra134–4NUCLEAR DATA SHEETS

2 8 6 8

228

28Ra134–5 22

828Ra134–5NUCLEAR DATA SHEETS

222Fr ββββ– Decay 1992Ru01

Parent 222Fr: E=0.0; Jπ=2–; T1/2=14.2 min 3 ; Q(g.s. )=2032 21 ; %β– decay=100.

222Fr–%β– decay: Relative photon intensities were normalized by 1992Ru01 to Iγ (324.2γ from 222Ra)=2.77 8 per 100

222Ra decays. This value was measured absolutely by 1969Pe17, and it has been adopted by the evaluator. However,

1992Ru01 did not provide their measured Iγ (324γ ) relative to the Iγ ' s given here. From the γ–transition

intensities shown on the decay scheme of 1992Ru01, Iγ normalization=0.49 6 ; an assumption of any β feeding to the

g.s . to be negligible yields Iγ normalization=0.51 6 ; by requiring that the log f1ut for a β feeding to the g.s.

is >8.5, Iβ is calculated to be <7%. Iβ (g.s . )=3% 3 yields Iγ normalization=0.50 6 .

The 222Fr β– decay scheme is presented as constructed by 1992Ru01 based on their β–gated γγ–coincidence

measurements. The decay scheme was built upon the previously known levels which were established up to the

1170–keV level .

222Ra Levels

E(level) Jπ T1/2

0 . 0 0 + 3 8 . 0 s 5

1 1 1 . 1 2 2 2 +

2 4 2 . 1 1 2 1 –

3 0 1 . 3 9 4 4 +

3 1 7 . 2 9 5 3 –

4 7 3 . 7 6 8 ( 5 – )

1 0 2 4 . 9 2 2 +

1 1 7 0 . 9 2 ( 3 – , 4 + )

E(level) Jπ

1 1 7 1 . 6 3 1 + , 1 – , 2 +

1 2 2 5 . 2 2 1 + , 1 – , 2 +

1 2 6 5 . 0 3 ( 2 + , 3 )

1 3 1 0 . 2 3

1 3 6 0 . 6 3

1 3 7 5 . 7 3

1 4 0 2 . 6 2 ( 3 – )

1 4 3 2 . 6 3 1 , 2 , 3 –

E(level) Jπ

1 4 3 9 . 9 2 ( 3 – )

1 4 9 9 . 5 3 1 – , 2 , 3 –

1 5 5 6 . 1 4 2 +

1 6 1 9 . 6 4

1 6 4 4 . 9 3 2 + , 3 –

1 7 5 4 . 4 6 3 –

1 8 2 1 . 5 5 1 , 2 , 3

1 8 4 1 . 2 5 1 , 2 , 3

β– radiations

See 1975We23 for singles β spectrum measurements. The spectrum shows a f lat tail of low intensity and extended to

much higher energy than the main portion of the data. After subtraction of this tail (which was assumed due to α

particles from 222Ra), an F–K analysis gives Eβ (max)=1780 20 for the endpoint which does not agree with the Eβ–

(to 111.12 level) .

Eβ– E(level) Iβ–† Log f t

( 1 9 1 2 1 ) 1 8 4 1 . 2 0 . 1 0 6 5 . 8

( 2 1 1 2 1 ) 1 8 2 1 . 5 0 . 0 1 6 4 6 . 7

( 2 7 8 2 1 ) 1 7 5 4 . 4 0 . 1 0 3 1 6 6 . 3

( 3 8 7 2 1 ) 1 6 4 4 . 9 0 . 1 2 6 6 . 7

( 4 1 2 2 1 ) 1 6 1 9 . 6 0 . 0 4 9 8 7 . 2

( 4 7 6 2 1 ) 1 5 5 6 . 1 0 . 0 6 9 1 0 7 . 2

( 5 3 3 2 1 ) 1 4 9 9 . 5 0 . 1 1 7 1 6 7 . 2

( 5 9 2 2 1 ) 1 4 3 9 . 9 0 . 3 4 5 6 . 9

( 5 9 9 2 1 ) 1 4 3 2 . 6 0 . 1 4 7 2 1 7 . 2

( 6 2 9 2 1 ) 1 4 0 2 . 6 0 . 6 5 1 0 6 . 7

( 6 5 6 2 1 ) 1 3 7 5 . 7 0 . 0 3 7 6 8 . 0

( 6 7 1 2 1 ) 1 3 6 0 . 6 0 . 0 5 2 9 7 . 9

Eβ– E(level) Iβ–† Log f t

( 7 2 2 2 1 ) 1 3 1 0 . 2 0 . 0 2 2 5 8 . 3

( 7 6 7 2 1 ) 1 2 6 5 . 0 0 . 3 4 5 7 . 2

( 8 0 7 2 1 ) 1 2 2 5 . 2 0 . 0 8 7 1 5 7 . 9

( 8 6 0 2 1 ) 1 1 7 1 . 6 0 . 7 8 1 1 7 . 1

( 8 6 1 2 1 ) 1 1 7 0 . 9 0 . 0 7 4 8 . 1

( 1 0 0 7 2 1 ) 1 0 2 4 . 9 0 . 8 5 1 2 7 . 3

( 1 7 1 5 2 1 ) 3 1 7 . 2 9 5 4 9 6 . 3

( 1 7 3 1 2 1 ) 3 0 1 . 3 9 0 . 3 7 6 9 . 4 1 u

( 1 7 9 0 2 1 ) 2 4 2 . 1 1 1 . 7 4 7 . 9

( 1 9 2 1 2 1 ) 1 1 1 . 1 2 3 8 1 2 6 . 2

( 2 0 3 2 ‡ 2 1 ) 0 . 0 3 3 ≥ 8 . 5 1 u

† From intensity balance at each level .

‡ Existence of this branch is questionable.

γ (222Ra)

βγ , βγγ : see 1992Ru01.

X r a y s ( Ra ) :

E I ( x r a y ) / I ( 2 0 6 γ )

1 9 8 5Go 0 5 1 9 8 5Go 0 5 c a l c u l a t e d

– – – – – – – – – – – – – – – – – – – – – – – – – – –

8 8 . 5 0 . 1 4 3 2 0 0 . 1 1 1 1 6 Kα x r a y

1 0 0 . 0 0 . 0 2 7 5 3 5 0 . 0 3 2 5 Kβ x r a y

Eγ† E(level) Iγ‡# Mult.§ α

x 5 4 . 1 4 2 0 . 0 3 0 5

7 5 . 1 3 2 3 1 7 . 2 9 0 . 0 1 7 4 [ E2 ] 3 7 . 5

1 1 1 . 1 1 1 1 1 1 . 1 2 2 6 . 2 2 6 E2 6 . 2 6

1 3 0 . 9 8 1 2 4 2 . 1 1 1 . 2 5 1 2 ( E1 ) 0 . 2 5 4

1 7 2 . 3 7 2 4 7 3 . 7 6 0 . 1 2 1 [ E1 ] 0 . 1 3 0

Continued on next page (footnotes at end of table)

2 8 6 9

228

28Ra134–6 22

828Ra134–6NUCLEAR DATA SHEETS

222Fr ββββ– Decay 1992Ru01 (continued)

γ (222Ra) (continued)

Eγ† E(level) Iγ‡# Mult.§ α Comments

1 9 0 . 2 4 2 3 0 1 . 3 9 1 . 1 9 1 E2 0 . 7 1 6

1 9 6 . 3 1 4 1 8 4 1 . 2 0 . 0 8 1 [ D , E2 ] 1 . 3 1 2

2 0 6 . 1 7 5 3 1 7 . 2 9 1 0 0 1 0 E1 0 . 0 8 4 7 Eγ=206.18 2 (1992Ru01), 206.10 4 (1985Go05); 206.23 5 from 226Th α decay.

x 2 1 8 . 6 6 4 0 . 1 2 1

x 2 2 1 . 3 6 2 0 . 5 2 5

x 2 2 4 . 1 0 2 0 . 1 9 2

2 3 1 . 6 7 4 1 4 0 2 . 6 0 . 0 7 6 8 [ D , E2 ] 0 . 8 7 α : α (E1)=0.0643, α (M1)=1.53, α (E2)=0.356.

2 4 2 . 1 1 1 2 4 2 . 1 1 3 . 9 4 E1 0 . 0 5 8 0

2 6 8 . 9 9 4 1 4 3 9 . 9 0 . 0 4 0 8 0 . 5 3 4 8 α : α (E1)=0.0454, α (M1)=1.01, α (E2)=0.217.

3 5 1 . 7 5 4 1 7 5 4 . 4 0 . 0 3 7 8 [M1 , E2 ] 0 . 2 9 1 9 α (M1)=0.484, α (E2)=0.0973.

3 7 7 . 6 4 4 1 4 0 2 . 6 0 . 1 2 1 [ E1 ] 0 . 0 2 1 3

4 1 5 . 0 5 4 1 4 3 9 . 9 0 . 0 3 2 6 [ E1 ] 0 . 0 0 0 3 0

x 4 5 5 . 3 7 7 0 . 0 1 8 4

4 7 4 . 4 5 9 1 4 9 9 . 5 0 . 0 7 9 8

6 1 9 . 9 5 4 1 6 4 4 . 9 0 . 0 7 2 8

6 9 6 . 8 8 5 1 1 7 0 . 9 0 . 0 4 6 8

7 0 7 . 5 4 3 1 0 2 4 . 9 0 . 8 9 4 [ E1 ] 0 . 0 0 6 0 2

7 2 3 . 4 5 4 1 0 2 4 . 9 0 . 0 3 0 4 [ E2 ] 0 . 0 1 7 3

7 8 2 . 7 7 3 1 0 2 4 . 9 0 . 8 7 8 [ E1 ] 0 . 0 0 4 9 9

x 8 3 1 . 5 8 5 0 . 0 3 6 5

x 8 4 6 . 7 2 8 0 . 0 7 0 1 4

8 5 3 . 7 8 8 1 1 7 0 . 9 0 . 1 6 1

8 6 9 . 6 2 1 1 7 0 . 9 0 . 1 3 4

9 1 3 . 6 9 5 1 0 2 4 . 9 0 . 1 5 2

9 2 9 . 4 7 8 1 1 7 1 . 6 0 . 1 4 2

9 6 3 . 6 1 6 1 2 6 5 . 0 0 . 1 4 2

9 6 6 . 2 4 9 1 4 3 9 . 9 0 . 0 7 0 1 4

9 8 2 . 9 0 8 1 2 2 5 . 2 0 . 0 7 2 1 4

1 0 2 5 . 0 2 8 1 0 2 4 . 9 0 . 0 6 0 1 0

1 0 4 3 . 6 0 9 1 3 6 0 . 6 0 . 0 6 5 8

1 0 6 0 . 3 3 5 1 1 7 1 . 6 0 . 9 2 7

1 0 6 8 . 0 8 8 1 3 1 0 . 2 0 . 0 4 3 8

1 0 8 5 . 2 0 5 1 4 0 2 . 6 0 . 4 6 6

1 1 0 1 . 0 9 5 1 4 0 2 . 6 0 . 5 0 5

1 1 1 4 . 2 6 8 1 2 2 5 . 2 0 . 0 7 4 1 4

1 1 2 2 . 4 1 9 1 4 3 9 . 9 0 . 1 2 2

1 1 3 3 . 6 1 8 1 3 7 5 . 7 0 . 0 7 4 8

1 1 3 8 . 4 7 5 1 4 3 9 . 9 0 . 3 0 3

1 1 5 3 . 8 7 5 1 2 6 5 . 0 0 . 5 4 5

x 1 1 5 6 . 7 5 9 0 . 0 4 4 9

1 1 6 0 . 5 2 8 1 4 0 2 . 6 0 . 0 7 2 7

1 1 7 1 . 6 9 8 1 1 7 1 . 6 0 . 4 9 5

1 1 8 2 . 0 5 8 1 4 9 9 . 5 0 . 0 6 9 8

1 1 9 0 . 4 1 1 4 3 2 . 6 0 . 0 2 3 4

1 1 9 7 . 9 9 8 1 4 3 9 . 9 0 . 0 8 9 1 5

1 2 2 5 . 2 4 8 1 2 2 5 . 2 0 . 0 2 8 5

1 2 3 8 . 6 0 8 1 5 5 6 . 1 0 . 0 5 4 7

1 2 4 9 . 1 1 1 3 6 0 . 6 0 . 0 3 9 7

1 2 5 4 . 4 2 1 5 5 6 . 1 0 . 0 1 4 3

1 2 5 7 . 5 1 1 4 9 9 . 5 0 . 0 2 6 5

1 2 8 0 . 9 9 9 1 7 5 4 . 4 0 . 0 2 4 5

1 2 9 1 . 6 1 8 1 4 0 2 . 6 0 . 0 4 8 8

x 1 2 9 5 . 6 1 0 . 0 2 8 5

1 3 2 1 . 6 5 6 1 4 3 2 . 6 0 . 2 7 2

Eγ† E(level) Iγ‡#

1 3 2 7 . 5 8 6 1 6 4 4 . 9 0 . 2 3 2

1 3 4 3 . 3 1 1 6 4 4 . 9 0 . 0 2 4 4

1 3 7 7 . 4 1 1 6 1 9 . 6 0 . 0 8 0 9

1 3 8 8 . 5 1 1 4 9 9 . 5 0 . 0 6 0 8

1 4 0 2 . 5 2 1 6 4 4 . 9 0 . 0 6 2 7

1 4 3 6 . 4 1 1 7 5 4 . 4 0 . 0 7 1 7

1 4 4 5 . 2 2 1 5 5 6 . 1 0 . 0 3 7 6

1 4 5 3 . 4 1 1 7 5 4 . 4 0 . 0 3 2 6

x 1 5 0 2 . 3 1 0 . 0 5 0 9

1 5 0 8 . 7 2 1 6 1 9 . 6 0 . 0 1 9 4

1 5 3 4 . 1 2 1 6 4 4 . 9 0 . 0 3 9 7

1 5 5 6 . 5 2 1 5 5 6 . 1 0 . 0 3 2 6

1 5 7 9 . 4 2 1 8 2 1 . 5 0 . 0 3 2 6

1 5 9 9 . 6 2 1 8 4 1 . 2 0 . 0 1 3 4

1 6 4 3 . 9 1 1 7 5 4 . 4 0 . 0 3 1 8

† From 1992Ru01, except where noted. Other measurement: 1985Go05.

