notes 7 of fe 501 physical properties of food materials

105
FE-501 PHYSICAL PROPERTIES OF PHYSICAL PROPERTIES OF FOOD MATERIALS FOOD MATERIALS ASSOC PROF. DR. YUS ANIZA YUSOF & DEPARTMENT OF PROCESS & FOOD ENGINEERING FACULTY OF ENGINEERING UNIVERSITI PUTRA MALAYSIA

Upload: abdul-moiz-dota

Post on 20-Jan-2015

242 views

Category:

Technology


1 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Notes 7 of fe 501 physical properties of food materials

FE-501PHYSICAL PROPERTIES OFPHYSICAL PROPERTIES OF

FOOD MATERIALSFOOD MATERIALSASSOC PROF. DR. YUS ANIZA YUSOF

&DEPARTMENT OF PROCESS & FOOD ENGINEERINGFACULTY OF ENGINEERING

UNIVERSITI PUTRA MALAYSIA

Page 2: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL PHENOMENAINTERFACIAL PHENOMENA

Page 3: Notes 7 of fe 501 physical properties of food materials

• Interfacial phenomena are behaviors that occur at the

INTRODUCTIONINTRODUCTION

• Interfacial phenomena are behaviors that occur at theinterface or boundary surface between a suspended particleand the continuous phase material in which it is suspended.p p

• For this reason, interfacial phenomena are almost alwaysassociated with disperse systems. disperse systems consist ofdiscrete particle phases surrounded by a continuous phasemedium.

• The particles can be in the solid liquid or gaseous phase;• The particles can be in the solid, liquid or gaseous phase;and the continuous phase medium can also be solid, liquidor gas. Thus, disperse systems can exist in any one of nineg , p y ydifferent combinations of particle phase and continuousphase.

Page 4: Notes 7 of fe 501 physical properties of food materials

Th k f t f di t i th t th t

INTRODUCTIONINTRODUCTION

• The key feature of any disperse system is that the twophases cannot be soluble (or miscible) with each other.

• They must be immiscible meaning they are incapable of• They must be immiscible, meaning they are incapable ofdissolving in each other to form a solution.

• For example if we dissolve a small amount of salt or• For example, if we dissolve a small amount of salt orsugar crystals in a glass of water, the crystals disappear,and we have a clear (miscible) solution.( )

Page 5: Notes 7 of fe 501 physical properties of food materials

Th ld b t f i i l h l i t

INTRODUCTIONINTRODUCTION

• The same would be true of mixing alcohol in water.

• Although two different substances are being mixedtogether in these examples the resulting mixturestogether in these examples, the resulting mixturesremain as single phase systems (miscible solutions).

• They do not have two separate phases• They do not have two separate phases.

• Thus, no interface is formed, and no interfacialphenomena occurphenomena occur.

Page 6: Notes 7 of fe 501 physical properties of food materials

O th th h d if t t i l d il ( il)

INTRODUCTIONINTRODUCTION

• On the other hand, if we try to mix salad oil (or any oil)in a glass of water, the oil will not mix or dissolve in thewaterwater.

• The oil will separate into small droplets (particle phase)that remain suspended and visible in the continuousthat remain suspended and visible in the continuouswater phase.

• This is an example of a two‐phase disperse system. Inp p p ythis type of system, an interface exists between thesurface of each droplet (particle phase) and thesurrounding liquid (continuous phase) in contact withthe particle surface.

Page 7: Notes 7 of fe 501 physical properties of food materials

S l f h i t f b f d

INTRODUCTIONINTRODUCTION

• Some examples of cases where interfaces can be formed are given in Table 8.1.

Table 8.1. Examples of cases where interfaces are formed (based on three aggregate states)

Page 8: Notes 7 of fe 501 physical properties of food materials

Wh ith f th h i t h di

INTRODUCTIONINTRODUCTION

• When either one of the phases in a two‐phase dispersesystem is a solid (solid–gas, solid–liquid, solid–solid), theinterfaces at the boundary surfaces between particleinterfaces at the boundary surfaces between particlephase and continuous phase are considered to be rigidinterfaces(nonflexible).

• The interfaces between only fluids (gas–liquid) will befocus in this chapter, in which the boundary surfacebetween particle phase and continuous phase involvesflexible interfaces (nonrigid). These are called fluidi t finterfaces.

Page 9: Notes 7 of fe 501 physical properties of food materials

M l l ithi th i t i f th ti l

INTRODUCTIONINTRODUCTION

• Molecules within the interior of the particle orcontinuous phase material are surrounded by amicroenvironment made up of similar neighboringmicroenvironment made up of similar neighboringmolecules with similar properties.

