nonrelativistic effective field theories for (exotic

20
Nonrelativistic effective field theories for (exotic) double heavy hadrons Jaume Tarr´ us Castell` a Institut de F´ ısica d’Altes Energies (UAB) with: Joan Soto (Universitat de Barcelona) based on: Phys.Rev.D 102 (2020) n o 1, 014013 arXiv:2005.00551 and Phys.Rev.D 102 (2020) n o 1, 014012 arXiv:2005.00552 Experimental and theoretical status of and perspectives for XYZ states, April 12th 2021. 1 / 18

Upload: others

Post on 16-Apr-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonrelativistic effective field theories for (exotic

Nonrelativistic effective field theories for (exotic) doubleheavy hadrons

Jaume Tarrus Castella

Institut de Fısica d’Altes Energies (UAB)with: Joan Soto (Universitat de Barcelona)

based on: Phys.Rev.D 102 (2020) no1, 014013 arXiv:2005.00551and Phys.Rev.D 102 (2020) no1, 014012 arXiv:2005.00552

Experimental and theoretical status of and perspectives for XYZ states, April12th 2021.

Powered by TCPDF (www.tcpdf.org)

1 / 18

Page 2: Nonrelativistic effective field theories for (exotic

Introduction and Motivation

I A large number of exotic quarkonium states have been discovered in the past 20years.

I Many new structures with a heavy quark antiquark pair have been proposed.I All double heavy hadrons have some common characteristics.

I QQ+ light quarks and gluons.• Heavy quarkonium.• Heavy hybrids QgQ.• Tetraquaks QQqq.• Pentaquaks QQqqq.• ...

I QQ+ light quarks and gluons.• Double heavy baryons QQq.• Hybrids baryons QQgq.• Tetraquaks QQqq.• Pentaquaks QQqqq.• ...

I We propose an unified EFT framework to describe any double heavy hadron.

2 / 18

Page 3: Nonrelativistic effective field theories for (exotic

Static Limit

I The natural starting point when studying hadrons with heavy quarks is NRQCD.I At leading order in NRQCD the heavy quarks are static.I In this limit the spectrum of the theory is formed by the static energies

EκpΛη (r) = limt→∞

it

ln〈0|Tr[PκΛOκp (t/2, r , R)O†κp (−t/2, r , R)

]|0〉

• The heavy quark pair distance r .• Light-degrees of freedom quantum numbers encoded in Oκp : spin κ, parity p, flavor...• Representation Λση of the cylindrical symmetry group D∞h.• PκΛ projects the κp representation of the light degrees of freedom into Λση

representation.I Static energies are nonperturbative and should be computed on the lattice.

3 / 18

Page 4: Nonrelativistic effective field theories for (exotic

Static Limit: Hybrids

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14

atEΓ

R/as

Gluon excitations

as/at = z*5

z=0.976(21)

β=2.5as~0.2 fm

Πu

Σ-u

Σ+g’

∆gΠg

Σ-g

Πg’Π’u

Σ+u

∆u

Σ+g

short distancedegeneracies

crossover

string ordering

N=4

N=3

N=2

N=1

N=0

• Quenched lattice NRQCD.

Juge, Kuti, Morningstar Phys.Rev.Lett.90

(2003)

Recent precision computation Capitani et al

Phys.Rev.D 99 (2019)

O(3) D∞h1+− Σ−u , Πu1−− Σ+′

g , Πg2+− Σ+

u , Π′u , ∆u2−− Σ−g , Π′g , ∆g

P10 = 13 − (r · S1)2,

P11 = (r · S1)2,

P20 = 15 −54

(r · S2)2 +14

(r · S2)4,

P21 =43

(r · S2)2 −13

(r · S2)4,

P22 = −1

12(r · S2)2 +

112

(r · S2)4.

OQQκp (t, r , R) =χ>c (t, x2)φ(t, x2 R)QQQκp (t, R)φ(t, R, x1)ψ(t, x1)

Qα1+− (t, x) =(

e†α · B(t, x)),

Qα1−− (t, x) =(

e†α · E(t, x)),

Qα2+− (t, x) = C2α1 m1 1 m2

(e†m1· D(t, x)

)(e†m2· E(t, x)

),

Qα2−− (t, x) = C2α1 m1 1 m2

(e†m1· D(t, x)

)(e†m2· B(t, x)

),

...