‡ Relative photon intensities, measured by 1992Ru01.

§ From 226Th α decay. The multipolarities in square brackets are from the level scheme.

# For absolute intensity per 100 decays, multiply by 0.50 6 .

x γ ray not placed in level scheme.

28

70

228

28 Ra

13

4 –7

228

28 Ra

13

4 –7

NU

CL

EA

R D

AT

A S

HE

ET

S

2

22F

r β βββ– D

ec

ay

19

92

Ru

01

(co

ntin

ue

d)

2– 0.0 14.2 min

%β–=100

228

27Fr135

Q–=203221

0+ 0.0 38.0 s≥8.51u3

2+ 111.126.238

1– 242.117.91.7

4+ 301.399.41u0.37

3– 317.296.354

(5–) 473.76

2+ 1024.97.30.85

(3–,4+) 1170.98.10.07

1+,1–,2+ 1171.67.10.78

1+,1–,2+ 1225.27.90.087

(2+,3) 1265.07.20.34

1310.28.30.022

1360.67.90.052

1375.78.00.037

(3–) 1402.66.70.65

1,2,3– 1432.67.20.147

(3–) 1439.96.90.34

1–,2,3– 1499.57.20.117

2+ 1556.17.20.069

1619.67.20.049

2+,3– 1644.96.70.12

3– 1754.46.30.103

1,2,3 1821.56.70.016

1,2,3 1841.25.80.10

Log f tIβ–

Decay Scheme

Intensities: I(γ+ce) per 100 decays by this branch

111.

11 E

2 9

5

130.

98 (

E1)

0.

78

242.

11 E

1 2

.1

190.

24 E

2 1

.02

75.1

3 [E

2]

0.33

206.

17 E

1 5

4172.

37 [

E1]

0.

068

707.

54 [

E1]

0.

45

723.

45 [

E2]

0.

015

782.

77 [

E1]

0.

44

913.

69

0.07

5

1025

.02

0.0

30696.

88

0.02

3

853.

78

0.08

0

869.

6 0

.065

929.

47

0.07

0

1060

.33

0.4

6

1171

.69

0.2

5

982.

90

0.03

6

1114

.26

0.0

37

1225

.24

0.0

14

963.

61

0.07

0

1153

.87

0.2

7

1068

.08

0.0

22

1043

.60

0.0

32

1249

.1

0.02

0

1133

.61

0.0

37

231.

67 [

D,E

2]

0.07

377.

64 [

E1]

0.

061

1085

.20

0.2

3

1101

.09

0.2

5

1160

.52

0.0

36

1291

.61

0.0

24

1190

.4

0.01

15

1321

.65

0.1

35

268.

99

0.03

1

415.

05 [

E1]

0.

016

966.

24

0.03

5

1122

.41

0.0

60

1138

.47

0.1

50

1197

.99

0.0

45

474.

45

0.04

0

1182

.05

0.0

34

1257

.5

0.01

3

1388

.5

0.03

0

1238

.60

0.0

27

1254

.4

0.00

70

1445

.2

0.01

9

1556

.5

0.01

6

1377

.4

0.04

0

1508

.7

0.00

95

619.

95

0.03

6

1327

.58

0.1

15

1343

.3

0.01

20

1402

.5

0.03

1

1534

.1

0.02

0

351.

75 [

M1,

E2]

0.

024

1280

.99

0.0

12

1436

.4

0.03

6

1453

.4

0.01

6

1643

.9

0.01

5

1579

.4

0.01

6

196.

31 [

D,E

2]

0.09

1599

.6

0.00

65

228

28Ra134

2 8 7 1

228

28Ra134–8 22

828Ra134–8NUCLEAR DATA SHEETS

226Th αααα Decay

Parent 226Th: E=0.0; Jπ=0+; T1/2=30.57 min 10 ; Q(g.s. )=6450.9 22 ; %α decay=100.

222Ra Levels

α γ ( t ) :

( 6 2 3 4 α ) ( c e 1 1 1 γ ) ( t ) T 1 / 2 ( 1 1 1 l e v e l ) = 0 . 5 2 n s 4 5

( α ) ( 2 4 0 γ ) ( t ) T 1 / 2 ( 2 4 2 l e v e l ) < 1 . 2 n s

( α ) ( 1 9 0 γ ) ( t ) T 1 / 2 ( 3 0 1 l e v e l ) < 1 . 4 n s

E(level) Jπ T1/2

0 . 0 0 + 3 8 . 0 s 5

1 1 1 . 1 2 2 2 + 0 . 5 2 n s 4

2 4 2 . 1 1 2 1 – < 1 . 2 n s

3 0 1 . 3 9 4 4 + < 1 . 4 n s

3 1 7 . 2 9 5 3 –

4 7 3 . 7 6 8 ( 5 – )

9 1 4 . 0 3 ( 0 + )

1 0 2 4 . 9 2 2 +

α radiations

See 1986Ch36, 1980Ka41, 1979Po23 for theoretical calculations of α–decay probabil it ies.

See 2010Wa31, 2009Wa01, 2009De32, 2009Ni06 and 2006Xu08 for calculation of branching ratio and half–lives. 2007Pe30,

2006Xu04, 2005Sh42, 2003Ba64, 2002Ba60, 2002Du16 for calculations of half–lives See 2005Bu38,199de51, 1996De19 for

calculation of alpha decay width.

Eα† E(level) Iα‡@ HF§ Comments

( 5 3 3 3 # 6 ) 1 0 2 4 . 9 0 . 0 0 0 1 7 4 4 . 0 1 0

( 5 4 4 2 # 6 ) 9 1 4 . 0 0 . 0 0 0 3 4 4 8 . 2 1 0

( 5 8 7 4 # 6 ) 4 7 3 . 7 6 0 . 0 0 0 2 3 2 2 . 2 × 1 0 3 2

6 0 2 8 5 3 1 7 . 2 9 0 . 2 0 6 9 1 3 . 9 7 Iα : 0.22% was measured by 1975VaZD.

6 0 4 0 5 3 0 1 . 3 9 0 . 1 8 7 1 1 1 8 . 1 1 1 Iα : 0.2% was measured by 1975VaZD.

6 0 9 9 5 2 4 2 . 1 1 1 . 2 6 5 5 . 0 2 Iα : the measured values are 1.7% (1956As38), 1.2% (1963Le17), 1.3% 2

(1975VaZD).

6 2 3 4 5 1 1 1 . 1 2 2 2 . 8 2 1 . 0 8 2 Iα : measurement of 1969Pe17. Other measured values: 19.0% 15 (1956As38),

20% (1961Ru06), 23.0% 23 (1975VaZD). 23.1% 16 from level scheme.

6 3 3 6 . 8 1 0 0 . 0 7 5 . 5 3 1 . 0 Iα : from sum of Iα ' s . Iα=75.3% 3 is recommended by 1991Ry01. The measured

intensities are 79% (1956As38), 78% (1961Ru06), 75% 8 (1975VaZD).

Iα=75.2 16 from Iγ ' s .

† The energies of α ' s to the g.s. and to the 111–keV level are given as recommended by 1991Ry01 from Eα measurements of 1956As38

and 1975VaZD. The energies measured by 1956As38 are increased 4.6 keV, the Eα (0) and Eα (111 level) measured by 1975VaZD are

decreased 0.4 keV and 6.1 keV, respectively, by 1991Ry01 because of changes in calibration energies. All other Eα ' s are

calculated by the evaluator from Eα (g.s . ) and E(level) .

‡ Deduced from level scheme, except for Iα (to g.s. ) and Iα (to 111 level) , as indicated.

§ HF(α to g.s. )=1.0 gives r0(222Ra)=1.5382 5 . T1/2(226Th)=30.57 min 10 , measured by 1987Mi10, and Q(α ) (226Th)=6450.9 22 of

1993Au05, 2011AuZZ are used in calculations. See 1990Bu30 for a semiclassical calculation of nuclear radius and for systematics

of T1/2(α ) and r0 values. See also 1977Ba70.

# α has not been observed.

@ Absolute intensity per 100 decays.

γ (222Ra)

γγ : see 1976Ku08, 1956As38.

αγ : see 1963Le17, 1969Pe17, 1969Br10.

αγ (θ ) : see 1971He19, 1954St02.

Eγ† E(level) Iγ‡& Mult. α

( 7 5 . 1 3 § 2 ) 3 1 7 . 2 9 3 . 2 × 1 0 – 5 # 8 [ E2 ] 3 7 . 5

Continued on next page (footnotes at end of table)

2 8 7 2

228

28Ra134–9 22

828Ra134–9NUCLEAR DATA SHEETS

226Th αααα Decay (continued)

γ (222Ra) (continued)

Eγ† E(level) Iγ‡& Mult. α Comments

1 1 1 . 1 2 3 1 1 1 . 1 2 3 . 2 9 2 0 E2 6 . 2 6 Iγ : 3.3% 2 was measured by 1969Pe17.

Mult. : Ice measurements: L12:L3:M23:N=

17.0 22 :11.6 19 :9.5 17 :3.2 7 (1967LoZZ); α (L2)=2.4 4 ,

α (L)=4.1 5 (1974Va28). Ice 's given here were normalized to

Ice(K)(230γ of 226Ac decay)=5.45. For absolute Ice 's per 100 α

decays, they should be multiplied by 0.269 18 .

α : 6.24 25 was deduced by 1969Pe17 from αγ data.

1 3 1 . 0 2 5 2 4 2 . 1 1 0 . 2 7 8 1 3 ( E1 ) 0 . 2 5 4 Mult. : no ce l ines were observed (1969Br10).

1 7 2 . 3 3 4 7 3 . 7 6 0 . 0 0 0 2 0 2 [ E1 ] 0 . 1 3 0 Transition was observed only in γγ–coincidence spectra.

1 9 0 . 3 0 5 3 0 1 . 3 9 0 . 1 0 9 6 E2 0 . 7 1 6 Mult. : from ce data of 1976Ku08 (measured ce intensities were not

given). Only E2 multipolarity yields an intensity balance at

the 301.42–keV level .

2 0 6 . 2 3 5 3 1 7 . 2 9 0 . 1 8 9 8 E1 0 . 0 8 4 7 Mult. : from ce data of 1976Ku08 (measured ce intensities were not

given). Only E1 multipolarity is consisted with the intensity

balance at the 317.35 level .

2 4 2 . 1 2 5 2 4 2 . 1 1 0 . 8 6 6 4 0 E1 0 . 0 5 8 0 Mult. : α (K)exp≈0.06 (estimated by the evaluator from the (α ) (ce)

spectrum shown by 1969Br10).

6 7 1 . 9 3 9 1 4 . 0 0 . 0 0 0 2 8 3

7 0 7 . 5 5 1 0 2 4 . 9 0 . 0 0 0 0 6@ 2

7 2 3 . 4 § 4 1 0 2 4 . 9 0 . 0 0 0 0 0 2 # 1

7 8 3 . 0 5 1 0 2 4 . 9 0 . 0 0 0 0 9@ 3

8 0 2 . 7 5 9 1 4 . 0 0 . 0 0 0 0 6 2

9 1 3 . 7 § 4 1 0 2 4 . 9 0 . 0 0 0 0 1 0 # 4

1 0 2 5 . 0 § 4 1 0 2 4 . 9 0 . 0 0 0 0 0 4 # 2

† From 1976Ku08. Other measurements: 1974Va28, 1969Br10, 1956Sm88, 1956As38.

‡ From 1976Ku08. Relative photon intensities were normalized by 1976Ku08 to I(324γ of 222Ra α decay)=2.77% (taken from 1969Pe17)

to obtain intensities per 100 α decays.

§ This γ was not observed in 226Th α decay; its energy is the adopted value from 222Fr β– decay.

# From relative branching deexciting the level , as measured in 222Fr β– decay.

@ Iγ (783γ ) /Iγ (707γ )=0.98 9 was measured in 222Fr β– decay.

& Absolute intensity per 100 decays.

0+ 0.0 30.57 min

%α=100229

60Th136

Qα=6450.922

0+ 0.0 38.0 s 1.075.56336.8

2+ 111.12 0.52 ns 1.0822.86234

1– 242.11 <1.2 ns 5.01.266099

4+ 301.39 <1.4 ns 18.10.1876040

3– 317.29 13.90.2066028

(5–) 473.76 2.2×1030.00023

(0+) 914.0 8.20.00034

2+ 1024.9 4.00.00017

HFIαEα

Decay Scheme

Intensities: I(γ+ce) per 100 decays by

this branch

111.

12 E

2 2

3.9

131.

02 (

E1)

0.

349

242.

12 E

1 0

.92

190.

30 E

2 0

.187

75.1

3 [E

2]

0.00

12

206.

23 E

1 0

.205

172.

3 [E

1]

0.00

0226

671.

9 0

.000

28

802.

7 0

.000

06

707.

5 0

.000

06

723.

4 0

.000

002

783.

0 0

.000

09

913.

7 0

.000

010

1025

.0

0.00

0004

228

28Ra134

2 8 7 3

228

28Ra134–10 22

828Ra134–10NUCLEAR DATA SHEETS

232Th(136Xe,X γγγγ) 1999Co02

E=833 MeV. Measured Eγ , Iγ , γγγ using GAMMASPHERE array of 73 HP Ge detectors (1999Co02). Others (same group):

1998Bu17, 1997Co08, 1997Co14.

Weighted mean of intrinsic electric dipole moment/intrinsic electric quadrupole moment=4.02 11 extracted from

B(E1)/B(E2) (2007Co08).

222Ra Levels

E(level) Jπ

0 . 0 † 0 +

1 1 1 . 2 0 † 2 0 2 +

2 4 2 . 2 ‡ 8 1 –

3 0 1 . 9 † 3 4 +

3 1 7 . 3 ‡ 1 1 3 –

4 7 4 . 0 ‡ 5 ( 5 – )

5 5 0 . 3 † 4 ( 6 + )

E(level) Jπ

7 0 3 . 2 ‡ 4 ( 7 – )

8 4 3 . 3 † 4 ( 8 + )

9 9 2 . 4 ‡ 5 ( 9 – )

1 1 7 3 . 3 † 5 ( 1 0 + )

1 3 3 0 . 8 ‡ 6 ( 1 1 – )

1 5 3 7 . 2 † 6 ( 1 2 + )

1 7 1 0 . 3 ‡ 6 ( 1 3 – )

E(level) Jπ

1 9 3 3 . 2 † 7 ( 1 4 + )

2 1 2 5 . 3 ‡ 7 ( 1 5 – )

2 3 5 8 . 7 † 8 ( 1 6 + )

2 5 7 0 . 1 ‡ 8 ( 1 7 – )

2 8 1 1 . 0 † 1 0 ( 1 8 + )

3 0 4 0 . 9 ‡ 1 0 ( 1 9 – )

3 2 8 7 . 7 † 1 1 ( 2 0 + )

† (A): g.s . Band.

