novelandinnovativepyrolysisandgasificationtechnologiesfor ... · pdf...

27
Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal Thomas Malkow* Institute for Energy, JRC Petten, Postbus 2, 1755 ZG Petten, The Netherlands Accepted 25 February 2003 Abstract Within the context of European Union (EU) energy policy and sustainibility in waste management, recent EU regulations demand energy efficient and environmentally sound disposal methods of Municipal Solid Waste (MSW). Currently, landfill with its many drawbacks is the preferred option in the EU and many other industrialised countries. Within the waste management hier- archy thermal disposal especially incineration is a viable and proven alternative. But, the dominating method, mass-burn grate incineration has drawbacks as well particularly hazardous emissions and harmful process residues. In recent years, pyrolysis and gasification technologies have emerged to address these issues and improve the energy output. To keep the many players in the field comprehensively informed and up-to-date, novel and innovative technology approaches emphasising European developments are reviewed. # 2003 Elsevier Ltd. All rights reserved. 0956-053X/03/$ - see front matter # 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0956-053X(03)00038-2 Waste Management 24 (2004) 53–79 www.elsevier.com/locate/wasman Abbreviations: ABFB, Atmospheric BFB; ACFB, Atmospheric CFB; AEE, Austrian Energy Energietechnik GmbH; APC, Air pollution con- trol; ASR, Automotive shredder residues; BBP, Babcock Borsig Power GmbH; BCL, Battelle (Memorial Institute) Columbus Laboratory; BFB, Bubbling fluidised bed; BGL, Britisch Gas Lurgi; BKMI, Babcock Krauss-Maffei Industrieanlagen GmbH; CCGT, Combined cycle gas turbine; CEC, Commission of the European Communities; CFB, Circulating fluidised bed; CFBG, CFB Gasifier; CFD, Computational fluid dynamics; CGC, Cold gas clean-up; CHP, Combined heat and power; CV, Calorific value; DBI, Deutsches Brennstoffnstitut R. u. A. GmbH; DEA, DEA Mineraloel AG; DoE, US Department of Energy; EBU, EBU Energiebu¨ro Umwelttechnologie GmbH; EC, European Commission; ECN, Ener- gieonderzoek Centrum Nederland; ECS, ECS Energie Consulting und Service GmbH; EPA, US Environmental Protection Agency; EU, European Union; FBC, Fluidised bed combustion; FBG, Fluidised bed gasification; FERCO, Future Energy Resources Corporation; FGC, Flue gas clean-up; FGR, Flue gas recirculation; GEC, Global Environment Centre Foundation; GHG, Greenhouse gas; GSP, Gaskombinat Schwarze Pumpe; HCV, High calorific value; HGC, Hot gas clean-up; HRSG, Heat recovery steam generator; HSR, Holderbank-Smelt-Redox; HTW, High-temperature winkler; HZC, Hitachi Zosen Corporation; IFP, Institut Franc¸ais du Pe´trol; IGCC, Integrated gasification combined cycle; IPPC, Integrated pol- lution, prevention and control; JSIM, Japan Society of Industrial Machinery Manufacturers; KPE, Kentucky Pioneer Energy, LLC; KSMF, Kubota-surface-melt-furnace; LANL, Los Alamos National Laboratory; LHV, Lower heating value; MCFC, Molten carbonate fuel cell; MCV, Medium calorific value; MDEU, Mannesmann Demag Energie- und Umwelttechnik GmbH; MFU, Mitteldeutsche Feuerungs- und Umwelttechnik GmbH; MLEE, ML Entsorgungs- und Energieanlagen GmbH; MPG, Multi-purpose gasifier; MSW, Municipal solid waste; MTCI, Manufacturing & Technology Conversion International, Inc.; NETL, National Energy Technology Laboratory; NTV, Niedertemperaturvergaser; OIT, Office of Industrial Technologies; OSC, OSC Process Engineering Ltd; PAH, Polyaromatic hydrocarbons; PC, Pulverised coal; PCC, PC combustion; PCB, Polychlorinated biphenyls; PCDD/F, Polychlorinated Dibenzo-p-Dioxine/-Furan; PEC, Product en Energie Centrale; PEMFC, Polymer electrolyte membrane fuel cell; PKA, PKA Umwelttechnik GmbH & Co. KG; PPC, Pressurised pulverised coal; PPFFS, Pressurized pulverized fuel firing system; PVC, Polyvinyl chloride; RAVON, RegionalerAbfallverband Oberlausitz-Niederschlesien; RCP, Recycled clean products; RDF, Refuse- derived fuel; RTD, Research, Technology & Development; RWE, RWE Energie AG; SHI, Sumitomo Heavy Industries Ltd; SNG, Synthetic natural gas; SOFC, Solid oxide fuel cell; SVZ, Sekunda¨rrohstoff-Verwertungszentrum Schwarze Pumpe GmbH; TDF, Tyre-derived fuel; TIT, Turbine inlet temperature; TPS, TPS Termiska Processer AB; TRI, ThermoChem Recovery International, Inc.; UBA, Umweltbundesamt; UET, UET Umwelt- und Energietechnik Freiberg GmbH; VEW, VEW Energie AG; VOC, Volatile organic compounds; WEEE, Waste of electrical and electronic equipments; WGT, Waste Gas Technology UK Limited; WPLC, Wisconsin Power and Light Corporation; WTE, Waste-to-energy. * Present address: Institut fu¨r Materialforschung III, Forschungszentrum Karlsruhe GmbH, 76021 Karlsruhe, Germany. Fax: +49-7247-82- 3956. E-mail address: [email protected] (T. Malkow).