4 / 18

Page 5: Nonrelativistic effective field theories for (exotic

Static Limit: Double heavy baryons

Najjar, Bali PoS LAT2009 (2009) Nf = 2, a = 0.084 fm, L ' 1.3 fm, mπ ' 783 MeV.

O(3) D∞h(1/2)+ (1/2)g(3/2)− (1/2)u, (3/2)u(1/2)− (1/2)′u(3/2)+ (1/2)′g , (3/2)g

P 12

12

= 12

P 32

12

=9814 −

12

(r · S3/2

)2

P 32

32

= −1814 +

12

(r · S3/2

)2

OQQκp (t, r , R) =ψ>(t, x2)φ>(t, R, x2)QQQκp (t, R)φ(t, R, x1)ψ(t, x1)

Qα(1/2)+ (t, x) = T l[

P+ql (t, x)]α

Qα(1/2)− (t, x) = T l[

P+γ5ql (t, x)

]α...

Qβ(3/2)−

(t, x) = C3/2 β1 m 1/2αT l

[(e†m · D

)(P+q(t, x))α

]l

Qβ(3/2)+ (t, x) = C3/2 β

1 m 1/2αT l[(

e†m · D)(

P+γ5q(t, x)

)α]l

...

• T l are the 3 tensor invariants.5 / 18

Page 6: Nonrelativistic effective field theories for (exotic

EFT for double heavy hadrons

I We aim to build an EFT for the heavy quark-quark or heavy quark-antiquarkbound states in the minima of the static energies.

I Heavy quarks are non relativistic mQ � ΛQCD.I The binding energy is small compared to the characteristic hadronic scale

ΛQCD � EB ∼ mQv2.I No assumption on the scale of the interquark distance r ∼ 1/(mQv) respect to

ΛQCD as in strongly coupled pNRQCD. Brambilla, Pineda, Soto, Vairo Phys.Rev.D 63 (2001); Pineda,

Vairo Phys.Rev.D 63 (2001)

6 / 18

Page 7: Nonrelativistic effective field theories for (exotic

EFT for double heavy hadrons

I The fields Ψακp have quantum numbers matching those of Oακp .

L =∑κp

Ψ†κp [i∂t − hκp ] Ψκp

I Ψκp has spin components corresponding to the heavy quarks and light degrees offreedom.

I The heavy quark spin is suppressed by 1/mQ but the light degrees of freedomspin is not.

hκp =p2

mQ+

P2

4mQ+ V (0)

κp (r) +1

mQV (1)κp (r , p) +O(1/m2

Q)

I The potentials are (2κ+ 1)× (2κ+ 1) matrices is the light degrees of freedomspin space.

I The static potential can be decomposed into representations of D∞h with theprojectors PκΛ

V (0)κp (r) =

∑Λ

V (0)κpΛ(r)PκΛ

7 / 18

Page 8: Nonrelativistic effective field theories for (exotic

EFT for double heavy hadrons

I Up to leading order the EFT is equivalent to the Born-Oppenheimerapproximation.

V (1)κp (r) = V (1)

κpSI(r) + V (1)κpSD(r)

I V (1)κpSI decomposes as the static potential.

I At next-to-leading order the first heavy-quark spin dependent potentials appear.

V (1)κpSD(r) =

∑ΛΛ′

PκΛ[V saκpΛΛ′ (r)SQQ · (Pc.r.

10 · Sκ) + V sbκpΛΛ′ (r)SQQ · (Pc.r.

11 · Sκ)

+V lκpΛΛ′ (r) (LQQ · Sκ)

]PκΛ′

I 2SQQ = σQQ = σQ112 Q2 + 12 Q1 σQ2 ,(Pc.r.

10)ij = r i r j ,

(Pc.r.

11)ij = δij − r i r j .

I The potentials, V (0)κp , V (1)

κp are nonperturbative and should be computed withlattice QCD.

8 / 18

Page 9: Nonrelativistic effective field theories for (exotic

Matching to NRQCD

I The matching condition is

Ohκp (t, r , R) =

√Zhκp Ψhκp (t, r , R) , h = QQ, QQ .

