nonmodal amplification of disturbances in inertialess...

23
D Nonmodal amplification of disturbances in inertialess flows of viscoelastic fluids Mihailo Jovanovi´ c www.umn.edu/mihailo Shaqfeh Research Group Meeting; July 5, 2010

Upload: others

Post on 27-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

Nonmodal amplification of disturbances ininertialess flows of viscoelastic fluids

Mihailo Jovanovicwww.umn.edu/∼mihailo

Shaqfeh Research Group Meeting; July 5, 2010

Page 2: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 1

Turbulence without inertiaNEWTONIAN: inertial turbulence VISCOELASTIC: elastic turbulence

Groisman & Steinberg, Nature ’00

NEWTONIAN: VISCOELASTIC:

+ FLOW RESISTANCE: increased 20 times!

Page 3: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 2

Good for mixing . . .

39 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 22. Photographs of the flow taken with the laser sheet visualization(figure 21) at different N. The field of view is 3.07 mm × 2.06 mm, andcorresponds to the region shown in figure 21 (rotated 90◦ counterclockwise).Bright regions correspond to high concentration of the fluorescent dye. (a) Flowof the pure solvent at N = 29; (b–d) flow of the polymer solution at Wi = 6.7and at N = 8, 29, 54, respectively.

The channel was illuminated from a side by an argon-ion laser beam converted by two cylindricallenses to a broad sheet of light with a thickness of about 40 µm in the region of observation. Itproduced a thin cut in the three-dimensional mixing pattern, parallel to the top and bottom of thechannel at a half of the channel depth.

Fluorescent light emitted by the liquid in the direction perpendicular to the beam and tothe channel plane was projected on to a CCD array by a camera lens and digitized by an 8-bit,512 × 512 frame grabber. Using homogeneous solutions with different amounts of the dye, wefound intensity of the fluorescent light captured by the camera to be linearly proportional tothe dye concentration. Therefore, concentration of the dye was evaluated from the fluorescentlight intensity. (The liquid without the dye appeared completely dark (figure 22) and signalfrom it was below the noise level of the camera.)

The flow was always observed near the middle of a half-ring on the side from whichthe laser beam was coming. So, the number, N, of a unit (figure 21) counted from the inletwas a natural linear co-ordinate along the channel. Since the total rate of liquid discharge,Q, was constant, N was also proportional to the average time of mixing. In order to observefurther stages of mixing (corresponding to N > 30), we carried out a series of experiments,

New Journal of Physics 6 (2004) 29 (http://www.njp.org/)

Groisman & Steinberg, Nature ’01

Page 4: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 3

. . . bad for processingDISTORTION OF A POLYMER MELT EMERGING FROM A CAPILLARY TUBE

In th

e 18

80s O

sbor

ne

Rey

nol

ds1es

tabl

ish

edth

at f

luid

in

erti

a (t

hat

is,

mom

entu

m)

driv

es t

he

irre

gula

r pa

tter

ns

obse

rved

in

wat

er f

low

ing

rapi

dly

from

a p

ipe,

plu

mes

emer

gin

g fr

om a

sm

okes

tack

, edd

ies

in t

he

wak

e of

a b

ulk

y ob

ject

, an

d m

any

oth

erev

eryd

ay

phen

omen

a.

Kn

own

as

‘t

urb

u-

len

ce’,

thes

e pa

tter

ns

occu

r at

hig

h v

alu

es

of t

he

Rey

nol

ds n

um

ber,

th

e di

men

sion

less

rati

o of

in

erti

al t

o vi

scou

s fo

rce.