Upload: vandiep

Post on 19-Mar-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

  • Novel and innovative pyrolysis and gasification technologies forenergy efficient and environmentally sound MSW disposal

    Thomas Malkow*

    Institute for Energy, JRC Petten, Postbus 2, 1755 ZG Petten, The Netherlands

    Accepted 25 February 2003

    Abstract

    Within the context of European Union (EU) energy policy and sustainibility in waste management, recent EU regulations

    demand energy efficient and environmentally sound disposal methods of Municipal Solid Waste (MSW). Currently, landfill with itsmany drawbacks is the preferred option in the EU and many other industrialised countries. Within the waste management hier-archy thermal disposal especially incineration is a viable and proven alternative. But, the dominating method, mass-burn grateincineration has drawbacks as well particularly hazardous emissions and harmful process residues. In recent years, pyrolysis and

    gasification technologies have emerged to address these issues and improve the energy output. To keep the many players in the fieldcomprehensively informed and up-to-date, novel and innovative technology approaches emphasising European developments arereviewed.

    # 2003 Elsevier Ltd. All rights reserved.

    0956-053X/03/$ - see front matter # 2003 Elsevier Ltd. All rights reserved.doi:10.1016/S0956-053X(03)00038-2

    Waste Management 24 (2004) 5379

    www.elsevier.com/locate/wasman

    Abbreviations: ABFB, Atmospheric BFB; ACFB, Atmospheric CFB; AEE, Austrian Energy Energietechnik GmbH; APC, Air pollution con-

    trol; ASR, Automotive shredder residues; BBP, Babcock Borsig Power GmbH; BCL, Battelle (Memorial Institute) Columbus Laboratory; BFB,

    Bubbling fluidised bed; BGL, Britisch Gas Lurgi; BKMI, Babcock Krauss-Maffei Industrieanlagen GmbH; CCGT, Combined cycle gas turbine;

    CEC, Commission of the European Communities; CFB, Circulating fluidised bed; CFBG, CFB Gasifier; CFD, Computational fluid dynamics;

    CGC, Cold gas clean-up; CHP, Combined heat and power; CV, Calorific value; DBI, Deutsches Brennstoffnstitut R. u. A. GmbH; DEA, DEA

    Mineraloel AG; DoE, US Department of Energy; EBU, EBU Energieburo Umwelttechnologie GmbH; EC, European Commission; ECN, Ener-

    gieonderzoek Centrum Nederland; ECS, ECS Energie Consulting und Service GmbH; EPA, US Environmental Protection Agency; EU, European

    Union; FBC, Fluidised bed combustion; FBG, Fluidised bed gasification; FERCO, Future Energy Resources Corporation; FGC, Flue gas clean-up;

    FGR, Flue gas recirculation; GEC, Global Environment Centre Foundation; GHG, Greenhouse gas; GSP, Gaskombinat Schwarze Pumpe; HCV,