‡ (B): Octupole–vibrational Band.

γ (222Ra)

Eγ E(level) Iγ Mult. I(γ+ce)

1 1 1 . 2 2 1 1 1 . 2 0 2 8 1 2 E2 2 0 5 9 1

1 3 1 . 0 2 † 2 4 2 . 2

1 4 0 . 1 2 8 4 3 . 3 6 6 1 2 E1 8 0 1 4

1 4 9 . 3 5 9 9 2 . 4 5 0 8 E1 5 8 1 0

1 5 3 . 1 5 7 0 3 . 2 7 2 2 3 E1 8 4 2 7

1 5 7 . 4 5 1 3 3 0 . 8 2 7 4 E1 3 1 4

1 7 2 . 2 5 4 7 4 . 0

1 7 3 . 1 5 1 7 1 0 . 3 2 8 4 E1 3 2 5

1 8 0 . 9 2 1 1 7 3 . 3 5 7 1 3 E1 6 4 1 5

1 9 0 . 7 2 3 0 1 . 9 1 0 0 1 9 E2 1 7 1 3 2

1 9 2 . 1 5 2 1 2 5 . 3 2 3 1 0 E1 2 5 1 1

2 0 6 . 1 5 † 3 1 7 . 3

2 0 6 . 2 5 1 5 3 7 . 2 2 7 5 E1 3 0 6

2 1 1 . 4 5 2 5 7 0 . 1

2 2 9 . 3 5 7 0 3 . 2 1 3 4 E2 1 8 5

Eγ E(level) Iγ Mult. I(γ+ce)

2 4 2 . 1 2 † 2 4 2 . 2

2 4 8 . 4 2 5 5 0 . 3 8 6 1 7 E2 1 1 0 2 1

2 8 9 . 0 5 9 9 2 . 4 4 4 5 E2 5 2 6

2 9 2 . 9 2 8 4 3 . 3 6 1 5 E2 7 2 6

3 3 0 . 1 2 1 1 7 3 . 3 4 3 4 E2 4 9 5

3 3 8 . 3 5 1 3 3 0 . 8 4 2 4 E2 4 6 6

3 6 3 . 9 5 1 5 3 7 . 2 4 2 4 E2 4 6 4

3 7 9 . 6 5 1 7 1 0 . 3 3 4 3 E2 3 6 4

3 9 6 . 0 5 1 9 3 3 . 2 3 0 4 E2 3 2 4

4 1 5 . 0 5 2 1 2 5 . 3 3 4 4 E2 3 5 4

4 2 5 . 5 5 2 3 5 8 . 7 2 4 4 E2 2 5 4

4 4 4 . 8 5 2 5 7 0 . 1 3 2 6 E2 3 4 6

4 5 2 . 3 5 2 8 1 1 . 0 1 7 4 E2 1 7 4

4 7 0 . 8 5 3 0 4 0 . 9 1 5 4 E2 1 6 4

4 7 6 . 7 5 3 2 8 7 . 7 1 0 4 E2 1 1 4

† Not observed by 1999Co02 but taken from adopted gammas.

2 8 7 4

228

29Ac133

228

29Ac133NUCLEAR DATA SHEETS

Adopted Levels

Q(β–)=–582 13 ; S(n)=5970 50 ; S(p)=3631 7 ; Q(α )=7137.4 20 2003Au03,2011AuZZ.

222Ac Levels

E(level) Jπ T1/2 Comments

0 . 0 1 – 5 . 0 s 5 %α=99 1 ; %ε+%β+=1 1 .

Possible ε branching was estimated by 1966Wa23 as 1 to 2% from Iα (7.13–MeV a) of 218Rn shown in 222Ac α spectrum by 1964Mc21.

Jπ : favored α decay (HF=2.6) to 1– g.s. of 218Fr.

T1/2: from measured values of 5.5 s 5 (1952Me13) and 4.2 s 5 (1958To25). Other measurement: 5 s 1

(1972Es03).

Assignment: daughter 226Pa (1952Me13,1964Mc21,1968Ha14).

See 2004Ho12 for predictions of cluster decay.

0 . 0 + x 6 3 s 3 %α≥88; %IT≤10; 0.7≤%ε+%β+≤2 (1972Es03).

%IT was deduced by 1972Es03 from ratio of Iα ' s of 5–s 222Ac and 63–s 222Ac.

%ε+%β+ was deduced by 1972Es03 from the intensities of α ' s from 218Rn, 214Po and 63–s 222Ac.

E(level) : x=E(level in 218Fr fed by 7000α of 63–s isomer)–(14 21 ) , deduced from Eα=7013 2 and

7000 20 of 5.0–s and 63–s state α decay, respectively.

T1/2: from measured values of 66 s 3 (1972Es03), 62 s 5 (1973Mo07), 60 s 4 (1982Bo04).

Assignment: Pb(18O,pxn) excit (1972Es03); parent of 218Fr (7870α ) , parent of 214At (8810α ) , parent

of 218Rn (7130α ) , parent of 5–s 222Ac (1972Es03).

On the basis of measured production cross–section ratio, 1972Es03 suggested that the 63–s isomeric

state has higher spin than the spin of 5.0–s g.s.

4 1 1 4 Level seen in 226Pa α decay.

1 3 7 1 4 Level seen in 226Pa α decay.

226Pa αααα Decay

Parent 226Pa: E=0.0; Jπ=?; T1/2=1.8 min 2 ; Q(g.s. )=6987 10 ; %α decay=74 5 .

For a review of α decay from oriented nuclei , see 1992Wo14.

222Ac Levels

E(level) Jπ

0 . 0 1 –

4 1 1 4

1 3 7 1 4

α radiations

Eα† E(level) Iα‡# HF§

6 7 2 9 1 0 1 3 7 1 9 1 1 4

6 8 2 4 1 0 4 1 4 6 4 . 7 7

6 8 6 4 1 0 0 . 0 5 2 6 . 0 9

† Measured by 1964Mc21. Original energies have been increased by 6 keV because of a change in the calibration energy of the 227Pa

α from 6460 to 6465.8 3 , recommended by 1991Ry01. Other measurements: 1951Me10, 1968Ha14, 1988Hu08.

‡ From 1964Mc21.

§ r0(222Ac)=1.536 4 is used in calculations.

# For α intensity per 100 decays, multiply by 0.74 5 .

2 8 7 5

229

20Th132–1 22

920Th132–1NUCLEAR DATA SHEETS

Adopted Levels, Gammas

Q(β–)=–4910 SY ; S(n)=7806 15 ; S(p)=4610 50 ; Q(α )=8127 5 2003Au03,2011AuZZ.

Estimated: ΔQ(β–)=70 (2003Au03,2011AuZZ).

See 1982Du16, 1982Le19, 1983Ro14, 1984Na22, 1988So08, 1989Eg02 for calculations of equil ibrium deformations and

discussions of deformation parameters.

See 1987Na10, 1985Na07, 1984Fr06 and 1984Na08 for studies on the shapes of the rotating nuclei .

See 2010Gu18 for microscopic description of nuclear shape evolution from spherical to octupole–deformation.

See 2009Qi07 for predictions of 14C cluster decay using universal decay law.

See 1991Bu10 for theoretical calculations of intrinsic–dipole moments by including β (2) – β (8) deformations which

were taken from 1988So08. Using the ground–state deformation parameters of 1984Na22, the macroscopic dipole moment

was calculated by 1986Do03. See also 2004Ad15, 2003Ad32.

Theoretical values of the reduced dipole and quadrupole transition probabil it ies were calculated, and their ratios

were compared with experimental ratios by 1995De13, 1993Dz01, 1988Ot02, 1987Ka37, 1987Na10, 1986Le05.

The level energies of the g.s. band up to the 26+ state and of the octupole–vibrational band up to the 25– state

were calculated by 1995De13 by considering higher order of deformations. See 1995De13 for calculations,

discussions and comparison with experiments. See also 1988Na08, 1988Ot02, 2005Za02, 2003Sh02, 2001Za04, 2001Za09,

1999Jo17.

The changes in calculated binding energies due to varying the 26 pole deformation parameters were studied by

1986Ch23.

Possible decay by 26Ne emission was studied and partial half–li fe relative to α decay half–li fe was calculated by

1990Sh01.

222Th Levels

The Kπ=0+ g.s. band and the Kπ=0– band at 467.0 keV have been interpreted as octupole parity–doublet bands. This

nucleus l ies in the left part of the octupole deformation defined by the spin systematics for octupole shapes

(1990Ja11).

Cross Reference (XREF) Flags

A 226U α Decay

B (HI,xnγ )

E(level) Jπ† XREF T1/2‡ Comments

0 . 0 § 0 + AB 2 . 8 ms 3 %α=100.

Branching: only α decay has been observed.

%ε<1.3×10–8 from log f t>5.9 for an ε branch to g.s.

T1/2: from 1970Va13. Other measurements: 4 ms 1 (1970To07), 2.6 ms 6 (1990AnZU), 2.2

ms 2 (1991AnZZ).

1 8 3 . 3 § 2 + AB 2 4 0 p s 2 0

4 3 9 . 8 § 4 + B 4 6 p s 6

4 6 7 . 0 # 3 – B

6 5 1 . 0 # 5 – B

7 5 0 . 0 § 6 + B ≤ 4 5 p s

9 2 3 . 5 # 7 – B

1 0 9 3 . 5 § 8 + B

1 2 5 5 . 3 # 9 – B

1 4 6 1 . 1 § 1 0 + B

1 6 2 2 . 6 # 1 1 – B

1 8 5 0 . 7 § 1 2 + B

2 0 1 5 . 5 # 1 3 – B

2 2 5 9 . 7 § 1 4 + B

2 4 3 1 . 9 # 1 5 – B

2 6 8 7 . 8 § 1 6 + B

2 8 7 3 . 0 # 1 7 – B

3 1 3 3 . 5 § 1 8 + B

3 3 4 0 . 7 # 1 9 – B

3 5 9 6 . 0 § 2 0 + B

3 8 3 5 . 5 # 2 1 – B

4 0 7 7 . 6 § 2 2 + B

4 3 4 9 . 5 # 2 3 – B

4 5 7 7 . 9 § 2 4 + B

4 8 8 2 . 5 ? # ( 2 5 – ) B

5 0 9 7 . 9 ? § ( 2 6 + ) B

† All excited state properties are from (HI,xnγ ) reaction data. Jπ are based upon γ multipolarities and fits to rotational bands.

‡ The excited state half–lives were measured by 1985Bo32. See (HI,xnγ ) reaction section.

§ (A): Kπ=0+ g.s. band.

# (B): Kπ=0– octupole–vibrational band.

2 8 7 6

229

20Th132–2 22

920Th132–2NUCLEAR DATA SHEETS

Adopted Levels, Gammas (continued)

γ (222Th)

E(level) Eγ† Mult.‡ α I(γ+ce)§ Comments

1 8 3 . 3 1 8 3 . 3 E2 0 . 9 3 1 B(E2)(W.u.)=74 7 .

4 3 9 . 8 2 5 6 . 5 E2 0 . 2 8 3 B(E2)(W.u.)=108 15 .

4 6 7 . 0 2 8 3 . 7

6 5 1 . 0 2 1 1 . 2 E1 0 . 0 8 3 6

7 5 0 . 0 9 9 . 1 ( E1 ) 0 . 1 2 2 7 1 . 6 B(E1)(W.u.)≥0.0015.

3 1 0 . 2 E2 0 . 1 5 5 1 0 0 B(E2)(W.u.)≥27.

9 2 3 . 5 1 7 3 . 3 E1 0 . 1 3 4 1 0 0

2 7 2 . 5 ( E2 ) 0 . 2 3 2 8 . 7

1 0 9 3 . 5 1 7 0 . 4 E1 0 . 1 4 0 1 0 0

3 4 3 . 5 E2 0 . 1 1 5 2 6 . 3

1 2 5 5 . 3 1 6 1 . 2 E1 0 . 1 6 0 1 0 0

3 3 1 . 8 E2 0 . 1 2 7 3 1 . 8

1 4 6 1 . 1 2 0 6 . 4 E1 0 . 0 8 8 1 0 0

3 6 7 . 6 E2 0 . 0 9 5 1 8 . 3

1 6 2 2 . 6 1 6 0 . 9 ( E1 ) 0 . 1 6 0 1 0 0

3 6 7 . 3 E2 0 . 0 9 5 4 3 . 1

1 8 5 0 . 7 2 2 8 . 5 E1 0 . 0 7 0 0 1 0 0

3 8 9 . 6 E2 0 . 0 8 1 3 2 6 . 5

2 0 1 5 . 5 1 6 4 . 6 E1 0 . 1 5 2 1 0 0

3 9 2 . 9 E2 0 . 0 7 9 5 4 7 . 5

2 2 5 9 . 7 2 4 4 . 3 E1 0 . 0 5 9 7 1 0 0

4 0 9 . 0 E2 0 . 0 7 1 5 1 5 . 3

2 4 3 1 . 9 1 7 2 . 0 ( E1 ) 0 . 1 3 7 1 0 0

4 1 6 . 4 E2 0 . 0 6 8 3 7 3 . 8

2 6 8 7 . 8 2 5 6 . 1 E1 0 . 0 5 3 6 1 0 0

4 2 8 . 1 E2 0 . 0 6 3 6 6 0

2 8 7 3 . 0 1 8 5 . 0 ( E1 ) 0 . 1 1 5 1 0 0

4 4 1 . 1 E2 0 . 0 5 8 9 8 3 . 5

3 1 3 3 . 5 2 6 0 . 2 1 0 0

4 4 5 . 7 2 8 . 2

3 3 4 0 . 7 2 0 7 . 5 1 0 0

4 6 7 . 7 5 4 . 0

3 5 9 6 . 0 2 5 5 1 0 0

4 6 2 . 5 E2 0 . 0 5 2 4 4 0 . 0

3 8 3 5 . 5 2 3 9 . 2 1 0 0

4 9 4 . 8 3 3 . 3

4 0 7 7 . 6 2 4 3 1 0 0

4 8 1 . 6 6 5 . 0

4 3 4 9 . 5 2 7 3

5 1 4

4 5 7 7 . 9 2 2 8 ≈ 1 1 0

5 0 0 . 3 1 0 0

4 8 8 2 . 5 ? 3 0 4 #

5 3 3 . 3

5 0 9 7 . 9 ? 2 1 7 #

5 2 0 . 0

† From (HI,xnγ ) data.