Ove

r th

eye

ars

turb

ule

nce

has

bec

ome

bett

er c

har

ac-

teri

zed,

an

d w

e n

ow k

now

it to

be

acco

mpa

-n

ied

not

on

ly b

y an

incr

ease

in d

rag,

bu

t als

oby

cer

tain

ch

arac

teri

stic

spa

tial

or

tem

pora

lve

loci

ty fl

uct

uat

ion

s.O

n p

age

53 o

f th

is i

ssu

e, G

rois

man

an

dSt

ein

berg

2sh

ow th

at b

oth

an

incr

ease

d re

sis-

tan

ce t

o fl

ow a

nd

oth

er f

eatu

res

of t

urb

u-

len

ce c

an o

ccu

r in

flu

ids

wit

h h

ardl

y an

yin

erti

al fo

rces

, if t

he

role

of i

ner

tia

is in

stea

dpl

ayed

by

elas

tici

ty, a

for

ce p

rese

nt

in s

olu

-ti

ons o

f lon

g-ch

ain

pol

ymer

s. T

he

flow

stu

d-ie

d by

Gro

ism

an a

nd

Stei

nbe

rg i

s si

mpl

e: a

poly

mer

flu

id c

onfi

ned

bet

wee

n tw

o pa

ralle

ldi

sks

is s

hea

red

by r

otat

ion

of

one

of t

he

disk

s abo

ut t

hei

r co

mm

on a

xis.

At i

ncr

ease

dfl

ow r

ates

(bu

t rat

es s

till

too

low

to g

ener

ate

mu

ch i

ner

tia)

th

e fl

ow a

cqu

ires

tu

rbu

len

tch

arac

teri

stic

s.

Irre

gula

r fl

ow p

atte

rns

hav

e lo

ng

been

seen

in

pol

ymer

ic a

nd

oth

er e

last

ic f

luid

s,an

d h

ave

even

occ

asio

nal

ly b

een

du

bbed

‘ela

stic

turb

ule

nce

’3 . On

e su

ch fl

ow is

that

of

a po

lym

er m

elt

emer

gin

g fr

om t

he

end

of a

capi

llary

tube

. Abo

ve a

cri

tica

l flo

w r

ate,

the

poly

mer

jet

bec

omes

irr

egu

larl

y di

stor

ted

(Fig

. 1).

Dis

tort

ion

s in

th

is a

nd

oth

er p

oly-

mer

flo

ws

can

mar

pro

duct

s m

ade

from

poly

mer

s, s

uch

as

film

s an

d ex

tru

ded

part

s.If

th

e po

lym

er i

s m

ade

mor

e vi

scou

s by

incr

easi

ng

the

len

gth

of

its

poly

mer

mol

ec-

ule

s, th

e m

inim

um

flow

rate

pro

duci

ng

such

irre

gula

r fl

ow d

ecre

ases

. T

his

is

surp

risi

ng

beca

use

an

in

crea

se i

n v

isco

city

has

th

eop

posi

te e

ffec

t on

in

erti

ally

dri

ven

tu

rbu

-le

nce

. In

fact

, for

flu

ids c

onta

inin

g lo

ng

poly

-m

er m

olec

ule

s, t

he

Rey

nol

ds n

um

ber

at t

he

onse

t of

th

e in

stab

iliti

es c

an b

e m

inu

scu

le,

as l

ow a

s 10

115

. Tu

rbu

len

t fl

ow o

f w

ater

in

a p

ipe,

by

con

tras

t, h

as a

mu

ch h

igh

erR

eyn

olds

nu

mbe

r, a

rou

nd

105 .