    High calorific value; HGC, Hot gas clean-up; HRSG, Heat recovery steam generator; HSR, Holderbank-Smelt-Redox; HTW, High-temperature

    winkler; HZC, Hitachi Zosen Corporation; IFP, Institut Francais du Petrol; IGCC, Integrated gasification combined cycle; IPPC, Integrated pol-

    lution, prevention and control; JSIM, Japan Society of Industrial Machinery Manufacturers; KPE, Kentucky Pioneer Energy, LLC; KSMF,

    Kubota-surface-melt-furnace; LANL, Los Alamos National Laboratory; LHV, Lower heating value; MCFC, Molten carbonate fuel cell; MCV,

    Medium calorific value; MDEU, Mannesmann Demag Energie- und Umwelttechnik GmbH; MFU, Mitteldeutsche Feuerungs- und Umwelttechnik

    GmbH; MLEE, ML Entsorgungs- und Energieanlagen GmbH; MPG, Multi-purpose gasifier; MSW, Municipal solid waste; MTCI, Manufacturing

    & Technology Conversion International, Inc.; NETL, National Energy Technology Laboratory; NTV, Niedertemperaturvergaser; OIT, Office of

    Industrial Technologies; OSC, OSC Process Engineering Ltd; PAH, Polyaromatic hydrocarbons; PC, Pulverised coal; PCC, PC combustion; PCB,

    Polychlorinated biphenyls; PCDD/F, Polychlorinated Dibenzo-p-Dioxine/-Furan; PEC, Product en Energie Centrale; PEMFC, Polymer electrolyte

    membrane fuel cell; PKA, PKA Umwelttechnik GmbH & Co. KG; PPC, Pressurised pulverised coal; PPFFS, Pressurized pulverized fuel firing

    system; PVC, Polyvinyl chloride; RAVON, RegionalerAbfallverband Oberlausitz-Niederschlesien; RCP, Recycled clean products; RDF, Refuse-

    derived fuel; RTD, Research, Technology & Development; RWE, RWE Energie AG; SHI, Sumitomo Heavy Industries Ltd; SNG, Synthetic natural

    gas; SOFC, Solid oxide fuel cell; SVZ, Sekundarrohstoff-Verwertungszentrum Schwarze Pumpe GmbH; TDF, Tyre-derived fuel; TIT, Turbine inlet

    temperature; TPS, TPS Termiska Processer AB; TRI, ThermoChem Recovery International, Inc.; UBA, Umweltbundesamt; UET, UET Umwelt-

    und Energietechnik Freiberg GmbH; VEW, VEW Energie AG; VOC, Volatile organic compounds; WEEE, Waste of electrical and electronic

    equipments; WGT, Waste Gas Technology UK Limited; WPLC, Wisconsin Power and Light Corporation; WTE, Waste-to-energy.

    * Present address: Institut fur Materialforschung III, Forschungszentrum Karlsruhe GmbH, 76021 Karlsruhe, Germany. Fax: +49-7247-82-

    3956.

    E-mail address: [email protected] (T. Malkow).

    http://www.elsevier.com/locate/wasman/a4.3dmailto:[email protected]

  • 1. Introduction

    In recent years, the quantity of MSW has increasedsignificantly in the EU and other industrialised anddeveloping countries raising the question of its sustain-able disposal management (Brereton, 1996; Sakai et al.,1996; Hjelmar, 1996; Sakai, 1996; Vehlow, 1996; Sawellet al., 1996; Johannessen, 1996; Berenyi, 1996; Kilgroe,1996; Wiles, 1996; Ruth, 1998; Otoma et al., 1997;Hunsicker et al., 1996). Within the waste managementhierarchy, thermal disposal especially incineration withenergy recovery is a desired, viable and an option oftenused in industrialised nations (Rylander, 1997; Akehata,1998; Price, 1996; Hjelmar, 1996; Vehlow, 1996). In theEU, incineration of MSW lags currently behind anothermore popular waste management option, landfill. How-ever, the situation differs considerably between theMember States. Given the EU landfill directive 1999/31/EC (Anon., 1999a) and the the recent approval of thenew waste incineration directive 2000/76/EC (Anon.,2000b, 2001), more stringent requirements are imposedon the landfill option which turns waste management infavour of incineration among preferential waste mini-misation, reuse and recycling. Furthermore, the imenseexperiences of the European waste incineration industrydriven in the past by regulatory as well as technicalissues may facilitate their commercial potentials outsidethe Common market especially in highly populateddeveloping countries with scarce landfill sites.Moreover, in the recent past and in the future, ther-

