normal random variables and probability - millersville...

80
Normal Random Variables and Probability An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 J. Robert Buchanan Normal Random Variables and Probability

Upload: vunhi

Post on 08-Mar-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Normal Random Variables and ProbabilityAn Undergraduate Introduction to Financial Mathematics

J. Robert Buchanan

2010

J. Robert Buchanan Normal Random Variables and Probability

Page 2: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Discrete vs. Continuous Random Variables

Think about the probability of selecting X from the interval [0, 1]when

X ∈ {0, 1}

J. Robert Buchanan Normal Random Variables and Probability

Page 3: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Discrete vs. Continuous Random Variables

Think about the probability of selecting X from the interval [0, 1]when

X ∈ {0, 1}X ∈ {k/10 : k = 0, 1, . . . , 10}

J. Robert Buchanan Normal Random Variables and Probability

Page 4: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Discrete vs. Continuous Random Variables

Think about the probability of selecting X from the interval [0, 1]when

X ∈ {0, 1}X ∈ {k/10 : k = 0, 1, . . . , 10}X ∈ {k/n : k = 0, 1, . . . , n}

J. Robert Buchanan Normal Random Variables and Probability

Page 5: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Discrete vs. Continuous Random Variables

Think about the probability of selecting X from the interval [0, 1]when

X ∈ {0, 1}X ∈ {k/10 : k = 0, 1, . . . , 10}X ∈ {k/n : k = 0, 1, . . . , n}

Question: what happens to the last probability as n → ∞?

J. Robert Buchanan Normal Random Variables and Probability

Page 6: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Continuous Random Variables

Definition

A random variable X has a continuous distribution (orprobability distribution function or probability densityfunction) if there exists a non-negative function f : R → R suchthat for an interval [a, b] the

P (a ≤ X ≤ b) =

∫ b

af (x) dx .

The function f must, in addition to satisfying f (x) ≥ 0, have thefollowing property,

∫∞

−∞

f (x) dx = 1.

J. Robert Buchanan Normal Random Variables and Probability

Page 7: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Area Under the PDF

a bx

fHxL

J. Robert Buchanan Normal Random Variables and Probability

Page 8: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Uniformly Distributed Continuous Random Variables

Definition

A continuous random variable X is uniformly distributed inthe interval [a, b] (with b > a) if the probability that X belongs toany subinterval of [a, b] is equal to the length of the subintervaldivided by b − a.

J. Robert Buchanan Normal Random Variables and Probability

Page 9: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Uniformly Distributed Continuous Random Variables

Definition

A continuous random variable X is uniformly distributed inthe interval [a, b] (with b > a) if the probability that X belongs toany subinterval of [a, b] is equal to the length of the subintervaldivided by b − a.

Question: Assuming the PDF vanishes outside of [a, b] and isconstant on [a, b], what is the PDF?

J. Robert Buchanan Normal Random Variables and Probability

Page 10: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example

Example

Random variable X is continuously uniformly randomlydistributed in the interval [−5, 5]. Find the probability that−1 ≤ X ≤ 2.

J. Robert Buchanan Normal Random Variables and Probability

Page 11: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example

Example

Random variable X is continuously uniformly randomlydistributed in the interval [−5, 5]. Find the probability that−1 ≤ X ≤ 2.

P (−1 ≤ X ≤ 2) =2 − (−1)

5 − (−5)=

310

J. Robert Buchanan Normal Random Variables and Probability

Page 12: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Expected Value

Definition

The expected value or mean of a continuous random variableX with probability density function f (x) is

E [X ] =

∫∞

−∞

x f (x) dx .

J. Robert Buchanan Normal Random Variables and Probability

Page 13: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example

Example

Find the expected value of X if X is a continuously uniformlydistributed random variable on the interval [−10, 80].

J. Robert Buchanan Normal Random Variables and Probability

Page 14: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example

Example

Find the expected value of X if X is a continuously uniformlydistributed random variable on the interval [−10, 80].

E [X ] =

∫∞

−∞

x f (x) dx

=

∫ 80

−10

x90

dx

=x2

180

∣∣∣∣

80

−10

=6400180

− 100180

= 35

J. Robert Buchanan Normal Random Variables and Probability

Page 15: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Expected Value of a Function

Definition

The expected value of a function g of a continuously distributedrandom variable X which has probability distribution function fis defined as

E [g(X )] =

∫∞

−∞

g(x)f (x) dx ,

provided the improper integral converges absolutely, i.e.,E [g(X )] is defined if and only if

∫∞

−∞

|g(x)|f (x) dx < ∞.