I We match the NRQCD and heavy exotic hadron EFT correlators,

〈0|T{Ohκp (t/2)Oh†

κp (−t/2)}|0〉 =√

Zhκp 〈0|T{Ψhκp (t/2)Ψ†hκp (−t/2)}|0〉√

Z†hκp

I The left hand side can be expanded in terms of Wilson loops with operatorinsertions.

x1

x2

−t/2 t/2

C1 C2C2

I At leading order no insertion is needed

V (0)κpΛ(r) = EκpΛη (r)

9 / 18

Page 10: Nonrelativistic effective field theories for (exotic

Matching to NRQCD

I The potentials NLO are given insertions in the Wilson loop of D2(t′, x1)/(2mQ)or cF gσ1 · B(t′, x1)/mQ .

I For instance:

V saκp ΛΛ′ = − cF lim

t→∞

δΛΛ′

t

Tr[PκΛ]

Tr[PκΛ〈1〉

hκp�

] ∫ t/2

−t/2

dt′Tr[(

Sκ · Pc.r.10

)·(PκΛ〈gB(t′, x1)〉hκ

p�PκΛ)]

Tr[(

Sκ · Pc.r.10

)·(PκΛSκPκΛ

)]

〈B(t′,x1)〉hκp� =

B(t′,x1)

Qh†κp Qh

κp

I Similar expressions (but more involved) for V sb and V l in Soto, JTC, Phys.Rev.D 102 (2020)

10 / 18

Page 11: Nonrelativistic effective field theories for (exotic

Application to heavy hybrids

I Spectrum computed including nonadiabatic mixing for:• κ = 1+− Berwein, Brambilla, JTC, Vairo Phys.Rev.D92 (2015); Oncala, Soto Phys.Rev.D96 (2017)

• κ = 1−− Pineda, JTC, Phys.Rev.D100 (2019)

● ●●● ● ●●●●●

● ●●●●

●●●

●●●

●●●

●●

■■■

■■

■■

■■■

■■

■■

■ ■

■■

■■

■■

■■

◆ ◆◆

◆ ◆◆ ◆

◆◆ ◆◆ ◆◆

◆◆◆◆

◆◆◆◆

◆◆◆

◆◆

▲▲▲▲ ▲

▲▲ ▲▲▲▲ ▲

▲▲▲▲ ▲▲

▲▲▲▲

▲▲▲

▲▲

0.0 0.5 1.0 1.5r[fm]

1.0

1.5

2.0

2.5Vκp Λ(0) (r)[GeV]

ΠuΣu-

Σg+'

Πg

0++ 1++ 2++ 3++ 0-+ 1-+ 2-+ 3-+ 0+- 1+- 2+- 3+- 0-- 1-- 2-- 3--

4.2

4.4

4.6

4.8

5.0

Mass(GeV)ccg Hybrids

Πu\Σu-

ΠuΣu-

Σg+'\Πg

Πg

Σg+'

I bbg bcg also available.

11 / 18

Page 12: Nonrelativistic effective field theories for (exotic

Application to heavy hybrids

I Hyperfine contributions• LO Soto Nucl.Part.Phys.Proc. 294 (2018)

• LO+NLO and predictions for bbg Brambilla, Lai, Segovia, JTC, Vairo, Phys.Rev.D99 (2019)

• Short distance Matching Brambilla, Lai, Segovia, JTC, Phys.Rev.D101 (2020)

4.15

4.20

4.25

4.30

4.35

4.40

4.45

4.50

4.55

1-- (

1P1) 0

-+ (

3P0) 1

-+ (

3P1) 2

-+ (

3P2)

H1 multiplet

Mass (

GeV

)

spin average (4.393 GeV)perturbative

totallattice

10.68

10.70

10.72

10.74

10.76

10.78

10.80

10.82

10.84

1-- (1P1) 0-+ (3P0) 1-+ (3P1) 2-+ (3P2)

H1 multiplet

Mas

s (G

eV)

spin average (10.790 GeV)perturbative

totallattice

Fitted ccg splittings to Predicted bbg compared to posterior lattice data

Cheung et al JHEP12 (2016) Ryan et al JHEP 02 (2021)

12 / 18

Page 13: Nonrelativistic effective field theories for (exotic

Application to double heavy baryons

I We have applied our formalism to double heavy baryons.