It i

s cl

ear,

th

en, t

hat

in

erti

a h

as n

oth

ing

wh

atso

ever

to d

o w

ith

this

kin

d of

pol

ymer

ic‘t

urb

ule

nce

’. For

vis

cou

s pol

ymer

s, in

stab

ili-

ties

an

d ir

regu

lar

flow

s se

t in

at

a cr

itic

alva

lue

of t

he

so-c

alle

d W

eiss

enbe

rg n

um

ber,

the

rati

o of

ela

stic

to

visc

ous

forc

es i

n t

he

flu

id,

wh

ich

for

pol

ymer

ic f

luid

s pl

ays

the

role

of t

he

Rey

nol

ds n

um

ber

in c

reat

ing

the

non

linea

riti

es t

hat

lea

d to

un

stab

le f

low

.B

ecau

se e

last

ic fo

rces

incr

ease

wit

h p

olym

erle

ngt

h m

ore

rapi

dly

than

do

visc

ous

forc

es,

flu

ids c

onta

inin

g lo

ng

poly

mer

s are

esp

ecia

l-ly

pro

ne

to s

uch

ph

enom

ena,

des

pite

hav

ing

new

s and v

iew

s

NA

TU

RE

|VO

L 40

5|4

MA

Y 2

000

|ww

w.n

atu

re.c

om27

Flui

d dy

nam

ics

Turb

ulen

ce w

ithou

t ine

rtia

Ro

nald

G.

Lars

on

Figu

re 1

Is th

is je

t tu

rbu

len

t? T

urb

ule

nt f

low

isn

orm

ally

ass

ocia

ted

wit

h a

hig

h R

eyn

old

sn

um

ber

. A p

olym

er m

elt o

f hig

h v

isco

sity

(5

,000

pas

cal s

econ

ds)

an

d lo

w R

eyn

old

s n

um

ber

is g

reat

ly d

isto

rted

aft

er e

mer

gin

g fr

om a

cap

illa

ry tu

be12

. Gro

ism

an a

nd

Ste

inb

erg2

now

con

firm

that

the

def

inin

g fe

atu

res

of tu

rbu

len

ceca

n a

pp

ear

in th

e fl

ow o

f a p

olym

er s

olu

tion

wit

h h

igh

ela

stic

ity

bu

t low

Rey

nol

ds

nu

mb

er.

elem

ents

of

m

oder

n-h

um

an

beh

avio

ur

exis

ted

by

then

.W

e ca

n n

ow a

dd W

alte

r an

d co

lleag

ues

’di

scov

erie

s4to

th

is p

ictu

re.

Mid

dle

Pala

eo-

lith

ic p

eopl

e m

igh

t h

ave

spre

ad fr

om A

fric

aal

ong

the

shor

elin

es

of

Ara

bia

and

into

sou

ther

n A

sia

duri

ng,

or

soon

aft

er, t

he

last

inte

rgla

cial

. C

onti

nu

ing

alon

g th

e n

arro

wsh

orel

ines

, to

wh

ich

they

wer

e al

read

y ad

apt-

ed, t

hey

cou

ld h

ave

prog

ress

ed a

ll th

e w

ay to

Indo

nes

ia a

t ti

mes

of

low

sea

lev

el (

Fig.

2).

Mov

emen

t alo

ng

the

coas

ts m

ean

t th

at th

eyco

uld

hav

e be

en s

pare

d th

e de

gree

of h

abit

atdi

sru

ptio

n

face

d by

in

lan

d po

pula

tion

s du

rin

g th

e ra

pid

clim

atic

flu

ctu

atio

ns

of th

eLa

te P

leis

toce

ne.

Coa

stal

mig

rati

on m

igh

tal

so e

xpla

in w

hy t

hey

did

not

im

med

iate

lyre

plac

e ar

chai

c pe

ople

s liv

ing

inla

nd,

such

as

thos

e kn

own

from

Nga

ndo

ng

in In

don

esia

1 .A

t w

hat

st

age

the

coas

tal

mig

ran

ts

firs

t ve

ntu

red

out t

o se

a is

un

know

n, b

ut f

rom

the

Au

stra

lian

evi

den

ce i

t se

ems

that

it

mu

sth

ave

been

bef

ore

60,0

00 y

ears

ago

. Su

chbe

hav

iou

r m

ay h

ave

deve

lope

d th

rou

gh t

he

nee

d to

ford

rive

rs o

r ext

end

coas

tal f

orag

ing

area

s.