‡ All γ properties are from (HI,xnγ ) reaction data.

§ Relative transition intensity deexciting each level .

# Placement of transition in the level scheme is uncertain.

(A) Kπ=0+ g.s. band

(B) Kπ=0- octupole-vibrational band

0.00+

183.32+

439.84+

750.06+

1093.58+

1461.110+

1850.712+

2259.714+

2687.816+

3133.518+

3596.020+

4077.622+

4577.924+

5097.9(26+)

183

256

310

344

368

390

409

428

446

462

482

500

520

467.03-

651.05-

923.57-

1255.39-

1622.611-

2015.513-

2431.915-

2873.017-

3340.719-

3835.521-

4349.523-

4882.5(25-)

272

332

367

393

416

441

468

495

514

533

222

90Th132

2 8 7 7

229

20Th132–3 22

920Th132–3NUCLEAR DATA SHEETS

2 8 7 8

229

20Th132–4 22

920Th132–4NUCLEAR DATA SHEETS

226U αααα Decay

Parent 226U: E=0.0; Jπ=0+; T1/2=0.35 s 15 ; Q(g.s. )=7715 14 ; %α decay=100.

T1/2(226U)=0.20 s 5 was measured by 1990An22,0.5 s 2 by 1973Vi10, 0.281 s 9 by 2000He17, 0.260 s 20 by 2001Ku07,

0.260 s 10 by 1999Gr28.

See 2009Ni06, 2009Ro06, 2008Sa40, 2007Pe30, for calculations of alpha decay half–lives.

%α (226U)=100 is adopted in 1996Ak02. From the gross β– decay calculations of 1973Ta30, the ε decay branch is

estimated to be %ε<0.05.

1997Mo25 calculated the partial half–li fe of 226U β+ decay as >100 s.

Q(α ) (226U)=7701 4 is recommended by 2003Au03, 2011AUZZ.

222Th Levels

E(level) Jπ

0 . 0 † 0 +

1 8 3 . 3 † 2 +

† (A): K=0+ g.s. band.

α radiations

Eα† E(level) Iᆧ HF‡

7 3 8 7 7 1 8 3 . 3 1 5 5 1 . 4 8

7 5 6 6 4 0 . 0 8 5 1 1 1 . 0

† Measurement by 2001Ku07. Others: 1999Gr28, 2000He17.

‡ r0(222Th)=1.628 23 is used in calculations. The calculated radius parameters by

using various half–lives are r0=1.506 23 for T1/2=0.5 s 2 , r0=1.548 20 for T1/2=0.20

s 5 , and r0=1.543 22 for T1/2=0.22 8 (the weighted average of 0.5 s 2 and 0.20 s 2 ) .

§ Absolute intensity per 100 decays.

(HI,xn γγγγ)

208Pb(18O,4nγ ) , 208Pb(17O,3nγ ) pulsed beams, E≈95 MeV (1983Wa20).

208Pb(18O,4nγ ) , E=88–96 MeV (1985Bo32).

208Pb(18O,4nγ ) , E=95 MeV (1987KoZF).

208Pb(18O,4nγ ) E=94 MeV (1988ScZN,1988HaZJ).

208Pb(18O,4n) E=95 MeV (1996Bu53,1997Jo15).

208Pb(18O,4n) E=95 MeV (1995Sm06).

γγ , γ (θ ) : 1983Wa20, 1985Bo32.

From the experimental B(E1)/B(E2) ratios which were calculated from the γ intensities, the octupole deformation of

0.25 was inferred by 1986Sc18. Numerous theoretical calculations have been done for the deformation parameters of

the ground state and high–spin states. See the adopted levels for the references. See 1996Bu53 and 1997Jo15 for

study of yrast transition upto 12+ using using sacred array for conversion electron spectroscopy. See also

1997Ju03, 1996Bu26.

1995Sm06 observed shape transition at spin (24+). These results are consistent with the theoretical predictions of

1987Na10.

222Th Levels

E(level) Jπ‡ T1/2†

0 . 0 § 0 +

1 8 3 . 3 § 2 + 2 4 0 p s 2 0

4 3 9 . 8 § 4 + 4 6 p s 6

4 6 7 . 0 # 3 –

6 5 1 . 0 # 5 –

7 5 0 . 0 § 6 + ≤ 4 5 p s

9 2 3 . 5 # 7 –

1 0 9 3 . 5 § 8 +

1 2 5 5 . 3 # 9 –

E(level) Jπ‡

1 4 6 1 . 1 § 1 0 +

1 6 2 2 . 6 # 1 1 –

1 8 5 0 . 7 § 1 2 +

2 0 1 5 . 5 # 1 3 –

2 2 5 9 . 7 § 1 4 +

2 4 3 1 . 9 # 1 5 –

2 6 8 7 . 8 § 1 6 +

2 8 7 3 . 0 # 1 7 –

3 1 3 3 . 5 § 1 8 +

E(level) Jπ‡

3 3 4 0 . 7 # 1 9 –

3 5 9 6 . 0 § 2 0 +

3 8 3 5 . 5 # 2 1 –

4 0 7 7 . 6 § 2 2 +

4 3 4 9 . 5 # 2 3 –

4 5 7 7 . 9 § 2 4 +

4 8 8 2 . 5 ? # ( 2 5 – )

5 0 9 7 . 9 ? § ( 2 6 + )

† Measured by 1985Bo32 by recoil shadow method.

‡ From 1983Wa20, 1985Bo32 and 1988HaZJ.

§ (A): K=0 g.s. band.

# (B): K=0 octupole vibrational band.

2 8 7 9

229

20Th132–5 22

920Th132–5NUCLEAR DATA SHEETS

(HI,xn γγγγ) (continued)

γ (222Th)

Eγ† E(level) Mult.§ α I(γ+ce)‡

9 9 . 1 7 5 0 . 0 ( E1 ) 0 . 1 2 2 3 3 . 0

x 1 3 1 . 2 # E1 0 . 2 6 1 7@ 1

x 1 4 4 . 9 # E1 0 . 2 0 6 7@ 1

1 6 0 . 9 1 6 2 2 . 6 E1 0 . 1 6 0 2 9

1 6 1 . 2 1 2 5 5 . 3 E1 0 . 1 6 0 5 0

1 6 4 . 6 2 0 1 5 . 5 E1 0 . 1 5 2 2 2 . 1

1 7 0 . 4 1 0 9 3 . 5 E1 0 . 1 4 0 5 9 . 4

1 7 2 . 0 2 4 3 1 . 9 ( E1 ) 0 . 1 3 7 1 4 . 5

1 7 3 . 3 9 2 3 . 5 E1 0 . 1 3 4 6 8 . 6

1 8 3 . 3 1 8 3 . 3 E2 0 . 9 3 1 1 0 0

1 8 5 . 0 2 8 7 3 . 0 ( E1 ) 0 . 1 1 5 7 . 9

x 1 9 9 . 6 # E1 0 . 0 9 6 4@ 1

2 0 6 . 4 1 4 6 1 . 1 E1 0 . 0 8 8 4 7

2 0 7 . 5 3 3 4 0 . 7 [ E1 ] 0 . 0 8 7 5

2 1 1 . 2 6 5 1 . 0 E1 0 . 0 8 3 6 6 5 . 7

2 1 7 a 5 0 9 7 . 9 ?

2 2 8 4 5 7 7 . 9 [ E1 ] 0 . 0 7 0 0 ≈ 1

2 2 8 . 5 1 8 5 0 . 7 E1 0 . 0 7 0 0 2 3

x 2 3 1 . 8 # E1 0 . 0 6 7 4 4@ 1

2 3 9 . 2 3 8 3 5 . 5 [ E1 ] 0 . 0 6 2 7 3

2 4 3 4 0 7 7 . 6 [ E1 ] 0 . 0 6 0 4 2

2 4 4 . 3 2 2 5 9 . 7 E1 0 . 0 5 9 7 1 7

x 2 5 1 . 0 # E2 0 . 3 0 4 2 3@ 2

2 5 5 3 5 9 6 . 0 [ E1 ] 0 . 0 5 4 1 4

2 5 6 . 1 2 6 8 7 . 8 E1 0 . 0 5 3 6 1 0

2 5 6 . 5 4 3 9 . 8 E2 0 . 2 8 3 1 1 8

2 6 0 . 2 3 1 3 3 . 5 [ E1 ] 0 . 0 5 1 7 7 . 8

2 7 2 . 5 9 2 3 . 5 ( E2 ) 0 . 2 3 2 6 . 0

Eγ† E(level) Mult.§ α I(γ+ce)‡

2 7 3 4 3 4 9 . 5 [ E1 ] 0 . 0 4 6 4 ≈ 1

2 8 3 . 7 4 6 7 . 0 5 . 0

x 2 9 5 . 5 # 5@ 1

3 0 4 a 4 8 8 2 . 5 ?

3 1 0 . 2 7 5 0 . 0 E2 0 . 1 5 5 4 6 . 1

x 3 2 1 . 9 # E2 0 . 1 3 9 6@ 1

3 3 1 . 8 1 2 5 5 . 3 E2 0 . 1 2 7 1 5 . 9

3 4 3 . 5 1 0 9 3 . 5 E2 0 . 1 1 5 1 5 . 6

3 6 7 . 3 1 6 2 2 . 6 E2 0 . 0 9 5 1 2 . 5

3 6 7 . 6 1 4 6 1 . 1 E2 0 . 0 9 5 8 . 6

3 8 9 . 6 1 8 5 0 . 7 E2 0 . 0 8 1 3 6 . 1

3 9 2 . 9 2 0 1 5 . 5 E2 0 . 0 7 9 5 1 0 . 5

4 0 9 . 0 2 2 5 9 . 7 E2 0 . 0 7 1 5 2 . 6

4 1 6 . 4 2 4 3 1 . 9 E2 0 . 0 6 8 3 1 0 . 7

x 4 2 3 . 3 # E2 0 . 0 6 5 4 8@ 1

4 2 8 . 1 2 6 8 7 . 8 E2 0 . 0 6 3 6 6 . 0

4 4 1 . 1 2 8 7 3 . 0 E2 0 . 0 5 8 9 6 . 6

4 4 5 . 7 3 1 3 3 . 5 [ E2 ] 0 . 0 5 7 4 2 . 2

4 6 2 . 5 3 5 9 6 . 0 E2 0 . 0 5 2 4 1 . 6

4 6 7 . 7 3 3 4 0 . 7 [ E2 ] 0 . 0 5 1 0 2 . 7

4 8 1 . 6 4 0 7 7 . 6 [ E2 ] 0 . 0 4 7 4 1 . 3

x 4 8 5 . 8 # E2 0 . 0 4 6 5 3@ 1

4 9 4 . 8 3 8 3 5 . 5 [ E2 ] 0 . 0 4 4 5 1 . 1

5 0 0 . 3 4 5 7 7 . 9 [ E2 ] 0 . 0 4 3 1 0 . 9

5 1 4 4 3 4 9 . 5 [ E2 ] 0 . 0 4 0 4

5 2 0 . 0 5 0 9 7 . 9 ? [ E2 ] 0 . 0 3 9 3 0 . 7

5 3 3 . 3 4 8 8 2 . 5 ? [ E2 ] 0 . 0 3 7 1 0 . 8

† Excellent agreement among the energies measured by 1983Wa20, 1985Bo32 and 1988HaZJ. Eγ ' s of 1988HaZJ are given, except for

those transitions not placed on the level scheme. See also 1984Bu38 and 1987KoZF.

‡ Relative transition intensities, as shown by 1988HaZJ on their level scheme, are given, except where noted. The intensities are

normalized to I(γ+ce)(183.3γ )=100.

§ From ce work of 1985Bo32 and γ (θ ) measurements of 1983Wa20. Multipolarities in square brackets are from the level scheme.

# From 1985Bo32. In the authors ' later work, 1988HaZJ, although some additional γ ' s with lower intensities were placed on the

level scheme, these unplaced γ ' s are not mentioned. It is not clear whether or not their assignments to the 222Th level scheme

should be considered questionable.

@ From 1985Bo32.

a Placement of transition in the level scheme is uncertain.

x γ ray not placed in level scheme.

2 8 8 0

229

21Pa131

229

21Pa131NUCLEAR DATA SHEETS

Adopted Levels

Q(β–)=–2180 SY ; S(n)=6340 SY ; S(p)=2110 SY ; Q(α )=8850 SY 2003Au03,2011AuZZ.

Estimated ΔQ(β–)=120 ΔS(n)=90, ΔS(p)=70,ΔQ(α )=50 (2003Au03,2011AuZZ).

Assignment: 209Bi(16O,3n), 206Pb(19F,3n), excit (1970Bo13); 184W(40Ar,Pn) E=165–202 MeV, excit (1979Sc09); parent of

218Ac (9210α ) (1970Bo13,1979Sc09); parent of 214Fr (8430α ) (1979Sc09). See 1999Bo52 for production cross–section

measurements.

222Pa Levels

E(level) T1/2 Comments

0 . 0 2 . 9 ms + 6 – 4 %α=100.

Branching: only α decay was observed.

%ε+%β+≈4×10–4 from gross β– decay calculations (1973Ta30).

See 1985Po14 for calculation of heavy–ion emission probabil it ies.

T1/2: from 1979Sc09. Other measurement: 5.7 ms 5 (1970Bo13).

0 + x †

6 0 + x † 3 0

† Level was observed in 226Np α decay.

226Np αααα Decay

Parent 226Np: E=0.0; Jπ=?; T1/2=35 ms 10 ; Q(g.s. )=8200 50 ; %α decay=100.

226Np–%α decay: Only α decay of 226Np was observed.

Q(α ) (226Np)=8205 20+E(level in 222Pa populated by the 8060α ) . 2003Au03, 2011AuZZ give Q(α ) (226Np)=8200 50 .

T1/2(226Np)=31 ms 8 , measured by 1990Ni05.