J. Robert Buchanan Normal Random Variables and Probability

Page 16: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example

Example

Find the expected value of X 2 if X is continuously distributed on[0,∞) with probability density function f (x) = e−x .

J. Robert Buchanan Normal Random Variables and Probability

Page 17: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example

Example

Find the expected value of X 2 if X is continuously distributed on[0,∞) with probability density function f (x) = e−x .

E[

X 2]

=

∫∞

0x2e−x dx

= limM→∞

∫ M

0x2e−x dx

= limM→∞

[

−(x2 + 2x + 2)e−x]∣∣∣

M

0

= limM→∞

[

2 − (M2 + 2M + 2)e−M]

= 2

J. Robert Buchanan Normal Random Variables and Probability

Page 18: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Joint and Marginal Distributions

Definition

A joint probability distribution for a pair of random variables,X and Y , is a non-negative function f (x , y) for which

∫∞

−∞

∫∞

−∞

f (x , y) dx dy = 1.

J. Robert Buchanan Normal Random Variables and Probability

Page 19: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Joint and Marginal Distributions

Definition

A joint probability distribution for a pair of random variables,X and Y , is a non-negative function f (x , y) for which

∫∞

−∞

∫∞

−∞

f (x , y) dx dy = 1.

Definition

If X and Y are continuous random variables with jointdistribution f (x , y) then the marginal distribution for X isdefined as the function

fX (x) =

∫∞

−∞

f (x , y) dy .

J. Robert Buchanan Normal Random Variables and Probability

Page 20: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Joint and Marginal Distributions

Definition

A joint probability distribution for a pair of random variables,X and Y , is a non-negative function f (x , y) for which

∫∞

−∞

∫∞

−∞

f (x , y) dx dy = 1.

Definition

If X and Y are continuous random variables with jointdistribution f (x , y) then the marginal distribution for X isdefined as the function

fX (x) =

∫∞

−∞

f (x , y) dy .

Remark: a similar definition may be stated for the marginaldistribution for Y .

J. Robert Buchanan Normal Random Variables and Probability

Page 21: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Independence of Jointly Distributed RVs

Definition

Two continuous random variables are independent and only ifthe joint probability distribution function factors into the productof the marginal distributions of X and Y . In other words X andY are independent if and only if

f (x , y) = fX (x)fY (y)

for all real numbers x and y .

J. Robert Buchanan Normal Random Variables and Probability

Page 22: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example (1 of 2)

Example

Consider the jointly distributed random variables(X , Y ) ∈ [0,∞) × [−2, 2] whose distribution is the functionf (x , y) = 1

4ex . Find the mean of X + Y .

J. Robert Buchanan Normal Random Variables and Probability

Page 23: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example (2 of 2)

E [X + Y ] =

∫∞

0

∫ 2

−2(x + y)

(1

4ex

)

dy dx

=

∫∞

0

14

e−x∫ 2

−2(x + y) dy dx

=

∫∞

0

14

e−x(4x) dx

=

∫∞

0xe−x dx

= limM→∞

∫ M

0xe−x dx

= limM→∞

(1 − Me−M − e−M)

= 1

J. Robert Buchanan Normal Random Variables and Probability

Page 24: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Properties of the Expected Values

Theorem

If X1, X2, . . . , Xk are continuous random variables with jointprobability distribution f (x1, x2, . . . , xk ) thenE [X1 + X2 + · · · + Xk ] = E [X1] + E [X2] + · · · + E [Xk ].

J. Robert Buchanan Normal Random Variables and Probability

Page 25: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Properties of the Expected Values

Theorem

If X1, X2, . . . , Xk are continuous random variables with jointprobability distribution f (x1, x2, . . . , xk ) thenE [X1 + X2 + · · · + Xk ] = E [X1] + E [X2] + · · · + E [Xk ].

TheoremLet X1, X2, . . . , Xk be pairwise independent random variableswith joint distribution f (x1, x2, . . . , xk ), then

E [X1X2 · · ·Xk ] = E [X1] E [X2] · · ·E [Xk ] .