• This is different from the microenvironment surroundingThis is different from the microenvironment surroundingmolecules on the particle surface at an interfacebetween the two material phases, where theirneighbors may be different molecules with differentproperties.

Page 10: Notes 7 of fe 501 physical properties of food materials

F thi l l t i t f ill h

INTRODUCTIONINTRODUCTION

• For this reason, molecules at an interface will havedifferent properties from those within the interiormaterial of either phase such as vapor pressurematerial of either phase, such as vapor pressure.Sometimes the region at the interface is called theinterfacial phase.

• More dramatic examples of how interfacial phenomenaaffect physical properties of materials are when bipolarmolecules of surfactants and emulsifiers are adsorbedon interfaces.

Page 11: Notes 7 of fe 501 physical properties of food materials

• They can totally change the behavior of the two phase material to

INTRODUCTIONINTRODUCTION• They can totally change the behavior of the two‐phase material to

which they are added, such as when soap or detergent(surfactant) is added to suspended particles in water to get apermanent miscible disperse gas and liquid system(foam),orwhen an emulsifier like lecithin is added to an oil and waterdisperse system to get a permanent miscible emulsionp y g p(mayonnaise).

• These complex situations occurring at the interface between thef f b h h b h i d b h fsurfaces of both phases can be characterized by the forces

involved in interfacial tension, more commonly called “surfacetension” in the cases of solid–gas and liquid–gas interfaces.

Page 12: Notes 7 of fe 501 physical properties of food materials

• Figure 8 1 illustrates the different microenvironments

INTERFACIAL SURFACE TENSIONINTERFACIAL SURFACE TENSION• Figure 8.1 illustrates the different microenvironments

surrounding molecules on the surface at an interface, and thosedeep within the interior of a material.

Figure 8 1 Intermolecular forces at an interface A moleculeM is drivenFigure 8.1. Intermolecular forces at an interface. A molecule M is driveninward away from the interface by the resultant intermolecular force F(surface tension)

Page 13: Notes 7 of fe 501 physical properties of food materials

A l l M i th i t i f th t i l h

INTERFACIAL SURFACE TENSIONINTERFACIAL SURFACE TENSION

• A molecule M in the interior of the material hasneighbors all of the same nature.

• So forces of attraction and repulsion are the same in all• So, forces of attraction and repulsion are the same in alldirections, and the net force acting on the molecule iszero.zero.

• However, a molecule at the interface will be surroundedby different neighboring molecules at the surface withy g glesser attracting forces, like gases.

Page 14: Notes 7 of fe 501 physical properties of food materials

I thi th t f ill t b b t ill b i

INTERFACIAL SURFACE TENSIONINTERFACIAL SURFACE TENSION

• In this case, the net force will not be zero, but will be inthe direction into the interior of the phase of interest.

• Therefore in order to attract a molecule from the• Therefore, in order to attract a molecule from theinterior to an interface at the surface, this net forceacting inward needs to be overcome.acting inward needs to be overcome.

• As a consequence, the molecules at the interface have ahigher energy level than molecules within the interior ofg gythe material.

Page 15: Notes 7 of fe 501 physical properties of food materials

• This is the reason why altering conditions at an interface (or a

INTERFACIAL SURFACE TENSIONINTERFACIAL SURFACE TENSION• This is the reason why altering conditions at an interface (or a

surface) requires input of work or energy, such as in makingfoams or emulsions.

• This is also the reason why materials try to minimize the availablesurface area at their interfaces (minimize the energy required).

• Liquid droplets take the form of an enclosed volume with minimal• Liquid droplets take the form of an enclosed volume with minimalsurface area (spherical shape).

• Although the interfacial energy requirement is a minimum forg gy qspherical droplets, sometimes liquid droplets are not sphericalbecause of other forces acting them, such as falling rain drops arenot spheres because of gravimetric weight drag and inertianot spheres because of gravimetric weight, drag, and inertiaforces acting on them simultaneously.

Page 16: Notes 7 of fe 501 physical properties of food materials

• Recall that in order to attract a molecule from the interior to an

INTERFACIAL SURFACE TENSIONINTERFACIAL SURFACE TENSION• Recall that in order to attract a molecule from the interior to an

interface at the surface, the net force acting inward (surfacetension) needs to be overcome. This is illustrated as work energyin Figure 8.2.