222Pa Levels

E(level)

0 . 0 + x

6 0 + x 3 0

α radiations

Eα† E(level) Iα‡# HF§

8 0 0 0 2 0 6 0 + x 5 0 1 5 1 . 9 9

8 0 6 0 2 0 0 . 0 + x 5 0 1 5 2 . 9 1 3

† Measurement by 1993AnZS. Only one α group at 8044 20 was observed by 1990Ni05.

‡ α intensity per 100 α decay, measured by 1993AnZS.

§ r0(222Pa)=1.53 2 is used in calculations.

# Absolute intensity per 100 decays.

2 8 8 1

229

22U130

229

22U130NUCLEAR DATA SHEETS

Adopted Levels

S(n)=8360 SY ; S(p)=3370 SY ; Q(α )=9500 SY 2003Au03,2011AuZZ.

Estimated ΔS(n)=140, ΔS(p)=110, ΔQ(α )=100 (2003Au03,2011AuZZ).

calculation of ground state alpha decay half–li fe: 2001Mo07, 2007Pe30, 2009Ni06.

Assignment: natural W(40Ar,xn) E=180 MeV; products were separated from the primary beam by the velocity f i lter;

parent of 214Ra (7.16–MeV α ) (1983Hi12).

see 1988So08, 1984Na22 and 1982Le19 for calculation of nuclear–potential minimum and equilibrium deformations.

222U Levels

E(level) Jπ T1/2 Comments

0 . 0 0 + 1 . 0 μ s + 1 2 – 4 %α=100.

%ε+%β+<1×10–6 from gross β– decay calculations (1973Ta30).

Only α decay was observed.

T1/2: from 1983Hi12. α peak observed at 12.08 MeV was interpreted as the superposition of 222U and 218Th (T1/2=122 ns) decays. The half–li fe of 1.0 μs was calculated from correlated

7.16–MeV (of granddaughter 214Ra) and 12.08–MeV α–peak rates. The r0(218Th) parameter

deduced from HF(α to g.s. from 222U)=1.0 by using Q(α ) (222U)=9500 100 , Iα (to g.s. )=80% 20

and T1/2(α )=1.0 μs +10–4 is consistent with the local systematics.

2 8 8 2

NUCLEAR DATA SHEETS

REFERENCES FOR A= 2 2 2

1 9 4 8 S t 4 2 M.H.Studier, E.K.Hyde – Phys.Rev. 74, 591 (1948)

1 9 4 9R o 0 8 S.Rosenblum, M.Guillot , G.Bastin–Scoffier – Compt.Rend. 229, 191 (1949)

1 9 5 0Hy 2 0 E.K.Hyde, A.Ghiorso – UCRL–593 (1950)

1 9 5 1C o 1 5 J.M.Cork, C.E.Branyan, A.E.Stoddard, H.B.Keller, J.M.LeBlanc, W.J.Childs – Phys.Rev. 83, 681 (1951)

1 9 5 1Me 1 0 W.W.Meinke, A.Ghiorso, G.T.Seaborg – Phys.Rev. 81, 782 (1951)

1 9 5 1 T o 2 5 J.Tobailem – Compt.Rend. 233, 1360 (1951)

1 9 5 2Me 1 3 W.W.Meinke, A.Ghiorso, G.T.Seaborg – Phys.Rev. 85, 429 (1952)

1 9 5 3Ba 2 9 G.Bastin–Scoffier, J.Santana–Dionisio – Compt.Rend. 236, 1016 (1953)

1 9 5 4Mi 5 3 J.C.D.Milton, J.S.Fraser – Phys.Rev. 95, 628A (1954)

1 9 5 4R o 0 5 R.R.Roy, M.L.Goes – Compt.Rend. 238, 469 (1954)

1 9 5 4R o 0 6 R.R.Roy, M.L.Goes – Compt.Rend. 238, 581 (1954)

1 9 5 4 S t 0 2 F.Stephens,Jr. , F.Asaro, I .Perlman – Phys.Rev. 96, 1568 (1954)

1 9 5 5 J u 1 4 M.K.Juric, D.M.Stanojevic – Bull .Inst.Nuclear Sci . 'Boris Kidrich' 5, 15 (1955)

1 9 5 6A s 3 8 F.Asaro, I .Perlman – Phys.Rev. 104, 91 (1956)

1 9 5 6Ha 7 1 G.Harbottle, M.McKeown, G.Scharff–Goldhaber – Phys.Rev. 103, 1776 (1956)

1 9 5 6Ma 6 4 P.C.Marin – Brit .J.Appl.Phys. 7, 188 (1956)

1 9 5 6R o 3 1 J.Robert – J.Phys.Radium 17, 605 (1956)

1 9 5 6 Sm8 8 W.G.Smith, F.Asaro, J.M.Hollander – Phys.Rev. 104, 99 (1956)

1 9 5 8 Sh 6 9 N.S.Shimanskaia – Pribory i Tekh.Ekspt. No.2, 95 (1958); Instr.Exptl . Techniques No.2, 283 (1958)

1 9 5 8 T o 2 5 P.A.Tove – Arkiv Fysik 13, 549 (1958)

1 9 5 8Wa 1 6 R . J . W a l e n , G . B a s t i n – C o m p t . R e n d . C o n g r . I n t e r n . P h y s . N u c l . , P a r i s ( 1 9 5 8 ) , P . G u g e n b e r g e r , E d . , D u n o d , P a r i s , p . 9 1 0

(1959)

1 9 6 0B e 2 5 R.E.Bell , S.Bjornholm, J.C.Severiens – Kgl.Danske Videnskab.Selskab, Mat.–fys.Medd. 32, No.12 (1960)

1 9 6 0 S t 2 0 F.S.Stephens, F.Asaro, I .Perlman – Phys.Rev. 119, 796 (1960)

1 9 6 1 F o 0 8 R.Foucher – Thesis, University of Paris (1961)

1 9 6 1Ru 0 6 C.P.Ruiz – Thesis, Univ. California (1961); UCRL–9511 (1961)

1 9 6 3Ba 6 2 G.Bastin–Scoffier, C.F.Leang, R.J.Walen – J.Phys. 24, 854 (1963)

1 9 6 3Go 2 1 M.T.Goncalves – Compt.Rend. 257, 887 (1963)

1 9 6 3 L e 1 7 C.M.Lederer – Thesis, Univ.California (1963); UCRL–11028 (1963)

1 9 6 4Ew0 4 G.T.Ewan, A.J.Tavendale – Can.J.Phys. 42, 2286 (1964)

1 9 6 4Mc 2 1 J.D.McCoy – Soc.Sci .Fennica, Commentationes Phy.Math. 30, No.4 (1964)

1 9 6 6Wa 2 3 A.H.Wapstra, N.B.Gove – Nucl.Data B1, No.5 (1966)

1 9 6 7 L o Z Z W.Lourens – Thesis, Technische Hogeschool Delft (1967)

1 9 6 7Ma 5 1 H.Maria – Compt.Rend. 265B, 1138 (1967)

1 9 6 8B i 0 8 M.M.Biswas, B.K.Gupta, P.K.Sen, P.C.Bhattacharya – Z.Naturforsch. 23a, 1673 (1968)

1 9 6 8Ha 1 4 R.L.Hahn, M.F.Roche, K.S.Toth – Nucl.Phys. A113, 206 (1968)

1 9 6 9B r 1 0 J.–P.Briand, P.Chevall ier, A.Touati – Compt.Rend. 268B, 1105 (1969)

1 9 6 9G r 3 3 K . Y . G r o m o v , B . M . S a b i r o v , J . J . U r b a n e t s – I z v . A k a d . N a u k S S S R , S e r . F i z . 3 3 , 1 6 4 6 ( 1 9 6 9 ) ; B u l l . A c a d . S c i . U S S R , P h y s . S e r .

33, 1510 (1970)

1 9 6 9 L i 1 0 E.W.A.Lingeman, J.Konijn, P.Polak, A.H.Wapstra – Nucl.Phys. A133, 630 (1969)

1 9 6 9 P e 1 7 A.Peghaire – Nucl.Instr.Methods 75, 66 (1969)

1 9 6 9Wa 2 7 G.Wallace, G.E.Coote – Nucl.Instr.Methods 74, 353 (1969)

1 9 7 0B o 1 3 J.Borggreen, K.Valli , E.K.Hyde – Phys.Rev. C2, 1841 (1970)

1 9 7 0Mo 2 8 R.S.Mowatt – Can.J.Phys. 48, 2606 (1970)

1 9 7 0Ne 0 8 K.Neergard, P.Vogel – Nucl.Phys. A149, 217 (1970)

1 9 7 0O r 0 2 B.Orre, A.Linnfors, F.Falk, J.E.Thun, L.Johansson – Nucl.Phys. A148, 516 (1970)

1 9 7 0 T o 0 7 D.F.Torgerson, R.D.Macfarlane – Nucl.Phys. A149, 641 (1970)

1 9 7 0Va 1 3 K.Valli , E.K.Hyde, J.Borggreen – Phys.Rev. C1, 2115 (1970)

1 9 7 1G r 1 7 B.Grennberg, A.Rytz – Metrologia 7, 65 (1971)

1 9 7 1He 1 9 W.H.A.Hesselink, M.van Kampen – Z.Phys. 247, 161 (1971)

1 9 7 1 L o 1 9 W.Lourens, A.H.Wapstra – Z.Phys. 247, 147 (1971)

1 9 7 2Bu 3 3 D.K.Butt, A.R.Wilson – J.Phys.(London) A5, 1248 (1972)

1 9 7 2E s 0 3 K.Eskola – Phys.Rev. C5, 942 (1972)

1 9 7 3A f ZV V . P . A f a n a s e v , T s . V y l o v , N . A . G o l o v k o v , I . I . G r o m o v a , B . S . D z h e l e p o v , R . B . I v a n o v , A . K o l a c h k o v s k i , M . A . M i k h a i l o v ,

Yu.V.Norseev, V.G.Chumin – Symp.Nucl.Spectrosc.Nucl.Theory, 13th, Dubna, p.161 (1973); JINR–D6–7094 (1973)

1 9 7 3De 5 0 A.G.de Pinho, M.Weksler – Z.Naturforsch. 28a, 1635 (1973)

1 9 7 3Mo 0 7 D.Molzahn, R.Brandt – Phys.Rev. C7, 2596 (1973)

1 9 7 3 T a 3 0 K.Takahashi, M.Yamada, T.Kondoh – At.Data Nucl.Data Tables 12, 101 (1973)

1 9 7 3V i 1 0 V.E.Viola, Jr. , M.M.Minor, C.T.Roche – Nucl.Phys. A217, 372 (1973)

1 9 7 4A l ZT V.S.Aleksandrov, T.Vylov, T.M.Muminov, B.P.Osipenko – JINR–PL–7308 (1974)

1 9 7 4O r 0 2 B.Orre, L.O.Norlin, F.Falk, K.Johansson, T.Noreland, A.Arnesen – Phys.Lett. 51B, 39 (1974)

1 9 7 4Va 2 8 V . M . V a k h t e l , T . V y l o v , N . A . G o l o v k o v , B . S . D z h e l e p o v , R . B . I v a n o v , A . L y a t u s h i n s k i , M . A . M i k h a i l o v a , A . V . M o z z h u k h i n ,

V . O . S e r g e e v , V . G . C h u m i n – I z v . A k a d . N a u k S S S R , S e r . F i z . 3 8 , 1 6 3 9 ( 1 9 7 4 ) ; B u l l . A c a d . S c i . U S S R , P h y s . S e r . 3 8 , N o . 8 , 6 8

(1974)

1 9 7 5Ha 3 1 A.Hachem – C.R.Acad.Sci . , Ser.B 281, 45 (1975)

1 9 7 5Va ZD V . M . V a k h t e l , N . A . G a l o v k o v , B . S . D z h e l e p o v , R . B . I v a n o v , A . L y a t u s h i n s k i , M . A . M i k h a i l o v a , A . V . M o z z h u k h i n , V . G . C h u m i n –

Program and Theses, Proc.23rd Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei , Leningrad, p.156 (1975)

1 9 7 5We 2 3 L.Westgaard, K.Aleklett , G.Nyman, E.Roeckl – Z.Phys. A275, 127 (1975)

2 8 8 3

NUCLEAR DATA SHEETS

REFERENCES FOR A= 2 2 2 ( CONT I NUED )

1 9 7 6De 4 8 R.J.de Meijer, R.Braams – Ingenieur (The Hague) 88, 400 (1976)

1 9 7 6Ku 0 8 W . K u r c e w i c z , N . K a f f r e l l , N . T r a u t m a n n , A . P l o c h o c k i , J . Z y l i c z , K . S t r y c z n i e w i c z , I . Y u t l a n d o v – N u c l . P h y s . A 2 7 0 , 1 7 5

(1976)

1 9 7 6Va ZC V . M . V a k h t e l , T . V y l o v , N . A . G o l o v k o v , V . M . G o r o z h a n k i n , B . S . D z h e l e p o v , R . B . I v a n o v , M . A . M i k h a i l o v a , V . G . C h u m i n –

Program and Theses, 26th Ann.Conf.Nucl.Spectros. , Baku, p.134 (1976)

1 9 7 7Ba 7 0 M.K.Basu – Indian J.Phys. 51A, 15 (1977)

1 9 7 7 Z o 0 1 V.Zobel, J.Eberth, U.Eberth, E.Eube – Nucl.Instrum.Methods 141, 329 (1977)

1 9 7 8Ek 0 2 C.Ekstrom, S.Ingelman, G.Wannberg, M.Skarestad – Phys.Scr. 18, 51 (1978)

1 9 7 9 P o 2 3 D.N.Poenaru, M.Ivascu, A.Sandulescu – J.Phys.(Paris) , Lett. 40, L–465 (1979)

1 9 7 9 S c 0 9 K . – H . S c h m i d t , W . F a u s t , G . M u n z e n b e r g , H . – G . C l e r c , W . L a n g , K . P i e l e n z , D . V e r m e u l e n , H . W o h l f a r t h , H . E w a l d , K . G u t t n e r –

Nucl.Phys. A318, 253 (1979)

1 9 8 0Ka 4 1 S.G.Kadmensky, S.D.Kurgalin – Izv.Akad.Nauk SSSR, Ser.Fiz. 44, 1955 (1980)

1 9 8 0 Sh 0 7 R.K.Sheline – Phys.Rev. C21, 1660 (1980)