Arc

hae

olog

ists

mig

ht

now

con

cen

trat

epr

ofit

ably

on

ex

pose

d fo

ssil

beac

hes

in

regi

ons

such

as

Ara

bia

and

Indi

a. S

uch

sit

esm

ay w

ell

con

tain

Mid

dle

Pala

eolit

hic

art

e-fa

cts

that

fu

rth

er d

ocu

men

t th

e sp

read

of

mod

ern

hu

man

s an

d th

eir

adap

tati

ons

to a

coa

stal

env

iron

men

t. S

outh

ern

Asi

a m

ust

hav

e fo

rmed

an

im

port

ant

seco

nda

ryce

ntr

e fo

r di

sper

sals

of

mod

ern

hu

man

s —

ther

e, t

oo, i

t m

ay h

ave

been

th

e co

asts

th

atpr

ovid

ed

the

firs

t an

d fa

stes

t ro

ute

s fo

rm

igra

tion

, bef

ore

mov

emen

t in

lan

d u

p ri

ver

valle

ys.

Chr

is S

trin

ger

is in

the

Hum

an O

rigi

ns R

esea

rch

Gro

up, D

epar

tmen

t of P

alae

onto

logy

, Nat

ural

His

tory

Mus

eum

, Cro

mw

ell R

oad,

Lon

don

SW7

5BD

, UK

.1.

Kle

in, R

. The

Hum

an C

aree

r(U

niv

. Ch

icag

o P

ress

, 199

9).

2.La

hr,

M. &

Fol

ey, R

. Yb.

Phy

s. A

nthr

opol

. 41,

137–

176

(199

8).

3.R

elet

hfo

rd, J

. & J

orde

, L. A

m. J

. Phy

s. A

nthr

opol

. 108

,251

–260

(199

9).

4.W

alte

r, R

. C. e

t al.

Nat

ure

405,

65–6

9 (2

000)

.5.

Troe

ng,

J. A

cta

Arc

haeo

l. Lu

nden

sia

Ser.

8, N

o. 2

1 (1

993)

.6.

Bar

ton

, R. N

. et a

l.A

ntiq

uity

73,1

3–23

(19

99).

7.K

ingd

on, J

. Sel

f-M

ade

Man

and

his

Und

oing

(Sim

on &

Sch

ust

er,

Lon

don

, 199

3).

8.St

rin

ger,

C. A

ntiq

uity

73,8

76–8

79 (

1999

).9.

Th

orn

e, A

. et a

l. J.

Hum

. Evo

l.36

,591

–612

(19

99).

10.

Nat

iona

l Geo

grap

hic

(map

, Feb

. 199

7).

visc

osit

ies

that

can

be

hun

dred

s to

mill

ion

sof

tim

es h

igh

er t

han

wat

er.

Un

til

the

wor

k of

Gro

ism

an a

nd

Stei

nbe

rg2 ,

quan

tita

tive

mea

sure

men

ts o

f th

e le

ngt

h a

nd

tim

e sc

ales

of e

last

ic tu

rbu

len

ce h

ad b

een

lack

ing.

Still

lack

ing,

eve

n n

ow, i

s a p

rope

r un

der-

stan

din

g of

how

th

e le

ngt

h a

nd

tim

e sc

ales

of

ela

stic

tu

rbu

len

ce a

re p

rodu

ced

by t

he

un

derl

yin

g el

asti

c fo

rces

. In

oth

er w

ords

,w

hat

is

mis

sin

g is

an

ela

stic

cou

nte

rpar

t of

the

‘cas

cade

’ pi

ctu

re o

f in

erti

al t

urb

ule

nce

.In

th

is,

the

larg

est

eddi

es i

n t

he

flow

fee

dth

eir

ener

gy i

nto

sm

alle

r ed

dies

, w

hic

h i

ntu

rn d

rive

eve

n s

mal

ler

eddi

es, a

nd

so o

n —

un

til t

he

ener

gy st

ored

in th

e sm

alle

st e

ddie

sis

fin

ally

dis

sipa

ted

as h

eat.