J. Robert Buchanan Normal Random Variables and Probability

Page 26: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Variance and Standard Deviation

Definition

If X is a continuously distributed random variable withprobability density function f (x), the variance of X is defined as

Var (X ) = E[

(X − µ)2]

=

∫∞

−∞

(x − µ)2f (x) dx ,

where µ = E [X ]. The standard deviation of X isσ(X ) =

Var (X ).

J. Robert Buchanan Normal Random Variables and Probability

Page 27: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Variance and Standard Deviation

Definition

If X is a continuously distributed random variable withprobability density function f (x), the variance of X is defined as

Var (X ) = E[

(X − µ)2]

=

∫∞

−∞

(x − µ)2f (x) dx ,

where µ = E [X ]. The standard deviation of X isσ(X ) =

Var (X ).

Theorem

Let X be a random variable with probability distribution f andmean µ, then Var (X ) = E

[X 2]− µ2.

J. Robert Buchanan Normal Random Variables and Probability

Page 28: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example

Example

Suppose X is continuously distributed on [0,∞) with probabilitydensity function f (x) = e−x . Find Var (X ).

J. Robert Buchanan Normal Random Variables and Probability

Page 29: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example

Example

Suppose X is continuously distributed on [0,∞) with probabilitydensity function f (x) = e−x . Find Var (X ).

Var (X ) = E[

X 2]

− (E [X ])2

=

∫∞

0x2e−x dx −

(∫∞

0xe−x dx

)2

= 2 −(∫

0xe−x dx

)2

= 2 − (1)2

= 1

J. Robert Buchanan Normal Random Variables and Probability

Page 30: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Properties of Variance

TheoremLet X be a continuous random variable with probabilitydistribution f (x) and let a, b ∈ R, then

Var (aX + b) = a2Var (X ) .

J. Robert Buchanan Normal Random Variables and Probability

Page 31: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Properties of Variance

TheoremLet X be a continuous random variable with probabilitydistribution f (x) and let a, b ∈ R, then

Var (aX + b) = a2Var (X ) .

TheoremLet X1, X2, . . . , Xk be pairwise independent continuous randomvariables with joint probability distribution f (x1, x2, . . . , xk ), then

Var (X1 + X2 + · · · + Xk ) = Var (X1) + Var (X2) + · · · + Var (Xk) .

J. Robert Buchanan Normal Random Variables and Probability

Page 32: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Normal Random Variable

Assumption: any characteristic of an object subject to a largenumber of independently acting forces typically takes on anormal distribution.

J. Robert Buchanan Normal Random Variables and Probability

Page 33: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Normal Random Variable

Assumption: any characteristic of an object subject to a largenumber of independently acting forces typically takes on anormal distribution.

We will develop the normal probability density function from theprobability function for the binomial random variable.

P (X = x) =n!

x!(n − x)!px(1 − p)n−x

J. Robert Buchanan Normal Random Variables and Probability

Page 34: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Overview of Derivation

Thought Experiment: Imagine standing at the origin of thenumber line and at each tick of a clock taking a step to the leftor the right. In the long run where will you stand?

J. Robert Buchanan Normal Random Variables and Probability

Page 35: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Overview of Derivation

Thought Experiment: Imagine standing at the origin of thenumber line and at each tick of a clock taking a step to the leftor the right. In the long run where will you stand?

Assumptions:1 n steps/ticks,2 random walk takes place during time interval [0, t], which

implies a “tick” lasts ∆t ,3 on each tick move a distance ∆x > 0,4 n(∆x)2 = 2kt ,5 probability of moving left/right is 1/2,6 all steps are independent.

J. Robert Buchanan Normal Random Variables and Probability

Page 36: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Take a Few Steps

Suppose r out of n steps (0 ≤ r ≤ n) have been to the right.

Question: Where are you?

J. Robert Buchanan Normal Random Variables and Probability

Page 37: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Take a Few Steps

Suppose r out of n steps (0 ≤ r ≤ n) have been to the right.

Question: Where are you?

(r − (n − r))∆x = (2r − n)∆x = m∆x

Question: What is the probability of standing there?

J. Robert Buchanan Normal Random Variables and Probability

Page 38: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Take a Few Steps

Suppose r out of n steps (0 ≤ r ≤ n) have been to the right.

