nsd structures.ppt - compatibility mode...microsoft powerpoint - nsd structures.ppt - compatibility...

10
5/3/2019 1 Natural Stream Channel Design (NSD) and instream structures Cross – Vane W – Weir J – Hook Root Wad / Log vane

Upload: others

Post on 10-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NSD Structures.ppt - Compatibility Mode...Microsoft PowerPoint - NSD Structures.ppt - Compatibility Mode Author: rhoch Created Date: 5/3/2019 9:46:50 AM

5/3/2019

1

Natural Stream Channel Design (NSD) and in‐stream structures

Cross – VaneW – WeirJ – Hook

Root Wad / Log ‐ vane

Page 2: NSD Structures.ppt - Compatibility Mode...Microsoft PowerPoint - NSD Structures.ppt - Compatibility Mode Author: rhoch Created Date: 5/3/2019 9:46:50 AM

5/3/2019

2

Restoring equilibrium with NSD techniques

• Leopold (1964) found that river form is associated with an integration of 8 factors:

1. slope

2. width

3. depth

4. velocity

• Together, these variables can be integrated into geomorphological relations for stable streams and rivers

• This is how the Rosgen ‘reference reach’ is established

5.  discharge

6. boundary roughness

7. size of sediment transported 

8. concentration of sediment

*See Vannote, ‘The River Continuum Concept’ for another related perspective

‘Soft’ structural stream ‐ enhancement

The Cross‐Vane, W‐Weir and J‐Hook Vane are Natural Stream Design structures that can be implemented to maintain or enhance river stability and function to facilitate multiple objectives

These structures have been successfully applied in natural channel design for:

river restoration

bank stabilization

grade control

irrigation diversions

fish habitat enhancement

bridge protection, and 

recreational boating

Page 3: NSD Structures.ppt - Compatibility Mode...Microsoft PowerPoint - NSD Structures.ppt - Compatibility Mode Author: rhoch Created Date: 5/3/2019 9:46:50 AM

5/3/2019

3

‘Soft’ structural stream ‐ enhancement

1) establish grade control

2) reduce streambank erosion

3) facilitate sediment transport

4) provide for irrigation diversion structures

5) enhance fish habitat

6) maintain width/depth ratio

7) improve recreational boating

8) maintain river stability

9) dissipate excess energy

10) withstand large floods

11) maintain channel capacity

12) be compatible with natural channel design

13) be visually acceptable to the public

To achieve these objectives, in‐channel structures have been developedand engineered in order to specifically address the following:

Page 4: NSD Structures.ppt - Compatibility Mode...Microsoft PowerPoint - NSD Structures.ppt - Compatibility Mode Author: rhoch Created Date: 5/3/2019 9:46:50 AM

5/3/2019

4

Page 5: NSD Structures.ppt - Compatibility Mode...Microsoft PowerPoint - NSD Structures.ppt - Compatibility Mode Author: rhoch Created Date: 5/3/2019 9:46:50 AM

5/3/2019

5

Understanding the river – Collecting data

• Structures are often placed in rivers in an attempt to correct some of the adverse effects of channel adjustment due to instability

• Unfortunately, many structures are often installed to “patch a symptom” rather than achieve the stable channel form

• River engineering structures need to be incorporated with a clear understanding of the river variables that constitute the stable form– Understanding the  “rules of the river” is crucial

– Otherwise, you can create more problems than you started with

Page 6: NSD Structures.ppt - Compatibility Mode...Microsoft PowerPoint - NSD Structures.ppt - Compatibility Mode Author: rhoch Created Date: 5/3/2019 9:46:50 AM

5/3/2019

6

Importance of data collection

• Data from natural rivers indicate a negative power function relation between sinuosity and slope

• Thus when slope is decreased there is a corresponding increase in sinuosity through lateral migration following bank erosion

• Relations to determine the minimum size of rock for these structures are presented based on bankfull shear stress

Rosgen, 2006  ‐ Images:  J.D. Kurz

Importance of data collectionBoundary shear stresses associated with high velocity gradients, can accelerate erosion

rates, and are shown in the velocity isovel constructed from vertical velocity profiles