1 9 8 1Gy 0 3 A.Gyurkovich, A.Sobiczewski, B.Nerlo–Pomorska, K.Pomorski – Phys.Lett. 105B, 95 (1981)

1 9 8 1We 1 8 W.Westmeier – Nucl.Instrum.Methods 180, 205 (1981)

1 9 8 2Ak 0 3 H.Akcay, G.Mouze, D.Maillard, Ch.Ythier – Radiochem.Radioanal.Lett. 51, 1 (1982)

1 9 8 2B o 0 4 J.D.Bowman, R.E.Eppley, E.K.Hyde – Phys.Rev. C25, 941 (1982)

1 9 8 2Du 1 6 J.Dudek, W.Nazarewicz, Z.Szymanski – Phys.Rev. C26, 1708 (1982)

1 9 8 2 F a 1 0 M.A.Farouk, A.M.Al–Soraya – Nucl.Instrum.Methods 200, 593 (1982)

1 9 8 2 L e 1 9 G.A.Leander, R.K.Sheline, P.Moller, P.Olanders, I .Ragnarsson, A.J.Sierk – Nucl.Phys. A388, 452 (1982)

1 9 8 3Bu 1 4 D.D.Burgess, R.J.Tervo – Nucl.Instrum.Methods 214, 431 (1983)

1 9 8 3C o 2 2 N.Coursol , F.Lagoutine – Int.J.Appl.Radiat.Isotop. 34, 1269 (1983)

1 9 8 3H i 1 2 R.Hingmann, H.–G.Clerc, C.–C.Sahm, D.Vermeulen, K.–H.Schmidt, J.G.Keller – Z.Phys. A313, 141 (1983)

1 9 8 3 I a 0 1 F.Iachello – Nucl.Phys. A396, 233c (1983)

1 9 8 3O l 0 1 D.G.Olson – Nucl.Instrum.Methods 206, 313 (1983)

1 9 8 3 P i 0 4 R.Piepenbring – Phys.Rev. C27, 2968 (1983)

1 9 8 3R o 1 4 P.Rozmej, B.Nerlo–Pomorska, K.Pomorski – Nucl.Phys. A405, 252 (1983)

1 9 8 3 S c 1 3 U.Schotzig, K.Debertin – Int.J.Appl.Radiat.Isotop. 34, 533 (1983)

1 9 8 3Wa 2 0 D.Ward, G.D.Dracoulis, J.R.Leigh, R.J.Charity, D.J.Hinde, J.O.Newton – Nucl.Phys. A406, 591 (1983)

1 9 8 4Bu 3 8 J . D . B u r r o w s , P . A . B u t l e r , K . A . C o n n e l l , G . D . J o n e s , A . N . J a m e s , A . M . Y . E l – L a w i n d y , T . P . M o r r i s o n , J . S i m p s o n , R . W a d s w o r t h

– Nucl.Instrum.Methods 227, 259 (1984)

1 9 8 4 F r 0 6 S.Frauendorf, V.V.Pashkevich – Phys.Lett. 141B, 23 (1984)

1 9 8 4K l 0 6 H.V.Klapdor, J.Metzinger, T.Oda – At.Data Nucl.Data Tables 31, 81 (1984)

1 9 8 4Na 0 8 W . N a z a r e w i c z , P . O l a n d e r s , I . R a g n a r s s o n , J . D u d e k , G . A . L e a n d e r – P h y s . R e v . L e t t . 5 2 , 1 2 7 2 ( 1 9 8 4 ) ; E r r a t u m

Phys.Rev.Lett. 53, 2060 (1984)

1 9 8 4Na 2 2 W.Nazarewicz, P.Olanders, I .Ragnarsson, J.Dudek, G.A.Leander, P.Moller, E.Ruchowska – Nucl.Phys. A429, 269 (1984)

1 9 8 4 P o 0 8 D.N.Poenaru, M.Ivascu, A.Sandulescu, W.Greiner – J.Phys.(London) G10, L183 (1984)

1 9 8 5B o 3 2 W.Bonin, H.Backe, M.Dahlinger, S.Glienke, D.Habs, E.Hanelt , E.Kankeleit , B.Schwartz – Z.Phys. A322, 59 (1985)

1 9 8 5C o 2 4 A . C o c , C . T h i b a u l t , F . T o u c h a r d , H . T . D u o n g , P . J u n c a r , S . L i b e r m a n , J . P i n a r d , J . L e r m e , J . L . V i a l l e , S . B u t t g e n b a c h ,

A.C.Mueller, A.Pesnelle, and the ISOLDE Collaboration – Phys.Lett. 163B, 66 (1985)

1 9 8 5Go 0 5 N . A . G o l v k o v , B . S . D z h e l e p o v , R . B . I v a n o v , M . A . M i k h a i l o v a – I z v . A k a d . N a u k S S S R , S e r . F i z . 4 9 , 2 1 ( 1 9 8 5 ) ;

Bull .Acad.Sci .USSR, Phys.Ser. 49, No.1, 22 (1985)

1 9 8 5Ho 2 1 E.Hourani, M.Hussonnois, L.Stab, L.Bril lard, S.Gales, J.P.Schapira – Phys.Lett. 160B, 375 (1985)

1 9 8 5Na 0 7 W.Nazarewicz, P.Olanders – Nucl.Phys. A441, 420 (1985)

1 9 8 5Ne 0 9 R.Neugart – Hyperfine Interactions 24, 159 (1985)

1 9 8 5 P o 1 1 D.N.Poenaru, M.Ivascu, A.Sandulescu, W.Greiner – Phys.Rev. C32, 572 (1985)

1 9 8 5 P o 1 4 D.N.Poenaru, M.Ivascu – J.Phys.(Paris) , Lett. 46, L591 (1985)

1 9 8 5 P r 0 1 P.B.Price, J.D.Stevenson, S.W.Barwick, H.L.Ravn – Phys.Rev.Lett. 54, 297 (1985)

1 9 8 5 Sh 0 1 Y.–J.Shi, W.J.Swiatecki – Phys.Rev.Lett. 54, 300 (1985)

1 9 8 6B o 1 9 P.Bonche, P.H.Heenen, H.Flocard, D.Vautherin – Phys.Lett. 175B, 387 (1986)

1 9 8 6Ch 2 3 R.R.Chasman – Phys.Lett. 175B, 254 (1986)

1 9 8 6Ch 3 6 M.L.Chaudhury, S.M.Chatterjee – Fizika(Zagreb) 18, 161 (1986)

1 9 8 6Da 0 3 H.J.Daley, B.R.Barrett – Nucl.Phys. A449, 256 (1986)

1 9 8 6De 3 2 H.G.de Carvalho, J.B.Martins, O.A.P.Tavares – Phys.Rev. C34, 2261 (1986)

1 9 8 6Do 0 3 C.O.Dorso, W.D.Myers, W.J.Swiatecki – Nucl.Phys. A451, 189 (1986)

1 9 8 6G r 2 0 M.Greiner, W.Scheid – J.Phys.(London) G12, L229 (1986)

1 9 8 6 I r 0 1 M.Iriondo, D.Jerrestam, R.J.Liotta – Nucl.Phys. A454, 252 (1986)

1 9 8 6Ka 4 6 S . G . K a d m e n s k y , V . I . F u r m a n , Y u . M . C h u v i l s k y – I z v . A k a d . N a u k S S S R , S e r . F i z . 5 0 , 1 7 8 6 ( 1 9 8 6 ) ; B u l l . A c a d . S c i . U S S R ,

Phys.Ser. 50, No.9, 116 (1986)

1 9 8 6 L a 0 1 S.Landowne, C.H.Dasso – Phys.Rev. C33, 387 (1986)

1 9 8 6 L e 0 5 G.A.Leander, W.Nazarewicz, G.F.Bertsch, J.Dudek – Nucl.Phys. A453, 58 (1986)

1 9 8 6 P i 1 1 G.A.Pik–Pichak – Yad.Fiz. 44, 1421 (1986)

1 9 8 6 P o 1 5 D.N.Poenaru, W.Greiner, M.Ivascu, D.Mazilu, I .H.Plonski – Z.Phys. A325, 435 (1986)

1 9 8 6Ru 1 1 V . A . R u b c h e n y a , V . P . E i s m o n t , S . G . Y a v s h i t s – I z v . A k a d . N a u k S S S R , S e r . F i z . 5 0 , 1 0 1 6 ( 1 9 8 6 ) ; B u l l . A c a d . S c i . U S S R ,

Phys.Ser. 50, No.5, 184 (1986)

1 9 8 6 S c 1 8 P . S c h u l e r , C h . L a u t e r b a c h , Y . K . A g a r w a l , J . D e B o e r , K . P . B l u m e , P . A . B u t l e r , K . E u l e r , C h . F l e i s c h m a n n , C . G u n t h e r ,

E.Hauber, H.J.Maier, M.Marten–Tolle, Ch.Schandera, R.S.Simon, R.Tolle, P.Zeyen – Phys.Lett. 174B, 241 (1986)

1 9 8 7B e 4 3 T.Berggren, P.Olanders – Nucl.Phys. A473, 189 (1987)

2 8 8 4

NUCLEAR DATA SHEETS

REFERENCES FOR A= 2 2 2 ( CONT I NUED )

1 9 8 7B l 0 4 R.Blendowske, T.Fliessbach, H.Walliser – Nucl.Phys. A464, 75 (1987)

1 9 8 7C o 1 9 A . C o c , C . T h i b a u l t , F . T o u c h a r d , H . T . D u o n g , P . J u n c a r , S . L i b e r m a n , J . P i n a r d , M . C a r r e , J . L e r m e , J . L . V i a l l e ,

S.Buttgenbach, A.C.Mueller, A.Pesnelle, and the ISOLDE Collaboration – Nucl.Phys. A468, 1 (1987)

1 9 8 7E l 0 1 Y.A.Ellis–Akovali – Nucl.Data Sheets 50, 229 (1987)

1 9 8 7En 0 5 J.Engel, F.Iachello – Nucl.Phys. A472, 61 (1987)

1 9 8 7Gu 0 4 R.K.Gupta, S.Gulati , S.S.Malik, R.Sultana – J.Phys.(London) G13, L27 (1987)

1 9 8 7 I v 0 1 M.Ivascu, A.Sandulescu, I .Sil isteanu – Rev.Roum.Phys. 32, 549 (1987)

1 9 8 7Ka 3 7 A.B.Kabulov – Izv.Akad.Nauk SSSR, Ser.Fiz. 51, 939 (1987); Bull .Acad.Sci .USSR, Phys.Ser. 51, No.5, 100 (1987)

1 9 8 7Ko ZF T.Kohno, Y.Gono, Ch.Briancon, F.A.Beck, and the Chateau de Cristal Collaboration – RIKEN–86, p.17 (1987)

1 9 8 7Mi 1 0 G.J.Miller, J.C.McGeorge, I .Anthony, R.O.Owens – Phys.Rev. C36, 420 (1987)

1 9 8 7Na 1 0 W.Nazarewicz, G.A.Leander, J.Dudek – Nucl.Phys. A467, 437 (1987)

1 9 8 7 P o 0 8 D.N.Poenaru, M.Ivascu, D.Mazilu, I .H.Plonski – Rev.Roum.Phys. 32, 283 (1987)

1 9 8 7R o 0 8 L.M.Robledo, J.L.Egido, J.F.Berger, M.Girod – Phys.Lett. 187B, 223 (1987)

1 9 8 7 Sh 0 4 Y.–J.Shi, W.J.Swiatecki – Nucl.Phys. A464, 205 (1987)

1 9 8 7We 0 3 K . W e n d t , S . A . A h m a d , W . K l e m p t , R . N e u g a r t , E . W . O t t e n , H . H . S t r o k e , a n d t h e I S O L D E C o l l a b o r a t i o n – Z . P h y s . D 4 , 2 2 7

(1987)

1 9 8 8Ah 0 2 S . A . A h m a d , W . K l e m p t , R . N e u g a r t , E . W . O t t e n , P . – G . R e i n h a r d , G . U l m , K . W e n d t , a n d t h e I S O L D E C o l l a b o r a t i o n – N u c l . P h y s .

A483, 244 (1988)

1 9 8 8Ba 0 1 F.Barranco, R.A.Broglia, G.F.Bertsch – Phys.Rev.Lett. 60, 507 (1988)

1 9 8 8Ba 4 8 F.Barranco, E.Vigezzi , R.A.Broglia, G.F.Bertsch – Phys.Rev. C38, 1523 (1988)

1 9 8 8B l 1 1 R.Blendowske, H.Walliser – Phys.Rev.Lett. 61, 1930 (1988)

1 9 8 8Ha Z J D . H a b s , D . S c h w a l m , B . S c h w a r t z , M . D a h l i n g e r , E . K a n k e l e i t , R . S . S i m o n , H . B a c k e , J . D . B u r r o w s , P . A . B u t l e r – P r o c . o f t h e

C o n f . o n H i g h – S p i n N u c l e a r S t r u c t u r e a n d N o v e l N u c l e a r S h a p e s , A p r i l 1 3 – 1 5 , 1 9 8 8 , A r g o n n e N a t i o n a l L a b o r a t o r y ,

Argonne, Il l inois; ANL–PHY–88–2, p.121 (1988)

1 9 8 8Hu 0 8 M.Huyse, P.Dendooven, K.Deneffe – Nucl.Instrum.Methods Phys.Res. B31, 483 (1988)

1 9 8 8 I v 0 2 M.Ivascu, I .Sil isteanu – Nucl.Phys. A485, 93 (1988)

1 9 8 8Na 0 8 E . G . N a d z h a k o v , I . N . M i k h a i l o v – I z v . A k a d . N a u k S S S R , S e r . F i z . 5 2 , 1 1 1 ( 1 9 8 8 ) ; B u l l . A c a d . S c i . U S S R , P h y s . S e r . 5 2 , N o . 1 ,

104 (1988)

1 9 8 8O t 0 2 T.Otsuka, M.Sugita – Phys.Lett. 209B, 140 (1988)

1 9 8 8R o 0 2 L.M.Robledo, J.L.Egido, B.Nerlo–Pomorska, K.Pomorski – Phys.Lett. 201B, 409 (1988)

1 9 8 8R o 0 5 P.Rozmej, S.Cwiok, A.Sobiczewski – Phys.Lett. 203B, 197 (1988)

1 9 8 8 S c ZN B.Schwartz, D.Habs, D.Schwalm, M.Dahlinger, E.Kankeleit , H.Folger, R.S.Simon – GSI–88–1, p.33 (1988)

1 9 8 8 Sh 2 9 G.Shanmugam, B.Kamalaharan – Phys.Rev. C38, 1377 (1988)

1 9 8 8 S o 0 8 A.Sobiczewski, Z.Patyk, S.Cwiok, P.Rozmej – Nucl.Phys. A485, 16 (1988)

1 9 8 8 T a 2 5 A.V.Tarakanov, V.M.Shilov – Yad.Fiz. 48, 109 (1988); Sov.J.Nucl.Phys. 48, 68 (1988)

1 9 8 9Bu 0 6 B.Buck, A.C.Merchant – Phys.Rev. C39, 2097 (1989)

1 9 8 9Bu 0 9 D . G . B u r k e , H . F o l g e r , H . G a b e l m a n n , E . H a g e b o , P . H i l l , P . H o f f , O . J o n s s o n , N . K a f f r e l l , W . K u r c e w i c z , G . L o v h o i d e n , K . N y b o ,

G . N y m a n , H . R a v n , K . R i i s a g e r , J . R o g o w s k i , K . S t e f f e n s e n , T . F . T h o r s t e i n s e n , a n d t h e I S O L D E C o l l a b o r a t i o n – Z . P h y s .