Figure 8.2. Creating an element of interface dA

Page 17: Notes 7 of fe 501 physical properties of food materials

I d t t dditi l t f i t f dA

INTERFACIAL SURFACE TENSIONINTERFACIAL SURFACE TENSION

• In order to create an additional segment of interface dA= s ∙ db, we have to move the piston rod against thisforce F by distance db This is an element of work energyforce F by distance db. This is an element of work energy(force multiplied by distance, or dE = F ∙ dB). The energydivided by the newly created area dA is called specificinterfacial energy (specific with respect to a unit ofarea, not mass). Thus:

(8.1)

(8.2)

Page 18: Notes 7 of fe 501 physical properties of food materials

Wh

INTERFACIAL SURFACE TENSIONINTERFACIAL SURFACE TENSION

• Where

• The SI units are:

Page 19: Notes 7 of fe 501 physical properties of food materials

Th ifi i t f i l i l ll d i t f i l

INTERFACIAL SURFACE TENSIONINTERFACIAL SURFACE TENSION

• The specific interfacial energy is also called interfacialstress in the case of surface tension with gases, and isnot to be confused with the type of stress (axial ornot to be confused with the type of stress (axial orshear) discussed in the chapter on rheology. So in theengineering design of systems or methods to produce orenlarge an interfacial area, the energy needed can becalculated by:

(8.3)

(8.4)

Page 20: Notes 7 of fe 501 physical properties of food materials

It i id t th t l i th ifi i t f i l

INTERFACIAL SURFACE TENSIONINTERFACIAL SURFACE TENSION

• It is evident that lowering the specific interfacial energy σ would decrease the total energy needed to achieve the new system with the larger interfacial area and itthe new system with the larger interfacial area, and it will be more stable.

Page 21: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• When a beaker is overfilled with water, a curved interface isformed at the top surface, and the water reaches a slightlyhi h l l th th i f th b khigher level than the rim of the beaker.

• It looks as though an invisible thin skin would retain thewater at the top of the beakerwater at the top of the beaker.

• The reason for this “skin” is what we call “surface tension,”and is a result of the interfacial energy.gy

• This phenomenon is also the reason why the molecules inthe inner volume are exposed to a slight pressure whichwould not be there without that “skin.” This pressure iscalled capillary pressure.

Page 22: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• Assume we wish to slightly enlarge a small liquid droplet(increase its volume), as shown in Figure 8.3.

Figure 8.3.Volume increase of a liquid droplet (needs energy because of surfacebecause of surface tension)

Page 23: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• An incremental amount of work energy is needed byapplying pressure to increase V by dV. This incrementalwork can be expressed as dW = −p ∙ dV. Since increasingthe volume requires work to flow out of the system, itmust be mathematically negative This type of work ismust be mathematically negative. This type of work iscalled volume work. To make the volume larger we haveto overcome the capillary pressure p at the interface.to overcome the capillary pressure p at the interface.

• Thus:(8.5)( )

Page 24: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• Where

• Considering dV/dr for a sphere, and taking the volume V = 3/4π∙ r3 of a sphere:p

(8.6)

Page 25: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• So(8.7)

• A larger interface results from increasing the radius of the droplet. The work needed for this enlargement is interfacial work dW σ.

• With reference to equation (8.3):

(8.8)

Page 26: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• For a sphere with A = 4 π∙ r2:

(8 9)

• So

(8.9)

• Applying the law of energy conservation:

(8.10)

Applying the law of energy conservation:

(8.11)

Page 27: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• respectively,

• so, from equations (8.7) and (8.10) follows

(8 12)

• Which means

(8.12)

Which means

(8.13)

Page 28: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• This is called the capillary pressure after Laplace.

• It is also called “pressure because of curvature. ”Theradius r is the radius of curvature, and is influenced bythe capillary pressure.

• The surrounding pressure outside the droplet “p ” is anover pressure.

• The Laplace equation gives the pressure differencebetween inside and outside the droplet.

Page 29: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• When there is a convex shaped interface on one phase(1) with a radius of curvature r1 then the pressuredifference between this one phase and the surroundingphase (2) is:

• where

(8.14)

Page 30: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• From equation (8.14) it can be seen that the smaller theradius the higher is the capillary pressure.

• When the radius r is very high, the curvature of theinterface is very low.

• For r =∞, the interface is flat.

• For flat interfaces, Laplace’s equation gives: p1 − p2 = p =0 meaning there is no difference in pressure when theinterface has no curvature.

Page 31: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACESINTERFACIAL SURFACE TENSIONCURVED (CONVEX / CONCAVE) INTERFACES

• The curvature of an interface can be convex or concave.Laplace’s equation is valid for both types:– The interface of an overfilled glass beaker is convex; so, r > 0.The pressure in the liquid volume is higher than the pressureoutside in the surrounding air The higher this pressure theoutside in the surrounding air. The higher this pressure, thesmaller will be r.

– When an interface has a concave curvature, this is indicated bya negative value of r. Laplace’s equation gives: p1 − p2 < 0.That means the pressure in the phase with the concaveinterface is lower than the pressure in the surrounding phase.p g p

Page 32: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

• Temperature has a significant effect on surface tension(specific interfacial energy).