Th

e re

sult

ing

hie

rarc

hy o

f in

tera

ctin

g ed

dies

of

vari

ous

size

s is k

now

n a

s wel

l-de

velo

ped

or h

ard

tur-

bule

nce

. In

Kol

mog

orov

’s ‘

buck

et b

riga

de’

desc

ript

ion

of h

ard

turb

ule

nce

, a p

ower

-law

dist

ribu

tion

in le

ngt

h s

cale

s is

pro

duce

d by

this

han

din

g of

f of

en

ergy

fro

m l

arge

r to

smal

ler e

ddie

s4 .Fo

r ‘e

last

ic t

urb

ule

nce

’, th

e ba

sic

mec

ha-

nis

ms o

f in

stab

ility

in th

e ba

se fl

ow h

ave

only

rece

ntl

y be

en d

isco

vere

d. T

hes

e m

ech

anis

ms

invo

lve

‘nor

mal

stre

sses

’. Nor

mal

stre

sses

are

prod

uce

d by

the

stre

tch

ing

of p

olym

er m

ol-

ecu

les

in a

flo

w,

lead

ing

to a

n e

last

ic f

orce

lik

e th

at i

n a

str

etch

ed r

ubb

er b

and.

If

the

stre

amlin

es a

re c

ircu

lar,

the

poly

mer

‘ru

bber

ban

ds’

pres

s in

war

d fr

om

all

dire

ctio

ns,

ge

ner

atin

g a

radi

al p

ress

ure

gra

dien

t. T

his

© 2

000

Mac

mill

an M

agaz

ines

Ltd

Kalika & Denn, J. Rheol. ’87

CURVILINEAR FLOWS: purely elastic instabilitiesLarson, Shaqfeh, Muller, J. Fluid Mech. ’90

RECTILINEAR FLOWS: no modal instabilities

Page 5: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 4

Transition in Newtonian fluids

• LINEAR HYDRODYNAMIC STABILITY: unstable normal modes

? successful in: Benard Convection, Taylor-Couette flow, etc.

? fails in: wall-bounded shear flows (channels, pipes, boundary layers)

• DIFFICULTY #1Inability to predict: Reynolds number for the onset of turbulence (Rec)

Experimental onset of turbulence:

{much before instabilityno sharp value for Rec

• DIFFICULTY #2Inability to predict: flow structures observed at transition

(except in carefully controlled experiments)

Page 6: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 5

LINEAR STABILITY:

? For Re ≥ Rec ⇒ exp. growing normal modescorresponding e-functions

(TS-waves)

}:= exp. growing flow structures

-x

���z

EXPERIMENTS: streaky boundary layers and turbulent spots

-x6z

Failure of classical linear stability analysis for wall-bounded shear flows

Classical theory assumes 2D disturbances

Experiments suggest transition to more complex flow is inherently 3D: streamwise streaks

Flow type Classical prediction Experiment

Plane Poiseuille 5772 ~ 1000

Plane Couette ∞ ~ 350Pipe flow ∞ ~ 2200-100000

Critical Reynolds number for instability

M. Matsubara and P. H. Alfredsson, J. Fluid Mech. 430 (2001) 149

Boundary layer flow with free-stream turbulence

Flow-x6z

Matsubara & Alfredsson, J. Fluid Mech. ’01

Page 7: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 6

• FAILURE OF LINEAR HYDRODYNAMIC STABILITY

caused by high flow sensitivity

? large transient responses

? large noise amplification

? small stability margins

TO COUNTER THIS SENSITIVITY: must account for modeling imperfections

TRANSITION ≈ STABILITY + RECEPTIVITY + ROBUSTNESS

←−

←−

flowdisturbances

unmodeleddynamics

Page 8: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 7

Tools for quantifying sensitivity

• INPUT-OUTPUT ANALYSIS: spatio-temporal frequency responses

-

d

Free-stream turbulenceSurface roughnessNeglected nonlinearities

Linearized Dynamics -

Fluctuatingvelocity field

}v

d1d2d3

︸ ︷︷ ︸

d

amplification−−−−−−−−−−−→

uvw

︸ ︷︷ ︸

v

IMPLICATIONS FOR:

transition: insight into mechanisms

control: control-oriented modeling

Page 9: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 8

Transient growth analysis

• STUDY TRANSIENT BEHAVIOR OF FLUCTUATIONS’ ENERGY

Farrell, Butler, Gustavsson, Henningson, Reddy, Trefethen, etc.