C3 stream type is a slightly entrenched, meandering, riffle/pool, cobble-dominated channel with a well -developed floodplain

Riffle/pool sequence isgenerally 5 – 7 bankfullchannel widths

Page 7: NSD Structures.ppt - Compatibility Mode...Microsoft PowerPoint - NSD Structures.ppt - Compatibility Mode Author: rhoch Created Date: 5/3/2019 9:46:50 AM

5/3/2019

7

In‐stream structures

Cross ‐ Vane• A grade control structure that:

– decreases near‐bank shear stress 

– velocity, and 

– stream power

but increases the energy in the center of the channel

• It does this by:– establishing grade control

– reducing bank erosion

– creating a stable width/depth ratio

– maintaining channel capacity

– maintaining sediment transport capacity

• Also popular for improving:– Stream habitat

– Kayak recreation

Rosgen, 2006  ‐ Images:  J.D. Kurz

Page 8: NSD Structures.ppt - Compatibility Mode...Microsoft PowerPoint - NSD Structures.ppt - Compatibility Mode Author: rhoch Created Date: 5/3/2019 9:46:50 AM

5/3/2019

8

Step‐pools using cross‐vanes

• The Cross‐Vane is used to maintain base level in:– both riffle/pool channels

– rapids‐dominated stream types

– step‐pool channels

• Used for:– grade control

– maintaining new width/depth ratio

– entrenchment ratio

– reducing bank erosion

– dissipating energy

– improving fish habitat

Rosgen, 2006  ‐ Images:  J.D. Kurz

W ‐Weir• Installed as if the W I looking downstream

• W‐Weir is similar to a Cross‐Vane in that both sides are vanes directed from the bankfull bank upstream toward the bed with similar departure angles

Structure createstwo thalwegs

Page 9: NSD Structures.ppt - Compatibility Mode...Microsoft PowerPoint - NSD Structures.ppt - Compatibility Mode Author: rhoch Created Date: 5/3/2019 9:46:50 AM

5/3/2019

9

W ‐Weir• W – weirs are constructed on very wide rivers and/or where two center 

pier bridge designs require protection

• Habitat for trout is enhanced by maximizing usable holding, feeding and spawning areas

• Fish hold in the multiple feeding lanes created by the two thalweg locations and pools

• Various age classes of trout also hold in the deep glide created upstream of the structure and against both banks due to the increased depth and reduced velocity of flows in the near‐bank region

• Spawning habitat is created in the tail‐out of the pools due to upwelling currents and a sorting of gravel bed material sizes preferred by trout

J – Hook Vane• Directed upstream, this structure can 

include:– Boulders

– Logs, and

– Root wads

and is located on outside of stream bends

• Designed to reduce:– bank erosion by reducing near‐bank slope

– velocity

– velocity gradient

– stream power, and 

– shear stress

• The vane portion of the structure occupies 1/3 of the bankfull width of the channel, while the “hook” occupies the center 1/3

Rosgen, 2006  ‐ Images:  J.D. Kurz

Page 10: NSD Structures.ppt - Compatibility Mode...Microsoft PowerPoint - NSD Structures.ppt - Compatibility Mode Author: rhoch Created Date: 5/3/2019 9:46:50 AM

5/3/2019

10

Root wad / log –vane / J – hook

• A combination of structures that provides streambank stabilization and fish habitat

• The placement of the ‘root wad’ and footer log simulates an under‐cut bank

Rosgen, 2006  ‐ Images:  J.D. Kurz

NSD Structure uses

• The Cross‐Vane, W‐Weir and J‐Hook Vane are structures that can be implemented to maintain or enhance river stability and function to facilitate multiple objectives

• These structures have been successfully applied in natural channel design for river restoration, bank stabilization, grade control, irrigation diversions, fish habitat enhancement, bridge protection, and recreational boating

• Continued monitoring will provide the information necessary to improve the designs to further their application to meet the ever‐increasing demand for environmentally “softer” structures that meet multiple objectives