Question: Where are you?

(r − (n − r))∆x = (2r − n)∆x = m∆x

Question: What is the probability of standing there?

P (X = m∆x) = P (X = (2r − n)∆x)

=

(nr

)(12

)r (12

)n−r

=n!

r !(n − r)!

(12

)n

=n!(1

2

)n

(12(n + m)

)!(1

2(n − m))!

J. Robert Buchanan Normal Random Variables and Probability

Page 39: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Bernoulli Steps

Each step is a Bernoulli experiment with outcomes ∆x and−∆x .Questions:

What is the expected value of a single step?

What is the variance in the outcomes?

J. Robert Buchanan Normal Random Variables and Probability

Page 40: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Bernoulli Steps

Each step is a Bernoulli experiment with outcomes ∆x and−∆x .Questions:

What is the expected value of a single step?

E [X ] = 0

What is the variance in the outcomes?

J. Robert Buchanan Normal Random Variables and Probability

Page 41: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Bernoulli Steps

Each step is a Bernoulli experiment with outcomes ∆x and−∆x .Questions:

What is the expected value of a single step?

E [X ] = 0

What is the variance in the outcomes?

Var (X ) = (∆x)2

J. Robert Buchanan Normal Random Variables and Probability

Page 42: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

The Sum of Bernoulli Steps

Questions: after n steps,

What is the expected value of where you stand?

What is the variance in final position?

J. Robert Buchanan Normal Random Variables and Probability

Page 43: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

The Sum of Bernoulli Steps

Questions: after n steps,

What is the expected value of where you stand?

E

[n∑

i=1

X

]

= nE [X ] = 0

What is the variance in final position?

J. Robert Buchanan Normal Random Variables and Probability

Page 44: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

The Sum of Bernoulli Steps

Questions: after n steps,

What is the expected value of where you stand?

E

[n∑

i=1

X

]

= nE [X ] = 0

What is the variance in final position?

Var

(n∑

i=1

X

)

= nVar (X ) = n(∆x)2

J. Robert Buchanan Normal Random Variables and Probability

Page 45: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Stirling’s Formula

n! ≈√

2πe−nnn+1/2

Replace all the factorials with Stirling’s Formula.

J. Robert Buchanan Normal Random Variables and Probability

Page 46: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Stirling’s Formula

n! ≈√

2πe−nnn+1/2

Replace all the factorials with Stirling’s Formula.

√2πe−nnn+1/2

(12

)n

√2πe−(n+m)/2

(12(n + m)

)(n+m+1)/2 √2πe−(n−m)/2

(12(n − m)

)(n−m+

=2√2nπ

(

1 +mn

)−m/2 (

1 − mn

)m/2(

1 − m2

n2

)−(n+1)/2

J. Robert Buchanan Normal Random Variables and Probability

Page 47: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Further Simplification

Since m = x/∆x and n = t/∆t ,

2√2nπ

(

1 +mn

)−m/2 (

1 − mn

)m/2(

1 − m2

n2

)−(n+1)/2

=2√

∆t√2πt

(

1 +x∆tt∆x

)−

x2∆x(

1 − x∆tt∆x

) x2∆x

(

1 −[

x∆tt∆x

]2)

−1+t/∆t

2

=∆x√kπt

[

1 +x ∆x2kt

]−

x2∆x[

1 − x ∆x2kt

] x2∆x

[

1 −(

x ∆x2kt

)2]−

kt(∆x)2

−12

,

since (∆x)2 = 2k∆t .

J. Robert Buchanan Normal Random Variables and Probability

Page 48: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Passing to the Limit

As we take the limit with ∆x → 0, the probability of standing atexactly one, specific location becomes 0.

Instead we must change our thinking and ask for

P ((m − 1)∆x < X < (m + 1)∆x) ≈ 2(∆x)f (x , t).

J. Robert Buchanan Normal Random Variables and Probability

Page 49: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Passing to the Limit

As we take the limit with ∆x → 0, the probability of standing atexactly one, specific location becomes 0.