• Interfacial energy will decrease with increasingtemperature, and will decrease to zero when a critical

h d h h h ltemperature is reached at which there is no longer anyinterface between liquid and gas phases.

A li th ti l f ti ( d l) d l d• A linear mathematical function (model) was developedby Eotvos for predicting the decrease of interfacialenergy as a function of temperature for temperatureenergy as a function of temperature for temperatureranges far beyond the critical temperature.

Page 33: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

• However, for this purpose, interfacial energy was basedon the amount of substance (in moles), and was not thespecific interfacial energy (divided by area) definedearlier.

’ f h l d f b• Let’s assume for a moment that a liquid consists of cubic molecules with length l. Then, the volume of 1 mole of liquid can be expressed as:liquid can be expressed as:

(8.15)

Page 34: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

• One of these cubic molecules at an interface wouldneed the space:

(8.16)

• so, 1 mole of the substance would need an interfacialarea of:

(8.17)

Page 35: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

• so, the interfacial energy can be calculated:(8.18)

• with the volume of a mole of these molecules,

• then

(8.19)

then

(8.20)

Page 36: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

• This is the equation after Ramsey and Shield for thetemperature dependency of surface tension. Formaterials like water which have an abnormally hightendency for molecular association, a specific factor isintroduced:introduced:

(8.24)

Page 37: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

• where

Page 38: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

• Figure 5.4 illustrates the linear relationship between surface tension and temperature after equation (8.24).

Figure 8.4. Temperature dependency of surface tension after Eotvos resptension after Eotvos resp.after Ramsey and Shield

Page 39: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

Table 8.2 Surface tension of water–air at 20 °C Using equation (8.24) with the following data:

Page 40: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

• Gives

• This can be simplified to:

• So for 20 °C we get = 74 2 mN ∙m−1

(8.25)

So, for 20  C we get  = 74.2 mN m .

Page 41: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

• Another way is to measure values of surface tension fordifferent temperatures, and then find a mathematicalf ti t fit thi l ti hifunction to fit this relationship.

• Two approaches of this type are the followingequations: equation (8 26) is a simple linear regressionequations: equation (8.26) is a simple linear regression.

• Equation (8.27) is a polynomial regressionrecommended by the International Association for therecommended by the International Association for theProperties of Steam.

Page 42: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

INTERFACIAL SURFACE TENSIONTEMPERATURE DEPENDENCY

(8 27)

(8.26)

• For water

(8.27)

Page 43: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• Concentration dependency is important in substanceswhich tend to adsorb at their interfaces.

• This adsorption significantly influences the surfacetension, and for this reason these substances are called“interfacially active“ substances“interfacially active“ substances.

• The most common of these substances are emulsifiersand surfactantsand surfactants.

Page 44: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• Concentration dependency is important in substanceswhich tend to adsorb at their interfaces.

• This adsorption significantly influences the surfacetension, and for this reason these substances are called“interfacially active“ substances“interfacially active“ substances.

• The most common of these substances are emulsifiersand surfactantsand surfactants.

• An emulsifier is an amphiphilic (bipolar) molecule thatwill strongly adsorb to an interface between water andwill strongly adsorb to an interface between water andair or between water and oil.

Page 45: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• An amphiphilic molecule is bipolar because one end ofthe molecule is attracted to one phase in thedi i d th it d i tt t d t thdispersion, and the opposite end is attracted to theother phase.

• Thus these molecules have both lyophilic (“loving or• Thus, these molecules have both lyophilic (“loving orattracting the solvent”) and lyophobic (“fearing orrejecting the solvent”) properties.rejecting the solvent ) properties.

• In the specific case of water molecules, they are calledhydrophilic and hydrophobic properties.y p y p p p

Page 46: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• In the case of emulsifiers, this adsorption can lead to adramatic reduction in the surface tension, even when

ll t dvery small amounts are used.

• This is because the molecules will reorient themselveswithin the interfacial layer to reach the lowest energywithin the interfacial layer to reach the lowest energylevel possible.

• This reduces the interfacial energy and thus the• This reduces the interfacial energy and thus, thesurface tension.

Page 47: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• Adsorption of additional emulsifier molecules at theinterface further decreases the surface tension until all

il bl f th l l t th i t favailable spaces for these molecules at the interfaceare occupied.

• At this point any further addition of emulsifier• At this point, any further addition of emulsifiermolecules will cause them to associate formingmicelles.micelles.

• This creates an interface within the system leading to alower energy state in which interactions withgy“unfriendly“ parts of the molecules are minimized.