(1/2)g

(1/2)u

(3/2)u(1/2)u

●●

●●●

●●●●●

●●●●●

●●●●●

●●

■■

■■

■■

◆◆

◆◆

◆◆

▲▲

▲▲

▲▲

0.2 0.4 0.6 0.8r[fm]

1.0

1.5

2.0

2.5

3.0

VΛη

(0)(r)[GeV]

I We consider the 4 lowest laying staticenergies.

I (3/2)u and (1/2)u are coupled sinceboth correspond to κ = 3/2−.

I Lattice data: Nf = 2, a = 0.084 fm,L ' 1.3 fm, mπ ' 783 MeV. Najjar, Bali

PoS LAT2009 (2009)

• The potentials are obtained from constrained fits to the lattice data:I Short distance:

∗ The potentials must reproduce the perturbative quark-quark Coulombic potential plusan offset constant, i.e should match to weakly coupled pNRQCD. Brambilla, Vairo Rosch, Phys.

Rev. D72 (2005)

∗ Energy gaps between static energies consistent with heavy-quark-diquark symmetry.Savage, Wise, Phys. Lett. B248,(1990)

∗ The offsets are shifted so the lowest one is Λ(1/2)+ = 0.555(31) GeV from latticestudies of D and B mesons masses. Bazavov et al. Phys. Rev. D98 (2018)

I Long distance: fixed string-like potential σr with a fitted offset constant,σ = 0.21 GeV2.

13 / 18

Page 14: Nonrelativistic effective field theories for (exotic

Ξcc spectrum

Λc0D0 Threshold

(1/2)g

(1/2)u′

(3/2)u\(1/2)u

(1/2)u

(1/2)+ (3/2)+ (5/2)+ (7/2)+ (1/2)- (3/2)- (5/2)- (7/2)- (9/2)-3.6

3.8

4.0

4.2

4.4

4.6

4.8

Mass(GeV)

Ξbb spectrum

Λb0B0 Threshold

(1/2)g

(1/2)u′

(3/2)u\(1/2)u

(1/2)u

(1/2)+ (3/2)+ (5/2)+ (7/2)+ (9/2)+ (1/2)- (3/2)- (5/2)- (7/2)- (9/2)-

10.2

10.4

10.6

10.8

11.0

11.2Mass(GeV)

Soto, JTC, Phys.Rev.D 102 (2020)

14 / 18

Page 15: Nonrelativistic effective field theories for (exotic

Double heavy baryons hyperfine splittings

I At O(1/mQ) we have heavy-quark spin dependent operators responsible forhyperfine splittings.

I There is no lattice data for the potentials but some model independent relationscan be derived.

I For κ = 1/2 there are only 3 operators:

V (1)(1/2)±SD

(r) =V s1(1/2)± (r)SQQ · S1/2 + V s2

(1/2)± (r)SQQ ·(

T 2 · S1/2

)+ V l

(1/2)± (r)(

LQQ · S1/2

)with (T 2)ij = r i r j − δij/2

I Let us label the mass of the states as Mnjl` = M(0)nl + M(1)

njl` + . . .

∗ n principal quantum number.∗ l orbital angular momentum.∗ ` sum of orbital angular momentum and light-quark spin.∗ j total angular momentum.∗ Heavy quark spin state fixed by Pauli principle, sQQ = 1 for l even and sQQ = 0 for l

odd.

15 / 18

Page 16: Nonrelativistic effective field theories for (exotic

Double heavy baryons hyperfine splittings

I l = 0 only hyperfine contributions from V s1(1/2)+

M(1)nj0 1

2=

12

(j(j + 1)−

114

) 〈V s1(1/2)+ 〉n0

mQ,⇒ 2Mn 3

2 0 12

+ Mn 12 0 1

2= 3M(0)

n0

I l = 1 only hyperfine contributions from V l(1/2)+

M(1)nj1j =

12

(j(j + 1)−

114

) 〈V l(1/2)+ 〉n1

mQ,⇒ 2Mn 3

2 1 32

+ Mn 12 1 1

2= 3M(0)

n1

I l = 2 all 3 operators contribute, but since we have 6 states some modelindependent relations can still be found.