Instead we must change our thinking and ask for

P ((m − 1)∆x < X < (m + 1)∆x) ≈ 2(∆x)f (x , t).

f (x , t)

=1

2√

kπtlim

∆x→0

[

1 +x ∆x2kt

] −x2∆x[

1 − x ∆x2kt

] x2∆x

[

1 −(

x ∆x2kt

)2]−

kt(∆x

=1

2√

kπt

(

ex

2kt

)−

x2(

e−x

2kt

) x2

(

e−x2

4k2 t2

)−kt

=1

2√

kπte−

x2

4kt

J. Robert Buchanan Normal Random Variables and Probability

Page 50: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Is f (x , t) a PDF?

Suppose∫

−∞

1

2√

kπte−

x2

4kt dx = S, then

S2 =

∫∞

−∞

1

2√

kπte−

x2

4kt dx∫

−∞

1

2√

kπte−

y2

4kt dy

=1

4kπt

∫∞

−∞

∫∞

−∞

e−(x2+y2)/4kt dx dy

=1

4kπt

∫ 2π

0

∫∞

0re−r2/4kt dr dθ

= 1

J. Robert Buchanan Normal Random Variables and Probability

Page 51: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Surface Plot

The graph of the PDF resembles:

x

t

z

x

J. Robert Buchanan Normal Random Variables and Probability

Page 52: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

The Bell Curve

For a fixed value of t , the graph of the PDF resembles:

x

y

J. Robert Buchanan Normal Random Variables and Probability

Page 53: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Expected Value and Variance

If X is a continuously distributed random variable with PDF:

f (x , t) =1

2√

kπte−

x2

4kt

then

J. Robert Buchanan Normal Random Variables and Probability

Page 54: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Expected Value and Variance

If X is a continuously distributed random variable with PDF:

f (x , t) =1

2√

kπte−

x2

4kt

then

E [X ] =

∫∞

−∞

x

2√

kπte−

x2

4kt dx = 0

and

J. Robert Buchanan Normal Random Variables and Probability

Page 55: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Expected Value and Variance

If X is a continuously distributed random variable with PDF:

f (x , t) =1

2√

kπte−

x2

4kt

then

E [X ] =

∫∞

−∞

x

2√

kπte−

x2

4kt dx = 0

and

Var (X ) =

∫∞

−∞

x2

2√

kπte−

x2

4kt dx − (E [X ])2 = 2kt

and thus 2kt = σ2 and we express the PDF for a normallydistributed random variable with mean µ and variance σ2 as

f (x) =1

σ√

2πe−

(x−µ)2

2σ2 .

J. Robert Buchanan Normal Random Variables and Probability

Page 56: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Standard Normal Distribution

When µ = 0 and σ = 1 the PDF f (x) =1√2π

e−x2

2 is called the

standard normal distribution.

J. Robert Buchanan Normal Random Variables and Probability

Page 57: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Standard Normal Distribution

When µ = 0 and σ = 1 the PDF f (x) =1√2π

e−x2

2 is called the

standard normal distribution.

The cumulative distribution function φ(x) is defined as

φ(x) = P (X < x) =

∫ x

−∞

1√2π

e−t2

2 dt .

J. Robert Buchanan Normal Random Variables and Probability

Page 58: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Change of Variable

Theorem

If X is a normally distributed random variable with expectedvalue µ and variance σ2, then Z = (X − µ)/σ is normallydistributed with an expected value of zero and a variance ofone.

J. Robert Buchanan Normal Random Variables and Probability

Page 59: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Central Limit Theorem (1 of 2)

Suppose the random variables X1, X2, . . . , Xn

1 are pairwise independent but not necessarily identicallydistributed,

2 have means µ1, µ2, . . . , µn and variances σ21, σ2

2 , . . . , σ2n,

and we define a new random variable Yn as

Yn =

∑ni=1 (Xi − µi)√∑n

i=1 σ2i

.

J. Robert Buchanan Normal Random Variables and Probability

Page 60: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Central Limit Theorem (1 of 2)

Suppose the random variables X1, X2, . . . , Xn

1 are pairwise independent but not necessarily identicallydistributed,

2 have means µ1, µ2, . . . , µn and variances σ21, σ2

2 , . . . , σ2n,

and we define a new random variable Yn as

Yn =

∑ni=1 (Xi − µi)√∑n

i=1 σ2i

.

A Central Limit Theorem due to Liapounov implies that Yn hasthe standard normal distribution.