Page 48: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• This association is governed by the size and geometry of the polar groups in the newly formed micelle. There 

h i l i ll ( Fi 8 5) d iare spherical micelles (see Figure 8.5) and inverse spherical micelles.

Figure 8.5. Spherical micelle (schematic) The lyophobic(schematic). The lyophobicparts (drawn as lines) of the molecules are inside the micelle, covered from the surrounding solvent by the lyophilic parts (drawn as balls) of themolecules.

Page 49: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• Adsorption of an emulsifier or surfactant leads to a decrease in surface tension with increasing 

t ti f l ifi f t t til iti lconcentration of emulsifier or surfactant until a critical point is reached when micelles begin to form.

• This critical point in concentration is called the critical• This critical point in concentration is called the critical micelle formation concentration (cmc).

• The relation between the surface tension and the• The relation between the surface tension and the emulsifier concentration in the aqueous phase is well known, and is shown graphically, along with the cmc, g p y, gzone in Figure 8.6.

Page 50: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

Figure 8.6. Surface tension f f l fas function of emulsifier 

concentration

Page 51: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• The same graph with σ− c curve is shown with a series ofbeakers beneath it in Figure 8.7. The beakers beneath thegraph indicate the situation at the interface at the differentgraph indicate the situation at the interface at the differentstages of concentration.

Figure 8.7. After reaching the monolayer at the critical concentration point, cmc,the surface tension remainsconstant with increasingconstant with increasing concentration.

Page 52: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• Szyszkowski’s equation allows the calculation of the interfacial surface tension as a function of surfactant 

t ticoncentration:

(8.28)

• where

Page 53: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• In contrast to the addition of emulsifiers which leads todecreased surface tension, there are materials whichincrease the surface tension when added to adispersed system.

h f h• In the case of aqueous systems these are strongelectrolytes (inorganic salts) and hydroxyl compoundslike carbohydrateslike carbohydrates.

Page 54: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

INTERFACIAL SURFACE TENSIONCONCENTRATION DEPENDENCY

• The increase in surface tension comes about becauseof strong interaction between these substances andthe solvent.

• This interaction is called negative adsorption ord l d f f h d h hdepletion and is a form of hydration which preventsthese molecules from adsorption at the interface, andkeeps them well within the interior of the continuouskeeps them well within the interior of the continuousphase volume.

• Strong depletion can lead to forming an interfaceStrong depletion can lead to forming an interfacebetween two different aqueous phases.

Page 55: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

• The shape of a liquid droplet dispersed within another liquid in a three‐phase system is determined by the interfacial tensions between the phases. Such a droplet is shown in Figure 8.8

Figure 8.8. Interfacial tensionsFigure 8.8. Interfacial tensions at the point where three phases are in contact. For example, phase1 is a gas, h i li id d hphase 2 is liquid A, and phase 

3 is liquid B.

Page 56: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

• The droplet consists of phase 3, and is dispersed at theinterface between phases 2 and 1.

• In this situation, three interfacial tensions are acting onthe droplet, σ12, σ13 and σ23, which are causing theh f h d l b hshape of the droplet not be a sphere.

Page 57: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

• The values of the vectors σ12, σ13 and σ23 are governedby the substances of which phases 1, 2, 3 are made,but the direction of each vector is a matter of staticequilibrium.

h l b h d h h• The equilibrium is reached when tension σ12at thepoint of contact has the same value as the resultingvector resolved from addition of σ and σvector resolved from addition of σ13 and σ23.

• That means that the resulting contact angle 3 canhave only one possible value as shown in Figure 8 9have only one possible value, as shown in Figure 8.9.

Page 58: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

Figure 8.9.Addition of vectors in Figure 8.8

Page 59: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

• With the help of the cosine function for an obtuseangle:

• according to Figure 8.9 we can write

(8.29)

• because of

(8.30)

• and(8.31)

(8.32)

Page 60: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

• Or(8.33)

• Then(8.34)

• and therefore

(8 35)

• so(8.35)

(8.36)

Page 61: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

• For equation (8.36) we want to distinguish three cases: contact angle  3 above 90°, below 90° or equal to zero. In Table 8.3 the consequences for these three cases are listed.

Table 8.3. Typical cases of contact angles on a liquid underlying phase

Page 62: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

• Let us focus on the droplet behavior from an energetic point of view:– In case I, formation of a film, an increased adhesion between phases 2 and 3 takes place. Adhesion energy is released. 

In cases II and III formation a lens or sphere instead of– In cases II and III, formation a lens or sphere, instead of adhesion now cohesion of phase 3 is taking place. Cohesion energy is released.

Page 63: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

• The difference between adhesion energy and cohesionenergy characterizes the ability of the system to form afilm on the underlying phase and is called spreadingpressure.

h h h d f f• This pressure characterizes the tendency for forming afilm on the underlying phase.

