nozzle design

18
 AE 5347/MAE 4322 Rocket Propulsion 04(4) - Nozzle Desi gn 

Upload: johnny

Post on 06-Oct-2015

15 views

Category:

Documents


0 download

DESCRIPTION

Nozzle Design

TRANSCRIPT

  • AE 5347/MAE 4322

    Rocket Propulsion

    04(4) - Nozzle Design

  • Numerical solution : 2-D, Steady, IrrotationalMethod of Characteristics (ZH 16.3)

    Basic Equations

    Governing Equations

    Characteristic/Compatibility Equations

    Characteristic equation

    22 2 2 2- - 2 - 0

    -

    , (through the flow field)

    x y y

    y x

    avu a u v a v uvu

    y

    u v o

    a a a u vV

    tan (Mach Lines)dy

    dx

  • Compatibility equation

    2 2 2 2 2- 2 - - - 0 (along Mach line)

    u a du uv u a dv a v y dx

  • 4 4 2 2

    4 - 4 2 - 2

    4 4

    - 4 - 4 -

    4 2 2 2

    - 4

    2

    2

    1

    2

    2

    -

    Computational Equation for Steady Two-Dimensional Irrotational

    Supersonic Flow

    - -

    - -

    ,

    ,

    -

    2 - ( - )

    -

    -

    y x y x

    y x y x

    Q u R v T

    Qu R v T

    T S x x Q u R v

    T

    Q u a

    R uv u v

    S x x

    - 1 - 1

    2 2

    -1

    -1

    2 2 2

    - 1 - 1 - 1

    2 4 2 4 2 4

    1 4-

    tan

    1sin

    ; ; (predictor)

    ; ; (predictor)

    ; ; (corrector)2 2 2

    Qu R v

    V u v

    v

    u

    a V

    VM

    a

    M

    u u v v y y

    u u v v y y

    u u v v y yu v y

    u uu

    1 4 1 4- - ; ; (corrector)

    2 2 2

    v v y yv y

  • 2 2

    2 2

    2

    -

    Finite Defference Equations for Two-dimensional Irrotational

    Supersonic Flow

    - 0

    tan

    -

    2 - -

    + or - denotes and characteristic, respectively

    y x

    Q u R v S x

    Q u a

    R uv u a

    a vS

    y

    C C

  • Note For 2-D planar isentropic flowThe Compatibility Equations can be integrated to

    Standard Solution Techniques Available For:Interior Points

    Wall Boundary Points

    Pressure Boundary Points

    Wave Cancellation Surface

    Shock Intersection

    - -

    : - =constantReimann invarients

    : =constant

    streamline inclination angle

    Prandtl-Meyer function

    C K

    C K

  • 1 1

    1 1

    - 1 1

    1 1

    : -

    - -

    :

    - - -

    C const K

    or

    C const K

    or

    Thus along

    K

    K

    IV line

    C

    C

  • Interior point

    3

    3

    3 3 1 2

    3 3 1 2

    3 3 1 2

    3

    2

    - 3 3 - 1 1

    3 3 2 2

    3 - - 1 2 1 2

    3 - - 1 2 1 2

    3 - - 1 2 1 2

    -1

    3 -

    -

    :

    : - -

    2 -

    1 1 1 -

    2 2 2

    . 2 - - -

    1 -

    2

    C K

    C K

    add K K K K

    K K K K

    sub K K K

    K

    K

    K

    K K

    3 1 2- 1 2 1 2

    1 1- - -

    2 2K K

  • Solid Boundary

    3 1

    3

    3

    3 3 1 1

    3 3 3

    1 1 3

    3 3

    ( ) C Characteristic

    (1) ;

    (2)

    -

    ( ) C Chara

    A

    K K

    known K

    K

    B

    3 1

    3

    3

    3 3 1 1

    3 3 3

    1 1 3

    - 3 3

    cteristic

    (1) ; - -

    (2) -

    -

    K K

    known K

    K

    K

    K

    C

    K

    K

    CC

    C

    1

    3

    3

    1

  • Wave Cancellation

    3 1

    3

    3 1

    3 3 1 1

    3 1 3 1

    - 3 3 1 1

    -1

    - -

    since

    -

    thus right running characteristics are uniform (PM flow)

    Set

    K K

    K

    K

    K

    K

    CC

    3

    1

  • Free-Jet Boundary

    3 1

    3

    3

    3 1

    -

    - - 3 3 1 1

    33

    30

    3 - 3 1 1 3

    3 3

    +

    3 3 1 1

    (A) C Characteristic

    (1) ;

    (2)

    - -

    -

    (B) C Characteristic

    (1) ; - -

    (2)

    K K

    Mpknown

    p

    K

    K

    K K

    3

    3

    32

    30

    3 3 1 1 3

    - 3 3

    -

    Mpknown

    p

    K

    K

    C

    C

    K

    K

    CC

    1

    1

    3

    3K

    K

  • Intersection of characteristic & shock wave

    3

    13

    3

    1 1 1

    3

    33 3 3 3

    3

    3

    3

    ?

    3

    Data:M

    , &

    Iteratiave Procedure

    (1) Assume

    (2) Oblique shock solution:

    , , , ,

    (3) calculate -

    (4) Converge

    (5)

    M

    pM f M

    K

    K

    p

    K

    K

  • Minimum length nozzle

    -

    - -

    @C: 0

    along ac:

    since a is origin of PM Exp. Wave

    or

    ( )

    2

    c

    c a

    a a

    a

    a

    a

    a

    a

    c c M M

    M w w

    M w

    w w

    Mw

    w

    K

    K

    f M

    K

    :Max

  • Nozzle design: Me=2.4

    1

    1

    0

    -01

    0

    0

    0

    - -

    -

    18.3752

    assume 0.375

    along a1: 0.375

    0.375 ( )

    0.375

    PT-1 0.75

    - 0

    1

    2

    a

    Mw

    ab

    PM Exp

    K K

    K K

    K K

    0

    0

    -

    10.75 0.375

    2

    1 1 - 0.75 0.375

    2 2K K

  • 0 0 0

    -

    0 0

    0 0

    -

    0 0

    -

    PT-2

    3.375 3.375 6.75

    - 3.375 -3.375 0

    1 1 6.75 3.375

    2 2

    1 1 - 6.75 3.375

    2 2

    K

    K

    K K

    K K