A333, 131 (1989)

1 9 8 9C i 0 3 N.Cindro, M.Bozin – Phys.Rev. C39, 1665 (1989)

1 9 8 9De 1 1 V.Yu.Denisov – Yad.Fiz. 49, 644 (1989)

1 9 8 9Eg 0 2 J.L.Egido, L.M.Robledo – Nucl.Phys. A494, 85 (1989)

1 9 8 9Ma 2 1 S.S.Malik, R.K.Gupta – Phys.Rev. C39, 1992 (1989)

1 9 8 9 P o 0 3 R . J . P o y n t e r , P . A . B u t l e r , G . D . J o n e s , R . J . T a n n e r , C . A . W h i t e , J . R . H u g h e s , S . M . M u l l i n s , R . W a d s w o r t h , D . L . W a t s o n ,

J.Simpson – J.Phys.(London) G15, 449 (1989)

1 9 8 9 Sh 3 7 Y.Shi, W.J.Swiatecki – Chin.J.Nucl.Phys. 11, No. 4, 31 (1989)

1 9 9 0An 2 2 A . N . A n d r e e v , D . D . B o g d a n o v , V . I . C h e p i g i n , A . P . K a b a c h e n k o , S . S h a r o , G . M . T e r – A k o p i a n , A . V . E r e m i n , O . N . M a l y s h e v –

Z.Phys. A337, 231 (1990)

1 9 9 0An ZU A.N.Andreev , D .D .Bogdanov , A .V .Eremin , A .P .Kabachenko , O .N .Malyshev , G .M.Ter–Akopyan , V . I .Chep ig in – J INR–P7–90–232

(1990)

1 9 9 0Ba 2 0 F.Barranco, G.F.Bertsch, R.A.Broglia, E.Vigezzi – Nucl.Phys. A512, 253 (1990)

1 9 9 0Bu 0 9 B.Buck, A.C.Merchant – J.Phys.(London) G16, L85 (1990)

1 9 9 0Bu 3 0 B.Buck, A.C.Merchant, S.M.Perez – Phys.Rev.Lett. 65, 2975 (1990)

1 9 9 0Hu 0 7 M.Hussonnois, J.F.Le Du, L.Bril lard, G.Ardisson – Phys.Rev. C42, R495 (1990); Erratum Phys.Rev. C43 916 (1991)

1 9 9 0 J a 1 1 A.K.Jain, R.K.Sheline, P.C.Sood, K.Jain – Rev.Mod.Phys. 62, 393 (1990)

1 9 9 0Ka 1 5 S.G.Kadmensky, S.D.Kurgalin, V.I .Furman, Yu.M.Chuvilsky – Yad.Fiz. 51, 50 (1990); Sov.J.Nucl.Phys. 51, 32 (1990)

1 9 9 0N i 0 5 V . N i n o v , F . P . H e s s b e r g e r , P . A r m b r u s t e r , S . H o f m a n n , G . M u n z e n b e r g , M . L e i n o , Y . F u j i t a , D . A c k e r m a n n , W . M o r a w e k ,

A.Luttgen – Z.Phys. A336, 473 (1990)

1 9 9 0 Sh 0 1 G.Shanmugam, B.Kamalaharan – Phys.Rev. C41, 1184 (1990)

1 9 9 1An Z Z A . N . A n d r e e v , D . D . B o g d a n o v , A . V . E r e m i n , A . P . K a b a c h e n k o , O . N . M a l y s h e v , G . M . T e r – A k o p y a n , V . I . C h e p i g i n – P r o g r a m a n d

Thesis, Proc.41st Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei , Minsk, p.120 (1991)

1 9 9 1Bu 0 1 B.Buck, A.C.Merchant, S.M.Perez – J.Phys.(London) G17, L91 (1991)

1 9 9 1Bu 1 0 P.A.Butler, W.Nazarewicz – Nucl.Phys. A533, 249 (1991)

1 9 9 1Eg 0 1 J.L.Egido, L.M.Robledo – Nucl.Phys. A524, 65 (1991)

1 9 9 1Hu 0 2 M.Hussonnois, J.F.Le Du, L.Bril lard, J.Dalmasso, G.Ardisson – Phys.Rev. C43, 2599 (1991)

1 9 9 1 L i 1 1 W.–J.Lin, G.Harbottle – J.Radioanal.Nucl.Chem. 153, 137 (1991)

1 9 9 1Ry 0 1 A.Rytz – At.Data Nucl.Data Tables 47, 205 (1991)

1 9 9 1 S k 0 1 J.Skalski – Phys.Rev. C43, 140 (1991)

2 8 8 5

NUCLEAR DATA SHEETS

REFERENCES FOR A= 2 2 2 ( CONT I NUED )

1 9 9 2Ch 2 0 R.R.Chasman – Phys.Lett. 280B, 187 (1992)

1 9 9 2De 4 4 D.S.Delion, A.Insolia, R.J.Liotta – Phys.Rev. C46, 1346 (1992)

1 9 9 2Gu 1 0 R.J.Gupta, S.Singh, R.K.Puri, A.Sandulescu, W.Greiner, W.Scheid – J.Phys.(London) G18, 1533 (1992)

1 9 9 2Ru 0 1 E.Ruchowska, J.Zylicz, C.F.Liang, P.Paris, Ch.Briancon – J.Phys.(London) G18, 131 (1992)

1 9 9 2 S k Z Z J . S k a l s k i , P . – H . H e e n e n , P . B o n c h e , H . F l o c a r d , J . M e y e r – P r o c . I n t . C o n f . N u c l e a r S t r u c t u r e a t H i g h A n g u l a r M o m e n t u m ,

Ottawa, p.260 (1992); AECL–10613 (1992)

1 9 9 2Wo 1 4 J.Wouters, P.De Moor, P.Schuurmans, N.Severijns, W.Vanderpoorten, L.Vanneste – Hyperfine Interactions 75, 381 (1992)

1 9 9 3An ZS A . N . A n d r e y e v , D . D . B o g d a n o v , V . I . C h e p i g i n , M . F l o r e k , A . P . K a b a c h e n k o , O . N . M a l y s h e v , S . S h a r o , G . M . T e r – A k o p i a n ,

M . V e s e l s k y , A . V . Y e r e m i n – P r o c . 6 t h I n t e r n . C o n f . o n N u c l e i F a r f r o m S t a b i l i t y + 9 t h I n t e r n . C o n f . o n A t o m i c M a s s e s a n d

Fundamental Constants, Bernkastel–Kues, Germany, 19–24 July, 1992, R.Neugart, A.Wohr, Eds. , p.759 (1993)

1 9 9 3Au 0 5 G.Audi, A.H.Wapstra – Nucl.Phys. A565, 1 (1993)

1 9 9 3Bu 0 5 B.Buck, A.C.Merchant, S.M.Perez, P.Tripe – Phys.Rev. C47, 1307 (1993)

1 9 9 3De 3 8 D.S.Delion, A.Insolia, R.J.Liotta – J.Phys.(London) G19, L189 (1993)

1 9 9 3D i 0 9 O.Diallo, G.Mouze, C.Ythier, J.F.Comanducci – Nuovo Cim. 106A, 1321 (1993)

1 9 9 3Dz 0 1 A . Y a . D z y u b l i k , V . Y u . D e n i s o v – Y a d . F i z . 5 6 , N o 3 , 3 0 ( 1 9 9 3 ) ; P h y s . A t o m i c N u c l e i 5 6 , 3 0 3 ( 1 9 9 3 ) ; C O R R I G E N D A

Phys.Atomic Nuclei 57, 1275 (1994)

1 9 9 3Go 1 8 M.Goncalves, S.B.Duarte – Phys.Rev. C48, 2409 (1993)

1 9 9 3G r 1 5 A.F.Grashin, A.D.Efimenko – Bull .Rus.Acad.Sci .Phys. 57, 824 (1993)

1 9 9 3Gu 1 1 R.K.Gupta, M.Horoi , A.Sandulescu, M.Greiner, W.Scheid – J.Phys.(London) G19, 2063 (1993)

1 9 9 3Ka 2 1 S . G . K a d m e n s k y , S . D . K u r g a l i n , V . I . F u r m a n , Y u . M . C h u v i l s k y – Y a d . F i z . 5 6 , N o 8 , 8 0 ( 1 9 9 3 ) ; P h y s . A t o m i c N u c l e i 5 6 , 1 0 3 8

(1993)

1 9 9 3 S i 2 6 I.Sil isteanu, M.Ivascu, I .Rotter – Roum.J.Phys. 38, 55 (1993)

1 9 9 3Y o 0 2 N.Yoshinaga, T.Mizusaki, T.Otsuka – Nucl.Phys. A559, 193 (1993)

1 9 9 4Bu 0 7 B.Buck, A.C.Merchant, S.M.Perez, P.Tripe – J.Phys.(London) G20, 351 (1994)

1 9 9 4Cw0 1 S.Cwiok, W.Nazarewicz, J.X.Saladin, W.Plociennik, A.Johnson – Phys.Lett. 322B, 304 (1994)

1 9 9 4Da 2 6 A . D ' A r r i g o , N . V . E r e m i n , G . F a z i o , G . G i a r d i n a , M . G . G l o t o v a , T . V . K l o c h k o , M . S a c c h i , A . T a c c o n e – P h y s . L e t t . 3 3 2 B , 2 5

(1994)

1 9 9 4De 3 8 D.S.Delion, A.Insolia, R.J.Liotta – J.Phys.(London) G20, 1483 (1994)

1 9 9 4 L i 0 5 X.Li, J.Dudek – Phys.Rev. C49, R1250 (1994)

1 9 9 5De 1 3 V.Yu.Denisov, A.Ya.Dzyublik – Nucl.Phys. A589, 17 (1995)

1 9 9 5 S i 0 5 I.Sil isteanu, W.Scheid – Phys.Rev. C51, 2023 (1995)

1 9 9 5 Sm0 6 J . F . S m i t h , J . F . C . C o c k s , N . S c h u l z , M . A i c h e , M . B e n t a l e b , P . A . B u t l e r , F . H a n n a c h i , G . D . J o n e s , P . M . J o n e s , R . J u l i n ,

S . J u u t i n e n , R . K u l e s s a , E . L u b k i e w i c z , A . P l o c h o c k i , F . R i e s s , E . R u c h o w s k a , A . S a v e l i u s , J . C . S e n s , J . S i m p s o n , E . W o l f –

Phys.Rev.Lett. 75, 1050 (1995)

1 9 9 6Ak 0 2 Y.A.Akovali – Nucl.Data Sheets 77, 433 (1996)

1 9 9 6Bu 2 6 P . A . B u t l e r , P . M . J o n e s , K . J . C a n n , J . F . C . C o c k s , H . H u b e l , G . D . J o n e s , R . J u l i n , W . P o h l e r , B . S c h u l z e , J . F . S m i t h – A c t a

Phys.Pol. B27, 463 (1996)

1 9 9 6Bu 5 3 P . A . B u t l e r , P . M . J o n e s , K . J . C a n n , J . F . C . C o c k s , G . D . J o n e s , R . J u l i n , W . H . T r z a s k a – N u c l . I n s t r u m . M e t h o d s P h y s . R e s . A 3 8 1 ,

433 (1996)

1 9 9 6De 1 9 D.S.Delion, A.Insolia, R.J.Liotta – Phys.Rev. C54, 292 (1996)

1 9 9 6E l 0 1 Y.A.Akovali – Nucl.Data Sheets 77, 271 (1996)

1 9 9 6Wi 2 7 B . W i e r c z i n s k i , K . E b e r h a r d t , G . H e r r m a n n , J . V . K r a t z , M . M e n d e l , A . N a h l e r , F . R o c k e r , U . T h a r u n , N . T r a u t m a n n , K . W e i n e r ,

N.Wiehl, J.Alstad, G.Skarnemark – Nucl.Instrum.Methods Phys.Res. A370, 532 (1996)

1 9 9 7Bu 0 7 B.Buck, A.C.Merchant, S.M.Perez – Nucl.Phys. A617, 195 (1997)

1 9 9 7Bu 2 8 B.Buck, A.C.Merchant, S.M.Perez – Nuovo Cim. 110A, 935 (1997)

1 9 9 7C o 0 8 J . F . C . C o c k s , P . A . B u t l e r , K . J . C a n n , P . T . G r e e n l e e s , G . D . J o n e s , S . A s z t a l o s , P . B h a t t a c h a r y y a , R . B r o d a , R . M . C l a r k ,

M . A . D e l e p l a n q u e , R . M . D i a m o n d , P . F a l l o n , B . F o r n a l , P . M . J o n e s , R . J u l i n , T . L a u r i t s e n , I . Y . L e e , A . O . M a c c h i a v e l l i ,

R.W.MacLeod, J.F.Smith, F.S.Stephens, C.T.Zhang – Phys.Rev.Lett. 78, 2920 (1997)

1 9 9 7C o 1 4 J.F.C.Cocks, P.A.Butler – Acta Phys.Pol. B28, 75 (1997)