Wh ll t f thi li id i d d th• When a small amount of this liquid is dropped on theunderlying phase, the liquid spreads along theinterface forming a thin filminterface forming a thin film.

Page 64: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONLIQUID‐LIQUID‐GAS SYSTEMS

• The thickness of this film can be decreased down as faras the monolayer thickness.

• The spreading pressure also drives the spreading ratewhen surfactant molecules spread onto newly

d f d f l fgenerated interfaces e.g. during foaming or emulsifyingprocesses.

Page 65: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONSOLID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONSOLID‐LIQUID‐GAS SYSTEMS

• When a liquid droplet forms onto a solid interface, theshape of the droplet is governed by the interfacialtensions of the phases in contact (see Figure 8.10).

Figure 8.10. Interfacial tensions at the point of contact between three phases with phase 2 being solid. For xample, phase 3 is a liquid and phase 1 is a gas.

Page 66: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONSOLID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONSOLID‐LIQUID‐GAS SYSTEMS

• We can derive the following from Figure 8.10:

• In equilibrium we have

• This is called Young’s equation.

(8.37)

g q

• With the abbreviation  ≡ 3, this means

(8.38)

Page 67: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONSOLID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONSOLID‐LIQUID‐GAS SYSTEMS

• Let us again focus on three cases where the contactangle is above or below 90° or equal to zero. In Table8.4 these cases and their consequences are listed.

• In Figure 8.11 and Figure 8.12 the different behaviorsll dare illustrated.

Page 68: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONSOLID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONSOLID‐LIQUID‐GAS SYSTEMS

Table 8.4. Typical cases of contact angles on a solid underlying phase

Page 69: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONSOLID‐LIQUID‐GAS SYSTEMS

INTERFACIAL SURFACE TENSIONSOLID‐LIQUID‐GAS SYSTEMS

Figure 8.11. A liquidon a solid interface: I:on a solid interface: I:complete wetting (filmforming), II: partialwetting, III: no wetting

Figure 8.12. Contact angle  below 90° (left),d b 90° ( i ht)and above 90° (right)

Page 70: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONKINETICS OF INTERFACIAL PHENOMENA

INTERFACIAL SURFACE TENSIONKINETICS OF INTERFACIAL PHENOMENA

• The effect of decreasing the interfacial tension byadsorption of polar (amphiphilic) molecules at theinterface is an equilibrium state. Until the equilibriumis reached these molecules must do the following:

( t ll ) d t h f i ll– (eventually) detach from a micelle

– find their way to the interface (diffusion)

– adjust to the proper orientation in order to adsorb– adjust to the proper orientation in order to adsorb

– find available space at the interface for adsorption.

Page 71: Notes 7 of fe 501 physical properties of food materials

INTERFACIAL SURFACE TENSIONKINETICS OF INTERFACIAL PHENOMENA

INTERFACIAL SURFACE TENSIONKINETICS OF INTERFACIAL PHENOMENA

• For engineering processes like formation of bubbles(foaming) and forming of droplets (emulsifying),it isimportant to have information about the kinetics ofthese steps (speed or rate in which they occur).

h k f f l d b d d b• The kinetics of interfacial adsorption can be studied bymeasurement of interfacial tension over time.

Page 72: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• One of the methods used for measurement ofinterfacial (surface) tension is known as the bow wiremethod. Figure 8.13 shows a schematic of how thismethod is applied.

Figure 8.13. Schematic for measuring surfacefor measuring surface tension with the bow wire. 1: forcemeter, 2: bow wire, 3: horizontal piece of wire, 4: liquid sample

Page 73: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• A piece of wire of length l is lifted for a distance dh outof a liquid interface.

• This causes the interfacial surface area to increase bydA = 2 ∙ l ∙ dh.

• The force F necessary for lifting the wire is measuredand used to calculate the surface tension.

Page 74: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• A piece of wire of length l is lifted for a distance dh outof a liquid interface. This causes the interfacial surfacearea to increase by dA = 2 ∙ l ∙ dh. The force F necessaryfor lifting the wire is measured and used to calculatethe surface tensionthe surface tension.

• An alternative is the “ring method” after Du Nouy. Inthis method a ring made of platinum wire is used Likethis method, a ring made of platinum wire is used. Likein Figure 5.13 the wire ring is lifted a distance dh,resulting in the interfacial area increasing by dA = 2 ∙ l ∙g g ydh with the circumference of the ring.

Page 75: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• Measuring F and using equation (8.2) the followingexpressions can be derived:

(8.39)

• Another possibility is using a vertical plate instead of ap y g pwire ring or straight wire. In Figure 8.14 the so‐calledWilhelmy plate is shown.