J. Robert Buchanan Normal Random Variables and Probability

Page 61: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Central Limit Theorem (2 of 2)

Theorem

Suppose that the infinite collection {Xi}∞i=1 of random variablesare pairwise independent and that for each i ∈ N we haveE[|Xi − µi |3

]< ∞. If in addition,

limn→∞

∑ni=1 E

[|Xi − µi |3

]

(∑ni=1 σ2

i

)3/2= 0

then for any x ∈ R

limn→∞

P (Yn ≤ x) = φ(x)

where random variable Yn is defined as above.

J. Robert Buchanan Normal Random Variables and Probability

Page 62: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example (1 of 2)

Example

Suppose the annual snowfall in Millersville, PA is 14.6 incheswith a standard deviation of 3.2 inches and is normallydistributed. Snowfall amounts in different years areindependent. What is the probability that the sum of thesnowfall amounts in the next two years will exceed 30 inches?

J. Robert Buchanan Normal Random Variables and Probability

Page 63: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example (2 of 2)

Solution: If X represents the random variable standing for thesnowfall received in Millersville, PA for one year then X + X isthe random variable representing the snowfall of two years. Therandom variable X + X has mean µ = 2(14.6) = 29.2 inchesand variance σ2 = (3.2)2 + (3.2)2.

P (X + X > 30) = P

(

Z >30 − 29.2

(3.2)2 + (3.2)2

)

= 1 − P (Z ≤ 0.176777)

= 1 − φ(0.176777)

= 0.429842

J. Robert Buchanan Normal Random Variables and Probability

Page 64: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Lognormal Random Variables

Definition

A random variable X is a lognormal random variable withparameters µ and σ if ln X is a normally distributed randomvariable with mean µ and variance σ2.

J. Robert Buchanan Normal Random Variables and Probability

Page 65: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Lognormal Random Variables

Definition

A random variable X is a lognormal random variable withparameters µ and σ if ln X is a normally distributed randomvariable with mean µ and variance σ2.

Remarks:

The parameters µ is sometimes called the drift.

The parameter σ is sometimes called the volatility.

J. Robert Buchanan Normal Random Variables and Probability

Page 66: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Lognormal PDF (1 of 2)

Suppose X is lognormal, then Y = ln X is normal and

P (X < x) = P (Y < ln x)

=1√2π

∫ ln x

−∞

e−(t−µ)2/2σ2dt

If we let u = et and du = et dt , then

P (Y < ln x) =1√2π

∫ x

−∞

1u

e−(ln u−µ)2/2σ2du

J. Robert Buchanan Normal Random Variables and Probability

Page 67: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Lognormal PDF (2 of 2)

f (x) =1

(σ√

2π)xe−(ln x−µ)2/2σ2

x

y

J. Robert Buchanan Normal Random Variables and Probability

Page 68: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Mean and Variance of a Lognormal RV

Lemma

If X is a lognormal random variable with parameters µ and σthen

E [X ] = eµ+σ2/2

Var (X ) = e2µ+σ2(

eσ2 − 1)

J. Robert Buchanan Normal Random Variables and Probability

Page 69: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Derivation of Mean of a Lognormal RV

E [X ] =1

σ√

∫∞

0x(

1x

e−(ln x−µ)2/2σ2)

dx

=1

σ√

∫∞

−∞

ete−(t−µ)2/2σ2dt

= eµ+σ2/2 1

σ√

∫∞

−∞

e−(t−(µ+σ2))2/2σ2dt

= eµ+σ2/2

J. Robert Buchanan Normal Random Variables and Probability

Page 70: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Derivation of Variance of a Lognormal RV

Var (X ) = E[

X 2]

− (E [X ])2

=1

σ√

∫∞

0x2(

1x

e−(ln x−µ)2/2σ2)

dx −(

eµ+σ2/2)2

=1

σ√

∫∞

−∞

e2te−(t−µ)2/2 dt − e2µ+σ2

= e2(µ+σ2) 1

σ√

∫∞

−∞

e−(t−(µ+2σ))2/2 dt − e2µ+σ2

= e2µ+σ2(

eσ2 − 1)

J. Robert Buchanan Normal Random Variables and Probability

Page 71: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Lognormal RVs and Security Prices

Observation:

Let S(0) denote the price of a security at some startingtime arbitrarily chosen to be t = 0.