Re < 5772

ψt = Aψ

kinetic energy:

+ E-VALUES: misleading measure of transient response

Page 10: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 9

A toy example[ψ1

ψ2

]=

[−λ1 0R −λ2

] [ψ1

ψ2

], λ1, λ2 > 0

λ1 = 1, λ2 = 2:ψ1(t

),ψ2(t

)

Page 11: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 10

Non-modal amplification of disturbances[ψ1

ψ2

]=

[−λ1 0R −λ2

] [ψ1

ψ2

]+

[10

]d

-d 1

s + λ1-

ψ1

R -1

s + λ2-

ψ2

WORST CASE AMPLIFICATION VARIANCE AMPLIFICATION

maxenergy of ψ2

energy of d= max

ω|H(iω)|2 =

R2

(λ1λ2)21

∫ ∞−∞|H(iω)|2 dω =

R2

λ1λ2 (λ1 + λ2)

ROBUSTNESS

-d 1

s + λ1-

ψ1

R -1

s + λ2s -ψ2

�Γ

modeling uncertainty(can be nonlinear or time-varying)

small-gain theorem:

stability for all Γ withmaxω |Γ(iω)| ≤ γ

mγ < λ1λ2/R

Page 12: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 11

Ensemble average energy density

Re = 2000

• Dominance of streamwise elongated structuresstreamwise streaks!

Page 13: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 12

Influence of Re: streamwise-constant model

[ψ1t

ψ2t

]=

[Aos 0

ReAcp Asq

] [ψ1

ψ2

]+

[0 B2 B3

B1 0 0

] d1d2d3

uvw

=

0 Cu

Cv 0Cw 0

[ ψ1

ψ2

]

-d2

B2- n - (iωI − Aos)

−1

Orr-Sommerfelds -ReAcp

coupling

- n - (iωI − Asq)−1

Squire

-ψ2

Cu-

u

-d1

B1

?

-d3

B3

6

s - Cv-

v

- Cw-

w

ψ1

Jovanovic & Bamieh, J. Fluid Mech. ’05

Page 14: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 13

Amplification mechanism in flows with high Re

• HIGHEST AMPLIFICATION: (d2, d3)→ u

-d2

B2- n -(iωI − ∆−1∆2)−1

‘glorifieddiffusion’

-ψ1

ReAcp

vortextilting

- (iωI − ∆)−1

viscousdissipation

-ψ2

Cu-

u

-d3

B3

6

+ AMPLIFICATION MECHANISM: vortex tilting or lift-up

wal

l-nor

mal

dire

ctio

n

Stream-wise vortices and streaks

31

spanwise direction

Page 15: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 14

Linear analyses: Input-output vs. Stability

AMPLIFICATION:

v = H d

singular values of H

STABILITY:

ψt = Aψ

e-values of A

The cross sectional model

2 Dimensional, 3 Component (2D3C) model for parallel flowsDynamics of stream-wise constant pertrubations

• Simpler than full 3D models

• Has much of the phenomenology of boundary layer turbulence

– Transitional (bypass) and fully turbulent coherent structures arevery elongated in streamwise direction

typical structures cross sectional dynamics standard 2D models

8

Input-output analysis of Linearized Navier-Stokes (Cont.)

��������

��������

................................................................................

................................................................................

.................................................................

................................................................................

................................................................................

.................................................................