Page 76: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

Figure 8.14.Wilhelmy plate

Page 77: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• The interfacial force on a plate like this is:(8.40)

• where

Page 78: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• In equation (8.39) it was assumed that the liquid inFigure 8.13 was wetting the ring or the plate in an idealmanner, i.e. the contact angle = 0 (see Figure 8.14).

• For interfaces between water and hydrophilic solidsh l l dthis approximation is mostly valid.

• The wire ring and vertical plate techniques after deN d Wilh l ft d t thNouy and Wilhelmy are often used to measure thesurface tension of aqueous solutions.

Page 79: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• However, they can also be used to measure the interfacial tension between two liquids. 

• Then, in that case, the effects from buoyancy and wetting properties have to be taken into account.

• Another method of approach for measuring interfacialtension is to use capillary pressure.

• When a glass capillary tube is dipped vertically into abeaker with water, water will flow up the capillary tubeto a certain height forming a concave meniscus at theto a certain height forming a concave meniscus at theair–water interface (Figure 8.15).

Page 80: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

Figure 8.15. Capillary action (rise in liquid level in capillary tube) to evaluate interfacialto evaluate interfacial tension

Page 81: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• The height depends on the capillary diameter, interfacialtension and contact angle between liquid and solidmaterialmaterial.

• The evaluation is based on Laplace’s equation.• Recall in a liquid with a concave interface, there is lowerq ,

pressure compared to the phase behind the interface (inthis case, air). The lower pressure sucks the liquids into thecapillary until the equilibrium vertical height is reachedcapillary until the equilibrium vertical height is reached.The equilibrium is reached when the pressure on both sidesof the meniscus. That occurs when the hydrostatic pressureof the water in the capillary (below the interface) reachesof the water in the capillary (below the interface) reachesthe capillary pressure.

Page 82: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• To calculate the capillary rise, we first calculate thespecific interfacial energy to raise the liquid in thecapillary:

(8.41)

• With the wetted area in the capillary(8.42)

• the specific interfacial energy is:

(8 43)(8.43)

Page 83: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• With the interfacial force acting on the liquid(8.44)

• and its vertical component is

(8.45)

• The contact angle in Figure 8.15 between the wall of thecapillary and the liquid interface – sometimes called thewetting angle depends of the materials used Materialswetting angle – depends of the materials used. Materialswith ideal wetting properties have zero contact angle ( =0). In that case, cos = 1, and there is no influence on the)calculated value in equation (8.50).

Page 84: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• The weight force of the liquid in the capillary is

(8.46)

• In case of a liquid–air surface, it is( )

(8.47)

• So(8.48)

• At equilibrium, this force is equal to that in (8.45)(8.49)(8.49)

Page 85: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• and, therefore

(8.50)

• with the ideal case = 0 i.e. cos = 1

( )

(8.51)

Page 86: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• where

Page 87: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• There are further possibilities for measuring theinterfacial tension based on capillary action.

• The general principle is to measure geometricquantities like diameter, radius or volume of dropletsor bubbles, and calculate by applying Laplace’sequation.

Page 88: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• A simple technique is to form droplets with a pipette ofgiven orifice. By measuring the volume of the droplets,the interfacial tension can be calculated. This type ofdrop forming pipette is called a stalagmometer, Figure8 16 h l8.16 shows an example.

• An easy way of working with a stalagmometer is to d k l t th b f d ddrop a known volume, count the number of drops and calculate the average volume of one drop. Another way is to drip a fixed number of drops e g 20 into a beakeris to drip a fixed number of drops, e.g. 20 into a beaker on a balance and measure the average mass of a drop.

Page 89: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

Figure 8.16. Stalagmometer

Page 90: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• The evaluation of interfacial tension is based on theequilibrium of weight force of a drop and force ofadhesion to the capillary: With the weight force m ∙ gof a drop and the adhesion force 2π∙rK∙f∙σ in

ilib i i iequilibrium it is(8.52)

• called Tate’s law and so

(8.53)( )

Page 91: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• in case the drop volume was measured:

( )

• When drops are formed out of a small capillary the

(8.54)

When drops are formed out of a small capillary, thedroplet radius is larger than the capillary radius.

• A correction factor f (which is available from tables) isA correction factor f (which is available from tables) isintroduced to take account for this.

Page 92: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• Other techniques based on this principle also compare gravitational force with adhesive force. They are called the pendant drop method and sessile drop method (see Figure8.17).

Figure 5.17. Pendant drop/bubble and sessiledrop/bubble and sessiledrop/bubble (schematic)

Page 93: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• It is important to note that Laplace’s equation is validfor both convex and concave interfaces.