1 9 9 7 J o 1 5 P . M . J o n e s , P . A . B u t l e r , K . J . C a n n , J . F . C . C o c k s , G . D . J o n e s , R . J u l i n , H . K a n k a a n p a a , W . P o h l e r , B . S c h u l z e , J . F . S m i t h ,

A.N.Wilson – Z.Phys. A358, 191 (1997)

1 9 9 7 J u 0 3 R . J u l i n , R . G . A l l a t t , P . A . B u t l e r , K . J . C a n n , J . F . C . C o c k s , T . E n q v i s t , P . T . G r e e n l e e s , K . H e l a r i u t t a , G . D . J o n e s ,

P . M . J o n e s , S . J u u t i n e n , P . J a m s e n , H . K a n k a a n p a a , P . K u u s i n i e m i , M . L e i n o , M . M u i k k u , R . D . P a g e , M . P i i p a r i n e n , A . S a v e l i u s ,

W.H.Trzaska, S.Tormanen, J.Uusitalo – Acta Phys.Pol. B28, 269 (1997)

1 9 9 7Mo 2 5 P.Moller, J.R.Nix, K.–L.Kratz – At.Data Nucl.Data Tables 66, 131 (1997)

1 9 9 8Bu 1 7 P.A.Butler, J.F.C.Cocks, P.T.Greenlees – Acta Phys.Hung.N.S. 7, 1 (1998)

1 9 9 8Bu 1 8 B.Buck, A.C.Merchant, S.M.Perez – Phys.Rev. C58, 2049 (1998)

1 9 9 8Ra 0 5 A.A.Raduta, A.Faessler, R.K.Sheline – Phys.Rev. C57, 1512 (1998)

1 9 9 8R o 1 1 G.Royer, R.K.Gupta, V.Yu.Denisov – Nucl.Phys. A632, 275 (1998)

1 9 9 9B o 5 2 D . D . B o g d a n o v , M . V e s e l s k y , A . V . Y e r e m i n , A . P . K a b a c h e n k o , O . N . M a l y s h e v , Y u . A . M u z y c h k a , B . I . P u s t y l n i k , A . G . P o p e k o ,

R.N.Sagaidak, G.M.Ter–Akopian, V.I .Chepigin – Yad.Fiz. 62, No 11, 1931 (1999); Phys.Atomic Nuclei 62, 1794 (1999)

1 9 9 9C o 0 2 J . F . C . C o c k s , D . H a w c r o f t , N . A m z a l , P . A . B u t l e r , K . J . C a n n , P . T . G r e e n l e e s , G . D . J o n e s , S . A s z t a l o s , R . M . C l a r k ,

M . A . D e l e p l a n q u e , R . M . D i a m o n d , P . F a l l o n , I . Y . L e e , A . O . M a c c h i a v e l l i , R . W . M a c L e o d , F . S . S t e p h e n s , P . J o n e s , R . J u l i n ,

R.Broda, B.Fornal, J.F.Smith, T.Lauritsen, P.Bhattacharyya, C.T.Zhang – Nucl.Phys. A645, 61 (1999)

1 9 9 9G r 2 8 P . T . G r e e n l e e s , P . K u u s i n i e m i , N . A m z a l , A . A n d r e y e v , P . A . B u t l e r , K . J . C a n n , J . F . C . C o c k s , O . D o r v a u x , T . E n q v i s t , P . F a l l o n ,

B . G a l l , M . G u t t o r m s e n , D . H a w c r o f t , K . H e l a r i u t t a , F . P . H e s s b e r g e r , F . H o e l l i n g e r , G . D . J o n e s , P . J o n e s , R . J u l i n ,

S . J u u t i n e n , H . K a n k a a n p a a , H . K e t t u n e n , M . L e i n o , S . M e s s e l t , M . M u i k k u , S . O d e g a r d , R . D . P a g e , A . S a v e l i u s , A . S c h i l l e r ,

S.Siem, W.H.Trzaska, T.Tveter, J.Uusitalo – Eur.Phys.J. A 6, 269 (1999)

2 8 8 6

NUCLEAR DATA SHEETS

REFERENCES FOR A= 2 2 2 ( CONT I NUED )

1 9 9 9 J o 1 7 R.V.Jolos, P.von Brentano – Phys.Rev. C60, 064317 (1999)

2 0 0 0Bu ZY P . A . B u t l e r , J . F . C . C o c k s , P . T . G r e e n l e e s – P r o c . 2 n d I n t e r n . C o n f F i s s i o n a n d P r o p e r t i e s o f N e u t r o n – R i c h N u c l e i , S t

A n d r e w s , S c o t l a n d , J u n e 2 8 – J u l y 3 , 1 9 9 9 , J . H . H a m i l t o n , W . R . P h i l l i p s , H . K . C a r t e r , E d s . , W o r l d S c i e n t i f i c , S i n g a p o r e ,

p.28 (2000)

2 0 0 0He 1 7 F . P . H e s s b e r g e r , S . H o f m a n n , D . A c k e r m a n n , V . N i n o v , M . L e i n o , S . S a r o , A . A n d r e y e v , A . L a v r e n t e v , A . G . P o p e k o , A . V . Y e r e m i n

– Eur.Phys.J. A 8, 521 (2000); Erratum Eur.Phys.J. A 9, 433 (2000)

2 0 0 1Ch 0 2 Y.S.Chen, Z.C.Gao – Phys.Rev. C63, 014314 (2001)

2 0 0 1Ku 0 7 P . K u u s i n i e m i , J . F . C . C o c k s , K . E s k o l a , P . T . G r e e n l e e s , K . H e l a r i u t t a , P . J o n e s , R . J u l i n , S . J u u t i n e n , H . K a n k a a n p a a ,

A.Keenan, H.Kettunen, M.Leino, M.Muikku, P.Nieminen, P.Rahkila, J.Uusitalo – Acta Phys.Pol. B32, 1009 (2001)

2 0 0 1 L a 1 4 S.P.LaMont, R.J.Gehrke, S.E.Glover, R.H.Filby – J.Radioanal.Nucl.Chem. 248, 247 (2001)

2 0 0 1Mo 0 7 R.Moustabchir, G.Royer – Nucl.Phys. A683, 266 (2001)

2 0 0 1 Z a 0 4 N.V.Zamfir, D.Kusnezov – Phys.Rev. C63, 054306 (2001)

2 0 0 1 Z a 0 9 N.V.Zamfir – Yad.Fiz. 64, No 6, 1135 (2001); Phys.Atomic Nuclei 64, 1060 (2001)

2 0 0 2Ba 6 0 P.Banerjee, G.Baur, K.Hencken, R.Shyam, D.Trautmann – Phys.Rev. C65, 064602 (2002)

2 0 0 2Du 1 6 S . B . D u a r t e , O . A . P . T a v a r e s , F . G u z m a n , A . D i m a r c o , F . G a r c i a , O . R o d r i g u e z , M . G o n c a l v e s – A t . D a t a N u c l . D a t a T a b l e s 8 0 ,

235 (2002)

2 0 0 2 S a 5 5 K.P.Santhosh, A.Joseph – Pramana 59, 679 (2002)

2 0 0 3Ad 3 2 G.G.Adamian, N.V.Antonenko, R.V.Jolos, W.Scheid, T.M.Shneidman – Acta Phys.Pol. B34, 1729 (2003)

2 0 0 3Au 0 3 G.Audi, A.H.Wapstra, C.Thibault – Nucl.Phys. A729, 337 (2003)

2 0 0 3Ba 6 4 D.N.Basu – J.Phys.(London) G29, 2079 (2003)

2 0 0 3Ga 3 4 Y.K.Gambhir, A.Bhagwat, M.Gupta, A.K.Jain – Phys.Rev. C 68, 044316 (2003)

2 0 0 3 Sh 0 2 T.M.Shneidman, G.G.Adamian, N.V.Antonenko, R.V.Jolos, W.Scheid – Phys.Rev. C 67, 014313 (2003)

2 0 0 4Ad 1 5 G.G.Adamian, N.V.Antonenko, R.V.Jolos, Yu.V.Palchikov, W.Scheid, T.M.Shneidman – Nucl.Phys. A734, 433 (2004)

2 0 0 4Ba 6 4 M.Balasubramaniam, S.Kumarasamy, N.Arunachalam, R.K.Gupta – Phys.Rev. C 70, 017301 (2004)

2 0 0 4Ho 1 2 M.Horoi – J.Phys.(London) G30, 945 (2004)

2 0 0 4R e 2 2 Z.Ren, C.Xu, Z.Wang – Phys.Rev. C 70, 034304 (2004)

2 0 0 4 S c 0 4 H.Schrader – Appl.Radiat.Isot. 60, 317 (2004)

2 0 0 5Bu 3 8 B.Buck, A.C.Merchant, S.M.Perez, H.E.Seals – J.Phys.(London) G31, 1499 (2005)

2 0 0 5Dz 0 2 V.A.Dzuba, W.R.Johnson, M.S.Safronova – Phys.Rev. A 72, 022503 (2005)

2 0 0 5Ku 3 2 S.N.Kuklin, G.G.Adamian, N.V.Antonenko – Yad.Fiz. 68, 1501 (2005); Phys.Atomic Nuclei 68, 1443 (2005)

2 0 0 5 Sh 4 2 G.Shanmugam, S.Sudhakar, S.Niranjani – Phys.Rev. C 72, 034310 (2005)

2 0 0 5 S t 2 4 N.J.Stone – At.Data Nucl.Data Tables 90, 75 (2005)

2 0 0 5 Z a 0 2 N.V.Zamfir, D.Kusnezov, M.Babilon – Int.J.Mod.Phys. E14, 147 (2005)

2 0 0 6 S a 5 3 A.R.Safarov, R.Kh.Safarov, A.S.Sitdikov, R.Rasimgil – Bull .Rus.Acad.Sci .Phys. 70, 1816 (2006)

2 0 0 6Xu 0 4 C.Xu, Z.Ren – Phys.Rev. C 74, 014304 (2006)

2 0 0 6Xu 0 8 C.Xu, Z.Ren – Nucl.Phys. A778, 1 (2006)

2 0 0 6Xu 1 5 F.R.Xu, J.C.Pei – Phys.Lett. B 642, 322 (2006)

2 0 0 7C o 0 8 S.R.Cotanch, I .J.General, P.Wang – Eur.Phys.J. A 31, 656 (2007)

2 0 0 7Ne 0 1 C.Nebelung, L.Baraniak – Appl.Radiat.Isot. 65, 209 (2007)

2 0 0 7 P e 3 0 J.C.Pei, F.R.Xu, Z.J.Lin, E.G.Zhao – Phys.Rev. C 76, 044326 (2007)

2 0 0 8N i 1 2 D.Ni, Z.Ren, T.Dong, C.Xu – Phys.Rev. C 78, 044310 (2008)

2 0 0 8 S a 4 0 B.Sahu – Phys.Rev. C 78, 044608 (2008)

2 0 0 9De 3 2 V.Yu.Denisov, A.A.Khudenko – Phys.Rev. C 80, 034603 (2009); Erratum Phys.Rev. C 82, 059902 (2010)

2 0 0 9Mo 2 7 P.Moller, A.J.Sierk, R.Bengtsson, H.Sagawa, T.Ichikawa – Phys.Rev.Lett. 103, 212501 (2009)

2 0 0 9N i 0 6 D.Ni, Z.Ren – Nucl.Phys. A825, 145 (2009)

2 0 0 9Q i 0 7 C.Qi, F.R.Xu, R.J.Liotta, R.Wyss, M.Y.Zhang, C.Asawatangtrakuldee, D.Hu – Phys.Rev. C 80, 044326 (2009)

2 0 0 9R o 0 6 V.Rotival , T.Duguet – Phys.Rev. C 79, 054308 (2009)

2 0 0 9R o 1 6 T.R.Routray, J.Nayak, D.N.Basu – Nucl.Phys. A826, 223 (2009)

2 0 0 9Wa 0 1 Y.Z.Wang, H.F.Zhang, J.M.Dong, G.Royer – Phys.Rev. C 79, 014316 (2009)

2 0 1 0A l 2 4 H . A l v a r e z – P o l , J . B e n l l i u r e , E . C a s a r e j o s , L . A u d o u i n , D . C o r t i n a – G i l , T . E n q v i s t , B . F e r n a n d e z – D o m i n g u e z , A . R . J u n g h a n s ,

B.Jurado, P.Napolitani, J.Pereira, F.Rejmund, K.–H.Schmidt, O.Yordanov – Phys.Rev. C 82, 041602 (2010)

2 0 1 0Ch 1 9 L . C h e n , W . R . P l a s s , H . G e i s s e l , R . K n o b e l , C . K o z h u h a r o v , Y u . A . L i t v i n o v , Z . P a t y k , C . S c h e i d e n b e r g e r , K . S i e g i e n – I w a n i u k ,

B . S u n , H . W e i c k , K . B e c k e r t , P . B e l l e r , F . B o s c h , D . B o u t i n , L . C a c e r e s , J . J . C a r r o l l , D . M . C u l l e n , I . J . C u l l e n , B . F r a n z k e ,

J . G e r l , M . G o r s k a , G . A . J o n e s , A . K i s h a d a , J . K u r c e w i c z , S . A . L i t v i n o v , Z . L i u , S . M a n d a l , F . M o n t e s , G . M u n z e n b e r g ,

F . N o l d e n , T . O h t s u b o , Z s . P o d o l y a k , R . P r o p r i , S . R i g b y , N . S a i t o , T . S a i t o , M . S h i n d o , M . S t e c k , P . U g o r o w s k i , P . M . W a l k e r ,

S.Will iams, M.Winkler, H.–J.Wollersheim, T.Yamaguchi – Phys.Lett. B 691, 234 (2010)

2 0 1 0Gu 1 8 J.–Y.Guo, P.Jiao, X.–Z.Fang – Phys.Rev. C 82, 047301 (2010)

2 0 1 0 L i 0 2 Yu.A.Litvinov, H.Geissel , R.Knobel, B.Sun, H.Xu – Acta Phys.Pol. B41, 511 (2010)

2 0 1 0N i 1 3 D.Ni, Z.Ren – Phys.Rev. C 82, 024311 (2010)

2 0 1 0Wa 3 1 Y.Z.Wang, J.Z.Gu, J.M.Dong, B.B.Peng – Eur.Phys.J. A 44, 287 (2010)

2 0 1 1Au Z Z G.Audi, W.Meng – Priv.Comm. (2011)