��� �����..

.........................................................................................................................................................................................................

�����

�����

.........................................................................................................................................................................................................

�����

�����

x1

−1uw

vyz

“Most resonant flow structures”are stream-wise vortices and streaks

Cross sectional view

30

typical structures cross-sectional dynamics 2D models

Page 16: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 15

Oldroyd-B fluids

HOOKEAN SPRING:

(Re/We)ut = −Re (u · ∇)u − ∇p + β∆u + (1− β)∇ · τ + d

0 = ∇ · uτ t = − τ + ∇u + (∇u)T + We

(τ · ∇u + (∇u)T · τ − (u · ∇)τ

)

VISCOSITY RATIO: β :=solvent viscosity

total viscosity

WEISSENBERG NUMBER: We :=fluid relaxation time

characteristic flow time

Page 17: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 16

• TRANSIENT GROWTH ANALYSIS

Sureshkumar et al., JNNFM ’99; Atalik & Keunings, JNNFM ’02;Kupferman, JNNFM ’05; Doering et al., JNNFM ’06; Renardy, JNNFM ’09

• INPUT-OUTPUT ANALYSIS

-d

Equations of motion s -v

�Polymer equationss�

τ

-

importance of streamwise elongated structures

Hoda, Jovanovic, Kumar, J. Fluid Mech. ’08Hoda, Jovanovic, Kumar, J. Fluid Mech. ’09

Page 18: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 17

Inertialess channel flow: streamwise-constant model

0 = −∇p + β∆u + (1− β)∇ · τ + d

0 = ∇ · uτ t = − τ + ∇u + (∇u)T + We

(τ · ∇u + (∇u)T · τ − (u · ∇)τ

)

Page 19: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 18

Inertialess Oldroyd-B vs. Inertial Newtonian

-d2

B2- n - (iωI − A11)

−1 s -WeAcp

polymerstretching

- n - (iωI − A22)−1 -

φ2Cu

-u

-d1

B1

?

-d3

B3

6

s - Cv-

v

- Cw-

w

φ1

OLDROYD-B W/O INERTIA: Weissenberg number & Polymer Stretching≈

NEWTONIAN WITH INERTIA: Reynolds number & Vortex Tilting

Jovanovic & Kumar, Phys. Fluids ’10

Jovanovic & Kumar ’10, (submitted)

Page 20: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 19

Spatial frequency responses

(d2, d3)amplification−−−−−−−−−−−→ u

INERTIAL NEWTONIAN: E(kz;Re) = Re2 f(kz)

INERTIALESS OLDROYD-B: E(kz;We, β) = We2 g(kz) (1− β)2/β

vortex tilting: f(kz) polymer stretching: g(kz)

Page 21: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 20

Dominant flow patterns• FREQUENCY RESPONSE PEAKS

+ streamwise vortices and streaks

Inertial Newtonian: Inertialess Oldroyd-B:

• CHANNEL CROSS-SECTION VIEW:

{color plots: streamwise velocitycontour lines: stream-function

Page 22: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 21

Outlook

• WISH LIST

? direct numerical simulations of stochastically forced flowstrack ‘linear’ and ‘nonlinear’ stages of disturbance development

? secondary sensitivity analysisstudy influence of streamwise-varying disturbances on streaks

• Challenge: relative roles of flow sensitivity and nonlinearity

Page 23: Nonmodal amplification of disturbances in inertialess ...people.ece.umn.edu/users/mihailo/talks/Shaqfeh-July10.pdffluid, which for polymeric fluids plays the ... can appear in the

Dra

ft

M. JOVANOVIC, U OF M 22

Acknowledgments

COLLABORATORS:

Satish Kumar (CEMS, U of M)Nazish Hoda (ExxonMobil)Binh Lieu (ECE, U of M)

SUPPORT:

NSF CAREER Award CMMI-06-44793

COMPUTING RESOURCES:

Minnesota Supercomputing Institute