• So, instead of a sessile or pendant drop, theseexperiments can be performed with a sessile bubble ora pendant bubblea pendant bubble.

• In case of bubbles (see bubble point tensiometer inFigure 8.18) the buoyancy force has to be taken asg ) y ygravitational force.

• By reading the pressure p in the capillary and using( ) h fequation (8.14) we can get the surface tension

between gas and liquid of interest.

Page 94: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

Figure 5.18. Bubble pointFigure 5.18. Bubble point tensiometer (schematic). At the orifice of a glass  capillary a bubble is formed

Page 95: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

• When a drop is rotated, its shape is changed untilcentrifugal forces and interfacial forces are inequilibrium.

• The microscopic observation of a rotating drop tomeasure the interfacial tension is called the spinningdrop method (Figure 8.19). Because of temperatured d ll t f th t t bdependency all measurements of these types must becarried out under good temperature control.

Page 96: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING INTERFACIAL TENSIONMEASUREMENT

MEASURING INTERFACIAL TENSION

Figure 8.19. Schematic of spinning drop method. 1: heating jacket around rotating tube, 2: drop, 3: liquid in rotating tube

Page 97: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING CONTACT ANGLEMEASUREMENTMEASURING CONTACT ANGLE

• Measuring the contact angle with use of Young’sequation (8.38) can provide information aboutinterfacial tension and wetting ability, and can also giveinformation about kinetics of interfacial effects.

• Contact angle measurement is normally performed byoptical means.

• With the help of an optical instrument, along withappropriate image processing software, the shape of asingle droplet can be analyzed and evaluated This issingle droplet can be analyzed and evaluated. This iscalled drop shape analysis (DSA).

Page 98: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING CONTACT ANGLEMEASUREMENTMEASURING CONTACT ANGLE

• The contact angle can also be approximated with theWilhelmy method.

• The interfacial force on the Wilhelmy vertical platedepends on the contact angle, , and so it can becalculated.

• Sometimes, the Wilhelmy plate is moved in and out ofthe liquid to measure the contact angles for “wetting”and “unwetting,” which may be different.

h h d h b d f b• Then, the readings have to be corrected for buoyancyeffects. This is called the dynamic Wilhelmy technique.

Page 99: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING CONTACT ANGLEMEASUREMENTMEASURING CONTACT ANGLE

• When the contact angle between a liquid and a poroussolid (or powder particles) has to be measured, it canbe performed with the technique after Washburn.

• In this technique, the powder is placed in a glass tubewith a filter at the bottom, all of which hangs from abalance.

• By dipping the filter bottom into the liquid of interest,the powder begins to become wetted.

Page 100: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING CONTACT ANGLEMEASUREMENTMEASURING CONTACT ANGLE

• By recording the weight gain of the powder (moistureuptake), the wetting progress can be studied over time.

• The Washburn method also includes plotting thesquare of the weight gain versus time, which normallyappears as a straight line.

• From the slope of this line, the contact angle can becalculated, as follows:

(8.55)

Page 101: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTMEASURING CONTACT ANGLEMEASUREMENTMEASURING CONTACT ANGLE

• where

Page 102: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTDYNAMIC MEASUREMENTMEASUREMENTDYNAMIC MEASUREMENT

• Dynamic interfacial tension measurements are basedon the principle of generating a “fresh” interface area,and observe how the surface tension changes overtime on the way to reaching equilibrium.

• In order to study liquid–liquid interfaces, small dropletsare formed through a narrow orifice at a given rate.

• When the gravitational force of a droplet exceeds theinterfacial force, it detaches from the orifice.

Page 103: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTDYNAMIC MEASUREMENTMEASUREMENTDYNAMIC MEASUREMENT

• The time period between “birth” of a droplet and itsdetachment (lifetime) is identical to the age of theinterfacial area.

• The interfacial tension of a droplet with a giveninterfacial age can be calculated as shown in equation(8.54) for a stalagmometer.

• By increasing the droplet formation rate, different ages can be scanned, and interfacial tension can be plotted versus lifetime of the interfaceversus lifetime of the interface.

Page 104: Notes 7 of fe 501 physical properties of food materials

MEASUREMENTDYNAMIC MEASUREMENTMEASUREMENTDYNAMIC MEASUREMENT

• This method can be used to study how fast anemulsifier or surfactant can act in decreasing thesurface tension of a system.

• For fast processes like emulsification orhomogenization, fast interfacial kinetics are desirable.

• If a surfactant or emulsifier is too slow, new dropletsare not stabilized fast enough, and the desired qualityof emulsion or dispersion cannot be achieved in spiteof good equipment performanceof good equipment performance.

Page 105: Notes 7 of fe 501 physical properties of food materials

THANK YOUTHANK YOU