For n ≥ 1, let S(n) denote the price of the security on dayn.

The random variable X (n) = S(n)/S(n − 1) for n ≥ 1 islognormally distributed, i.e., ln X (n) = ln S(n) − ln S(n − 1)is normally distributed.

J. Robert Buchanan Normal Random Variables and Probability

Page 72: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Closing Prices of Sony (SNE) Stock

Closing prices of Sony Corporation stock:

Oct Jan Apr Jul

40

45

50

55

J. Robert Buchanan Normal Random Variables and Probability

Page 73: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Lognormal Behavior of Sony (SNE) Stock

Lognormal behavior of closing prices:

-0.04 -0.02 0 0.02 0.04 0.06

5

10

15

20

25

30

µ = 0.000416686 σ = 0.0160606

J. Robert Buchanan Normal Random Variables and Probability

Page 74: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example (1 of 2)

Example

What is the probability that the closing price of SonyCorporation stock will be higher today than yesterday?

J. Robert Buchanan Normal Random Variables and Probability

Page 75: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example (1 of 2)

Example

What is the probability that the closing price of SonyCorporation stock will be higher today than yesterday?

P

S(n)

S(n − 1)︸ ︷︷ ︸

lognormal

> 1

= P

lnS(n)

S(n − 1)︸ ︷︷ ︸

normal

> ln 1

= P (X > 0)

= P

(

Z >0 − 0.000416686

0.0160606

)

= 1 − P (Z ≤ −0.0259446)

= 1 − φ(−0.0259446)

= 0.510349J. Robert Buchanan Normal Random Variables and Probability

Page 76: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example (2 of 2)

Example

What is the probability that tomorrow’s closing price will behigher than yesterday’s closing price?

J. Robert Buchanan Normal Random Variables and Probability

Page 77: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Example (2 of 2)

Example

What is the probability that tomorrow’s closing price will behigher than yesterday’s closing price?

P

(S(n + 1)

S(n − 1)> 1

)

= P

(S(n + 1)

S(n)

S(n)

S(n − 1)> 1

)

= P

(

lnS(n + 1)

S(n)+ ln

S(n)

S(n − 1)> 0

)

= P (X + X > 0)

= P

(

Z >0 − 2(0.000416686)√

0.01606062 + 0.01606062

)

= 1 − P (Z ≤ −0.0366912)

= 1 − φ(−0.0366912)

= 0.514634

J. Robert Buchanan Normal Random Variables and Probability

Page 78: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Properties of Expected Value and Variance

If an item is worth K but can only be sold for X , a rationalinvestor would sell only if X ≥ K .

The payoff of the sale can be expressed as

(X − K )+ =

{X − K if X ≥ K ,0 if X < K .

J. Robert Buchanan Normal Random Variables and Probability

Page 79: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Payoff When X is Normal

Corollary

If X is normal random variable with mean µ and variance σ2

and K is a constant, then

E[(X − K )+

]=

σ√2π

e−(µ−K )2/2σ2+ (µ − K )φ

(µ − K

σ

)

,

Var((X − K )+

)

=(

(µ − 2K )2 + σ2)

φ

(µ − 2K

σ

)

+(µ − 2K )σ√

2πe−(µ−2K )2/2σ2

−(

σ√2π

e−(µ−K )2/2σ2+ (µ − K )φ

(µ − K

σ

))2

.

J. Robert Buchanan Normal Random Variables and Probability

Page 80: Normal Random Variables and Probability - Millersville …banach.millersville.edu/~bob/book/Normal/main.pdf ·  · 2014-12-22Joint and Marginal Distributions Definition A joint

Payoff When X is Lognormal

Corollary

If X is a lognormally distributed random variable withparameters µ and σ2 and K > 0 is a constant then

E[(X − K )+

]= eµ+σ2/2φ

(µ − ln K

σ+ σ

)

− Kφ

(µ − ln K

σ

)

,

Var((X − K )+

)= e2(µ+σ2)φ(w + 2σ) + K 2φ(w)

− 2Keµ+σ2/2φ(w + σ)

−(

eµ+σ2/2φ(w + σ) − Kφ(w))2

where w = (µ − ln K )/σ.

J. Robert Buchanan Normal Random Variables and Probability