    mal waste disposal is and can not only be seen as athermal treatment process for inertisation and thereduction of the amount of MSW by weight and volumewith the disposal of the actual process (bottom, boilerand fly ash) and Air Pollution Control (APC) residues(gypsum, hydrochloric acid etc.) on landfill sites or theiruse in the glass, ceramic, cement and/or constructionindustry. Thermal disposal methods provide also forrecovery of the chemical energy of MSW demanded bythe Integrated Pollution, Prevention and Control(IPPC) directive 96/61/EC (Anon., 1996). Thus, MSW isto be seen as a valuable indigenous source of fuelabundant especially in consumer-oriented societies ableto substitute or supplement fossil fuels in power gen-eration and other industrial processes thus ensures thesecurity of energy supply1 (Wulf-Schnabel, 1999; Hupeand Heyer, 1999; European Commission, 2000; CEC,1995a; Anon., 1997a; Gustavsson and Johansson, 1994;Neger and Spiegel, 1997; Akehata, 1998; Faulstich andJrgens, 2000; Wulf-Schnabel, 1999; Johnke andGamer, 2001; Albrecht et al., 1998; Hunlich and Bog-danski, 1996; Pawlowski and Gierzatowicz, 1997).Currently, incineration especially mass-burn grate fir-

    ing mainly with energy recovery done to a great extent

    in Waste-To-Energy (WTE) plants typically of 30-100MWel capacity is the dominanting technology in the EU(>90%) (Anon., 2000d; Akehata, 1998; Price, 1996;Haukohl, 2000; Smith et al., 2001; Bontoux, 1999; Har-tenstein and Horvay, 1996). Unlike fossil-fired powerplants, MSW incinerators have significantly lowerenergy efficiencies (1324%) mainly due to lower steamtemperatures to prevent severe boiler corrosion, foulingand slagging (fireside problems). This results in energyefficiencies typically of about 15%. Additionally, higheremissions of greenhouse gases (GHGs) per kWh con-verted energy are produced. On the other hand, wasteincineration reduces environmental concerns of theproduction and uncontrolled release of GHGs (BlancoPedraza and Gaya i Fuertes, 1999; Smith et al., 2001;Freed et al., 2001; Ayalon et al., 2000; Baldasano andSoriano, 2000; Meyers et al., 1997; Junfeng et al., 1997;Ackerman et al., 1998; Lethila and Tuhkanen, 1999;Streets and Waldhoff, 1999; Edmonds et al., 1996; Priceet al., 1999; Ruether, 1998; El-Fadel and Sbayti, 2000;Pipatti and Savolainen, 1996; Aumonier, 1996; Bolinand Kheshgi, 2001) on landfills ensuring partly envir-onmental protection.2

    Moreover, apart from the fireside problems (Gooch,2000; Meadowcroft, 1994b; Meadowcroft, 1994a;Haggblom and Mayrhuber, 1990; Elliott, 1993; Krause,1994; Vaughan et al., 1975; Krause et al., 1994; Krauseand Wright, 1996; Albert, 1997; Bryers, 1996) causingcostly repairs and requiring expensive prevention toavoid availibility and revenue losses (Moskal et al.,1997; Slejko and Beller, 1985), harmful emissions (Por-teous, 2001) of acidic gases (SOx, HCl, HF, NOx etc.)and volatile organic compounds (VOCs) especiallypolyaromatic hydrocarbons (PAH), polychlorinatedbiphenyls (PCBs) and polychlorinated dibenzo-p-diox-ine/-furans (PCDD/Fs)3 (Huang and Buekens, 2001;Gullett et al., 2000; Gullett et al., 1990; Hunsinger et al.,1997; Bruce et al., 2001; Gullett and Wikstrom, 2000;Gullett et al., 1998; Gullett and Rag