16 / 18

Page 17: Nonrelativistic effective field theories for (exotic

Double heavy baryons hyperfine splittings: Comparison with latticeQCD

I Ground state: 13S doublet (1/2, 3/2)+. MΞcc ≡ M1 12 0 1

2, MΞ∗cc

≡ M1 32 0 1

2,

δhf = MΞ∗cc−MΞcc .

Ref. δhf [MeV] spin avg.Briceno et al Phys.Rev.D86 (2012) 53(94) 3630(50)

Namekawa et al Phys.Rev.D87 (2013) 101(36) 3672(20)Brown et al Phys.Rev.D90 (2014) 82.8(9.2) 3665(36)

Alexandrou et al Phys.Rev.D90 (2014) 84(58) 3624(33)Bali et al Phys.Rev.D92 (2015) 85(9) 3666(13)

Padmanath et al Phys.Rev.D91 (2015) 94(12) 3700(6)Alexandrou et al Phys.Rev.D96 (2017) 76(41) 3657(25)

Our values 136(44) 3712(63)

I First excitation: 11P doublet (1/2, 3/2)−. Spin average agreement with Padmanath et al

Phys.Rev.D91 (2015); Bali et al Phys.Rev.D92 (2015)

I Higher excitations below Λc − D threshold: 13(S\D) (` = 3/2) triplet of the(3/2)u − (1/2)u BO potentials (1/2, 3/2, 5/2)− ; 13S doublet of the (1/2)′u BO potential(1/2, 3/2)−. Qualitative agreement with Padmanath et al Phys.Rev.D91 (2015).

I Bottomonium ground state doublet: our value M(0)10 = 10.140(77) MeV. Agreement with

Ms.a. = 10.166(40) MeV Lewis et al Phys.Rev.D79(2009) and Ms.a. = 10.143(29) MeV Brown et al

Phys.Rev.D90 (2014), compatible with Ms.a. = 10.099(17) MeV Mohanta et al Phys.Rev.D101 (2020).

17 / 18

Page 18: Nonrelativistic effective field theories for (exotic

Conclusions

I We have developed an EFT framework to describe double heavy hadrons (eitherQQ or QQ) containing light degrees of freedom (gluons or light quarks) with anyquantum numbers.• The EFT incorporates the heavy quark mass and adiabatic expansions.• We have worked out the EFT up to O(1/mQ).• The potentials, which are nonperturbative, are given by NRQCD Wilson loops.• No assumption on the interquark distance is made. In the short distance we can

incorporate heavy-quark-diquark symmetry or perturvative computations; in the longdistance string models.

I We have applied the framework to double heavy baryons• We have obtain the spectrum for Ξcc and Ξbb for the four lowest static energies

including the mixing.• Provided model independent formulas for the hyperfine splittings of multiplets withκ = 1/2 and l = 0, 1, 2.

• Results compatible with lattice QCD results.

18 / 18

Page 19: Nonrelativistic effective field theories for (exotic

Thank you for your attention

Page 20: Nonrelativistic effective field theories for (exotic

Multiplets

κp Λη l ` sQQ j ηP

(1/2)± (1/2)g/u′

0 1/2 1 (1/2, 3/2) ±1 (1/2, 3/2) 0 (1/2, 3/2) ∓2 (3/2, 5/2) 1 ((1/2, 3/2, 5/2) , (3/2, 5/2, 7/2)) ±3 (5/2, 7/2) 0 (5/2, 7/2) ∓

(3/2)−(3/2)u\(1/2)u

0\2 3/2 1 (1/2, 3/2, 5/2) −1\3 5/2 0 5/2 +2\4 7/2 1 (5/2, 7/2, 9/2) −3\5 9/2 0 9/2 +1\3 3/2 0 3/2 +2\4 5/2 1 (3/2, 5/2, 7/2) −3\5 7/2 0 7/2 +4\6 9/2 1 (7/2, 9/2, 11/2) −

(1/2)u1 1/2 0 1/2 +2 1/2 1 (1/2, 3/2) −

20 / 18